1
|
Cho J, Han SC, Ho Hwang J, Song J. Characterization of immune development of fetal and early-life of minipigs. Int Immunopharmacol 2023; 120:110310. [PMID: 37196561 DOI: 10.1016/j.intimp.2023.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Fetal and child's immune systems differ from those of adults. Developing immune systems exhibit increased or decreased sensitivity to drugs, infection, or toxicants compared to adult immune systems. Understanding fetal and neonatal immune systems will help predict toxicity or the pathogenesis or prognosis of diseases. In this study, we evaluated whether the innate and adaptive immune system of fetal and young minipigs could respond to external stimuli compared to a medium-treated group and analyzed several immunological parameters for developmental immunotoxicity according to developmental stages. We performed a hematological analysis of fetal cord bloods and the bloods of neonatal and 4-week-old piglets. Splenocytes were isolated at each developmental stage and treated with lipopolysaccharide (LPS), R848, and concanavalin A (ConA). Various cytokines were measured in the cell supernatants. Total antibody production was also evaluated in serum. The percentage of lymphocytes was dominant in gestational weeks (GW) 10 and 12 and started to decrease from postnatal day (PND) 0. From PND0, the percentage of neutrophils increased. Interleukin (IL)-1β, IL-6, and interferon (IFN)-α were induced from GW10 in response to LPS and R848 stimulation. Th1 cytokine induction was detected from PND0 upon ConA stimulation, whereas Th2 cytokine release was observed from GW10. IgM and IgG production was sustained at low levels at fetal stages and was significantly increased after birth. This study reconfirmed that the fetal immune system could respond to external stimuli and that hematological analysis, cytokine evaluation, and antibody subclass measurement can be useful parameters for developmental immunotoxicity using minipigs.
Collapse
Affiliation(s)
- Jeonghee Cho
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea; Graduate School of Konyang University of Bioconvergence, Department of Bio-Non-Clinical Science, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea.
| | - Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
3
|
Stewart BJ, Ferdinand JR, Young MD, Mitchell TJ, Loudon KW, Riding AM, Richoz N, Frazer GL, Staniforth JUL, Braga FAV, Botting RA, Popescu DM, Vento-Tormo R, Stephenson E, Cagan A, Farndon SJ, Polanski K, Efremova M, Green K, Velasco-Herrera MDC, Guzzo C, Collord G, Mamanova L, Aho T, Armitage JN, Riddick ACP, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Lindsay S, Bajenoff M, Warren AY, Stewart GD, Sebire N, Coleman N, Haniffa M, Teichmann SA, Behjati S, Clatworthy MR. Spatiotemporal immune zonation of the human kidney. Science 2019; 365:1461-1466. [PMID: 31604275 PMCID: PMC7343525 DOI: 10.1126/science.aat5031] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/31/2019] [Accepted: 09/04/2019] [Indexed: 11/02/2022]
Abstract
Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.
Collapse
Affiliation(s)
- Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Thomas J Mitchell
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Surgery, University of Cambridge, CB2 0QQ, UK
| | - Kevin W Loudon
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Alexandra M Riding
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
| | - Gordon L Frazer
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
| | - Joy UL Staniforth
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
| | | | - Rachel A Botting
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Dorin-Mirel Popescu
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Emily Stephenson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sarah J Farndon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- UCL Great Ormond Street Hospital Institute of Child Health, London WC1N 1E, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mirjana Efremova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Charlotte Guzzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Grace Collord
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Tevita Aho
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - James N Armitage
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Antony CP Riddick
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Imran Mushtaq
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Stephen Farrell
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Dyanne Rampling
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew Filby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Johanna Burge
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Marc Bajenoff
- Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Surgery, University of Cambridge, CB2 0QQ, UK
| | - Neil Sebire
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- UCL Great Ormond Street Hospital Institute of Child Health, London WC1N 1E, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Sam Behjati
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|