1
|
Nemeth Z, Hildebrandt E, Parsa N, Fleming AB, Wasson R, Pittman K, Bell X, Granger JP, Ryan MJ, Drummond HA. Epithelial sodium channels in macrophage migration and polarization: role of proinflammatory cytokines TNFα and IFNγ. Am J Physiol Regul Integr Comp Physiol 2022; 323:R763-R775. [PMID: 36189990 PMCID: PMC9639769 DOI: 10.1152/ajpregu.00207.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Migration of monocytes-macrophages plays an important role in phagocytosis of pathogens and cellular debris in a variety of pathophysiological conditions. Although epithelial Na+ channels (ENaCs) are required for normal migratory responses in other cell types, their role in macrophage migration signaling is unknown. To address this possibility, we determined whether ENaC message is present in several peripheral blood monocyte cell populations and tissue-resident macrophages in healthy humans using the Human Protein Atlas database (www.proteinatlas.org) and the mouse monocyte cell line RAW 264.7 using RT-PCR. We then determined that selective ENaC inhibition with amiloride inhibited chemotactic migration (∼50%), but not phagocytosis, of the mouse monocyte-macrophage cell line RAW 264.7. Furthermore, we generated a cell line stably expressing an NH2-terminal truncated αENaC to interrupt normal channel trafficking and found it suppressed migration. Prolonged exposure (48 h) of RAW 264.7 cells to proinflammatory cytokines interferon γ (IFNγ) and/or tumor necrosis factor α (TNFα) inhibited RAW 264.7 migration and abolished the amiloride (1 µM)-sensitive component of migration, a finding consistent with ENaC downregulation. To determine if proinflammatory cytokines regulate αENaC protein expression, cells were exposed to proinflammatory cytokines IFNγ (10 ng/mL, last 48 h) and TNFα (10 ng/mL, last 24 h). By Western blot analysis, we found whole cell αENaC protein is reduced ≥50%. Immunofluorescence demonstrated heterogeneous αENaC inhibition. Finally, we found that overnight exposure to amiloride stimulated morphological changes and increased polarization marker expression. Our findings suggest that ENaC may be a critical molecule in macrophage migration and polarization.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nicholas Parsa
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam B Fleming
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert Wasson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Katarina Pittman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xavier Bell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
2
|
Varshney P, Saini N. PI3K/AKT/mTOR activation and autophagy inhibition plays a key role in increased cholesterol during IL-17A mediated inflammatory response in psoriasis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1795-1803. [PMID: 29432814 DOI: 10.1016/j.bbadis.2018.02.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 11/29/2022]
Abstract
Psoriasis is an immune-mediated inflammatory disease of the skin. Previous studies including ours have shown that IL-17A plays a major role in its pathogenesis; however, its precise molecular mechanism of action is not well understood. Cytokines like TNF α and IL-23 are also important in mediating the disease and some studies have also reported autophagy as a novel mechanism by which cytokines controls the immune response. Herein, we investigated the effect of IL-17A on autophagy and reveal crosstalk between autophagy and cholesterol signaling in keratinocytes. Our results suggest that IL-17A stimulated keratinocytes activated PI3K/AKT/mTOR signaling and inhibited autophagy by simultaneously inhibiting autophagosome formation and enhancing autophagic flux. Western blotting was utilized to detect the expression of autophagic markers (LC3 and p62), PI3K, mTOR and AKT. Induction of autophagy by mTOR inhibitor rapamycin and/or starvation also inhibited the levels of IL-17A secreted IL-8, CCL20 and S100A7 in keratinocytes. Herein, we also observed that inhibition of autophagy by IL-17A was accompanied by enhanced cellular cholesterol levels which in turn regulated the autophagic flux. To investigate crosstalk between autophagy and cellular cholesterol, we used methyl-β-cyclodextrin (MβCD), which disrupts detergent-insoluble microdomains (DIMs) by depleting cells of cholesterol and checked autophagy. Decreased expression of LC3-II in psoriatic lesional skin compared to non-lesional skin and induction of autophagy by anti-psoriatic drug methotrexate in keratinocytes further confirms the role of autophagy in psoriasis. Our findings suggest that modulators of autophagy and/or cholesterol levels may be developed, and also may lead to new therapeutic agents for psoriasis treatment.
Collapse
Affiliation(s)
- Pallavi Varshney
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India.
| |
Collapse
|
3
|
Beaudette P, Popp O, Dittmar G. Proteomic techniques to probe the ubiquitin landscape. Proteomics 2015; 16:273-87. [PMID: 26460060 DOI: 10.1002/pmic.201500290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Protein ubiquitination is a powerful modulator of cellular functions. Classically linked to the degradation of proteins, it also plays a role in intracellular localization, DNA damage response, vesicle fusion events, and the immune and transcriptional responses. Ubiquitin is versatile and can code for several distinct signals, either by adding a single ubiquitin or forming a chain of ubiquitins on the target protein. The enzymatic cascade associated with the cellular process determines the nature of the modification. Numerous efforts have been made for the identification of ubiquitin acceptor sites in the target proteins using genetic, biochemical or MS-based proteomic methods, such as affinity-based enrichment of ubiquitinated proteins, and antibody-based enrichment of modified peptides. Modern instrumentation enables quantitative MS strategies to identify and characterize hundreds of ubiquitin substrates in a single analysis making it the dominant method for ubiquitin site detection. Characterization of the interubiquitin connectivity in ubiquitin polymers has also moved into focus, with the field of targeted proteomics techniques proving invaluable for identifying and quantifying linkage types found in such polyubiquitin chains. This review seeks to provide an overview of the many MS-based proteomics techniques available for exploring this dynamic field.
Collapse
Affiliation(s)
- Patrick Beaudette
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Oliver Popp
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Department of Mass Spectrometry, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
4
|
Kapoor N, Niu J, Saad Y, Kumar S, Sirakova T, Becerra E, Li X, Kolattukudy PE. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. THE JOURNAL OF IMMUNOLOGY 2015; 194:6011-23. [PMID: 25934862 DOI: 10.4049/jimmunol.1402797] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 01/06/2023]
Abstract
Macrophage polarization plays a critical role in tissue homeostasis, disease pathogenesis, and inflammation and its resolution. IL-4-induced macrophage polarization involves induction of STAT6 and Krüppel-like factor 4 (KLF4), which induce each other and promote M2 polarization. However, how these transcription factors implement M2 polarization is not understood. We report that in murine macrophages MCP-1-induced protein (MCPIP), induced by KLF4, inhibits M1 polarization by inhibiting NF-κB activation and implements M2 polarization using both its deubiquitinase and RNase activities that cause sequential induction of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy required for M2 polarization. MCPIP also induces C/EBPβ and PPARγ, which promote M2 polarization. Macrophages from mice with myeloid-targeted overexpression of MCPIP show elevated expression of M2 markers and reduced response to LPS, whereas macrophages from mice with myeloid-specific deletion of MCPIP manifest elevated M1 polarization with enhanced phagocytic activity. Thus, both in vivo and in vitro experiments demonstrate that the transcription factors STAT6 and KLF4 implement IL-4-induced M2 polarization via the dual catalytic activities of MCPIP.
Collapse
Affiliation(s)
- Nidhi Kapoor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jianli Niu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Yasser Saad
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Sanjay Kumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Edilu Becerra
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Xiaoman Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
5
|
Gupta M, Shin DM, Ramakrishna L, Goussetis DJ, Platanias LC, Xiong H, Morse HC, Ozato K. IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes. Nat Commun 2015; 6:6379. [PMID: 25775030 PMCID: PMC4363081 DOI: 10.1038/ncomms7379] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/23/2015] [Indexed: 12/11/2022] Open
Abstract
Autophagy, activated by many stresses, plays a critical role in innate immune responses. Here we show that Interferon Regulatory Factor 8 (IRF8) is required for expression of autophagy-related genes in dendritic cells. Furthermore in macrophages, IRF8 is induced by multiple autophagy-inducing stresses, including IFNγ and toll like receptor stimulation, bacterial infection, starvation and by macrophage colony-stimulating factor. IRF8 directly activates many genes involved in various steps of autophagy, promoting autophagosome formation and lysosomal fusion. Consequently, Irf8-/- macrophages are deficient in autophagic activity, and excessively accumulate SQSTM1 and ubiquitin-bound proteins. We show that clearance of Listeria monocytogenes in macrophages requires IRF8-dependent activation of autophagy genes and subsequent autophagic capturing and degradation of Listeria antigens. These processes are defective in Irf8-/- macrophages where uninhibited bacterial growth ensues. Together, these data suggest that IRF8 is a major autophagy regulator in macrophages, essential for macrophage maturation, survival and innate immune responses.
Collapse
Affiliation(s)
- Monica Gupta
- Program in Genomics of Differentiation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dong-Mi Shin
- 1] Laboratory of Immunopathology, NIAID, National Institutes of Health, 5640 Fishers Lane, Room 1421, Rockville, Maryland 20852, USA [2] Department of Food and Nutrition, Seoul National University, Seoul 151-742, Korea
| | - Lakshmi Ramakrishna
- Program in Genomics of Differentiation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dennis J Goussetis
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | - Leonidas C Platanias
- 1] Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA [2] Division of Hematology-Oncology, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA
| | - Huabao Xiong
- Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Herbert C Morse
- Laboratory of Immunopathology, NIAID, National Institutes of Health, 5640 Fishers Lane, Room 1421, Rockville, Maryland 20852, USA
| | - Keiko Ozato
- Program in Genomics of Differentiation, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Rich T, Dean RTG, Lamm CG, Ramiro-Ibañez F, Stevenson ML, Patterson-Kane JC. p62/Sequestosome-1: Mapping Sites of Protein-Handling Stress in Canine Cutaneous Mast Cell Tumors. Vet Pathol 2014; 52:621-30. [PMID: 25161207 DOI: 10.1177/0300985814548489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Canine cutaneous mast cell tumors (MCT) are common, frequently malignant neoplasms that are currently graded histologically for provision of prognostic information. Continuing evidence of subsets of MCT within certain grades (with differing survival times) indicate the need for biomarkers that will facilitate better patient stratification and also provide further information on the biological processes involved in progression. We decided to investigate the expression of p62/sequestosome-1 (p62/SQSTM1), a stress-inducible "hub protein" found in all cell types that shuttles rapidly between the nucleus and cytoplasm and is known to play important roles in protein handling and tumorigenesis. The identity of canine p62/SQSTM1 was confirmed in silico and by validation of a commercial antibody using both Western blotting and functional (pharmaceutical-based) analyses in cell culture. Using immunohistochemistry, 3 patterns of p62 expression were identified based on the predominant intracellular localization, that is, nuclear, mixed (nuclear and cytoplasmic), and cytoplasmic. There was a highly significant association with the 2-tier (Kiupel) grade (P < .0001), with all p62-nuclear immunoreactivity being associated with low grade and most p62-cytoplasmic immunoreactivity (93%) with high grade. Most but not all mixed nuclear-cytoplasmic labeling occurred in low-grade MCT; in other (human) tumor types, this pattern has been interpreted as borderline malignant. These data indicate that there is a shift in protein-handling stress from the nucleus to the cytoplasm in association with increasing malignancy in MCT. Studies to identify the processes and drug-able targets involved in this progression are ongoing.
Collapse
Affiliation(s)
- T Rich
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - R T G Dean
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - C G Lamm
- IDEXX Laboratories, Inc, West Sacramento, CA, USA
| | - F Ramiro-Ibañez
- IDEXX Laboratories Ltd, Wetherby, West Yorkshire, United Kingdom
| | - M L Stevenson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - J C Patterson-Kane
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
7
|
Abstract
Protein ubiquitination is an important post-translational modification that regulates almost every aspect of cellular function and many cell signaling pathways in eukaryotes. Alterations of protein ubiquitination have been linked to many diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, immunological disorders and inflammatory diseases. To understand the roles of protein ubiquitination in these diseases and in cell signaling pathways, it is necessary to identify ubiquitinated proteins and their modification sites. However, owing to the nature of protein ubiquitination, it is challenging to identify the exact modification sites under physiological conditions. Recently, ubiquitin-remnant profiling, an immunoprecipitation approach, which uses monoclonal antibodies specifically to enrich for peptides derived from the ubiquitinated portion of proteins and mass spectrometry for their identification, was developed to determine ubiquitination events from cell lysates. This approach has now been widely applied to profile protein ubiquitination in several cellular contexts. In this review, we discuss mass-spectrometry-based methods for the identification of protein ubiquitination sites, analyze their advantages and disadvantages, and discuss their application for proteomic analysis of ubiquitination.
Collapse
Affiliation(s)
- Guoqiang Xu
- a Laboratory of Chemical Biology, Department of Pharmacology , College of Pharmaceutical Sciences, Soochow University , Suzhou , China
| | | |
Collapse
|
8
|
Carrano AC, Bennett EJ. Using the ubiquitin-modified proteome to monitor protein homeostasis function. Mol Cell Proteomics 2013; 12:3521-31. [PMID: 23704779 DOI: 10.1074/mcp.r113.029744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin system is essential for the maintenance of proper protein homeostasis function across eukaryotic species. Although the general enzymatic architecture for adding and removing ubiquitin from substrates is well defined, methods for the comprehensive investigation of cellular ubiquitylation targets have just started to emerge. Recent advances in ubiquitin-modified peptide enrichment have greatly increased the number of identified endogenous ubiquitylation targets, as well as the number of sites of ubiquitin attachment within these substrates. Herein we evaluate current strategies using mass-spectrometry-based proteomics to characterize ubiquitin and ubiquitin-like modifications. Using existing data, we describe the characteristics of the ubiquitin-modified proteome and discuss strategies for the biological interpretation of existing and future ubiquitin-based proteomic studies.
Collapse
Affiliation(s)
- Andrea C Carrano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | | |
Collapse
|
9
|
Chang TH, Xu S, Tailor P, Kanno T, Ozato K. The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:3548-56. [PMID: 22942423 DOI: 10.4049/jimmunol.1201104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and other IRF8 target genes, consistent with SUMO-mediated transcriptional repression reported for other transcription factors. SUMO3-conjugated IRF8 showed reduced mobility in live nuclei and bound poorly to the IL12p40 gene. However, macrophage activation caused a sharp reduction in the amount of SUMOylated IRF8. This reduction coincided with the induction of a deSUMOylating enzyme, sentrin-specific peptidase 1 (SENP1), in activated macrophages. In transfection analysis, SENP1 removed SUMO3 from IRF8 and enhanced expression of IL12p40 and other target genes. Conversely, SENP1 knockdown repressed IRF8 target gene expression. In parallel with IRF8 deSUMOylation, macrophage activation led to the induction of proteins active in the SUMO pathway and caused a global shift in nuclear protein SUMOylation patterns. Together, the IRF8 SUMO conjugation/deconjugation switch is part of a larger transition in SUMO modifications that takes place upon macrophage activation, serving as a mechanism to trigger innate immune responses.
Collapse
Affiliation(s)
- Tsung-Hsien Chang
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|