1
|
Jiang Z, Jiang X, Chen A, He W. Platelet activation: a promoter for psoriasis and its comorbidity, cardiovascular disease. Front Immunol 2023; 14:1238647. [PMID: 37654493 PMCID: PMC10465348 DOI: 10.3389/fimmu.2023.1238647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with a prevalence of 0.14% to 1.99%. The underlying pathology is mainly driven by the abnormal immune responses including activation of Th1, Th17, Th22 cells and secretion of cytokines. Patients with psoriasis are more likely to develop cardiovascular disease (CVD) which has been well recognized as a comorbidity of psoriasis. As mediators of hemostasis and thromboinflammation, platelets play an important part in CVD. However, less is known about their pathophysiological contribution to psoriasis and psoriasis-associated CVD. A comprehensive understanding of the role of platelet activation in psoriasis might pave the path for more accurate prediction of cardiovascular (CV) risk and provide new strategies for psoriasis management, which alleviates the increased CV burden associated with psoriasis. Here we review the available evidence about the biomarkers and mechanisms of platelet activation in psoriasis and the role of platelet activation in intriguing the common comorbidity, CVD. We further discussed the implications and efficacy of antiplatelet therapies in the treatment of psoriasis and prevention of psoriasis-associated CVD.
Collapse
Affiliation(s)
- Ziqi Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoran Jiang
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Afarid M, Bahari H, Sanie-Jahromi F. In Vitro Evaluation of Apoptosis, Inflammation, Angiogenesis, and Neuroprotection Gene Expression in Retinal Pigmented Epithelial Cell Treated with Interferon α-2b. J Interferon Cytokine Res 2023. [PMID: 37289822 DOI: 10.1089/jir.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Angiogenesis, retinal neuropathy, and inflammation are the main molecular features of diabetic retinopathy (DR) and should be taken into consideration for potential treatment approaches. Retinal pigmented epithelial (RPE) cells play a major role in DR progression. This study evaluated the in vitro effect of interferon (IFN) α-2b on the expression of genes involved in apoptosis, inflammation, neuroprotection, and angiogenesis in RPE cells. RPE cells were cocultured with IFN α-2b at 2 doses (500 and 1,000 IU) and treatment periods (24 and 48 h). The quantitative relative expression of genes (BCL-2, BAX, BDNF, VEGF, and IL-1b) was evaluated in the treated versus control cells through real-time polymerase chain reaction (PCR). The result of this study demonstrated that IFN treatment at 1,000 IU (48 h) led to significant upregulation of BCL-2, BAX, BDNF, and IL-1b; however, the BCL-2/BAX ratio was not statistically altered from 1:1, in any of the treatment patterns. We also showed that VEGF expression was downregulated in RPE cells treated with 500 IU for 24 h. It can be concluded that IFN α-2b was safe (BCL-2/BAX ∼1:1) and enhanced neuroprotection at 1,000 IU (48 h); however-at the same time-IFN α-2b induced inflammation in RPE cells. Moreover, the antiangiogenic effect of IFN α-2b was solely observed in RPE cells treated with 500 IU (24 h). It seems that IFN α-2b in lower doses and short duration exerts antiangiogenic effects and in higher doses and longer duration has neuroprotective and inflammatory effects. Hence, appropriate concentration and duration of treatment, according to the type and stage of the disease, should be considered to achieve success in IFN therapy.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bahari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Chen S, Li L, Wu Z, Liu Y, Li F, Huang K, Wang Y, Chen Q, Wang X, Shen W, Zhang R, Shen Y, Lu L, Ding F, Dai Y. SerpinG1: A Novel Biomarker Associated With Poor Coronary Collateral in Patients With Stable Coronary Disease and Chronic Total Occlusion. J Am Heart Assoc 2022; 11:e027614. [PMID: 36515245 PMCID: PMC9798810 DOI: 10.1161/jaha.122.027614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background This study aimed to explore predictive biomarkers of coronary collateralization in patients with chronic total occlusion. Methods and Results By using a microarray expression profiling program downloaded from the Gene Expression Omnibus database, weighted gene coexpression network analysis was constructed to analyze the relationship between potential modules and coronary collateralization and screen out the hub genes. Then, the hub gene was identified and validated in an independent cohort of patients (including 299 patients with good arteriogenic responders and 223 patients with poor arteriogenic responders). Weighted gene coexpression network analysis showed that SERPING1 in the light-cyan module was the only gene that was highly correlated with both the gene module and the clinical traits. Serum levels of serpinG1 were significantly higher in patients with bad arteriogenic responders than in patients with good arteriogenic responders (472.53±197.16 versus 314.80±208.92 μg/mL; P<0.001) and were negatively associated with the Rentrop score (Spearman r=-0.50; P<0.001). Receiver operating characteristic curve analysis indicated that the area under the curve was 0.77 (95% CI, 0.72-0.81; P<0.001) for serum serpinG1 in prediction of bad arteriogenic responders. After adjusting for traditional cardiovascular risk factors, serum serpinG1 levels (per SD) remained an independent risk factor for bad arteriogenic responders (odds ratio, 2.20 [95% CI, 1.76-2.74]; P<0.001). Conclusions Our findings illustrate that SERPING1 screened by weighted gene coexpression network analysis was associated with poor collateralization in patients with chronic total occlusion.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Le‐Ying Li
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zhi‐Ming Wu
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yong Liu
- Department of Nursing, Chongqing Medical and Pharmaceutical CollegeChongqingChina
| | - Fei‐Fei Li
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ke Huang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi‐Xuan Wang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu‐Jing Chen
- Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiao‐Qun Wang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wei‐Feng Shen
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Rui‐Yan Zhang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Shanghai Clinical Research Center for Interventional MedicineShanghaiChina
| | - Ying Shen
- Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Lin Lu
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Feng‐Hua Ding
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Shanghai Clinical Research Center for Interventional MedicineShanghaiChina
| | - Yang Dai
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Dauvergne M, Buob D, Rafat C, Hennino MF, Lemoine M, Audard V, Chauveau D, Ribes D, Cornec-Le Gall E, Daugas E, Pillebout E, Vuiblet V, Boffa JJ. Renal diseases secondary to interferon-β treatment: a multicentre clinico-pathological study and systematic literature review. Clin Kidney J 2021; 14:2563-2572. [PMID: 34950468 PMCID: PMC8690152 DOI: 10.1093/ckj/sfab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background The spectrum of interferon-β (IFN-β)-associated nephropathy remains poorly described and the potential features of this uncommon association remain to be determined. Methods In this study we retrospectively analysed the clinical, laboratory, histological and therapeutic data of patients with biopsy-proven renal disease in a context of IFN-β treatment administered for at least 6 months. Results Eighteen patients (13 women, median age 48 years) with biopsy-proven renal disease occurring during IFN-β therapy were included. The median exposure to IFN-β (14 patients were treated with IFN-β1a and 4 patients with IFN-β1b) was 67 months (range 23–165 months). The clinical presentation consists in hypertension (HT; 83%), malignant HT (44%), proteinuria (protU) >1 g/g (94%), reduced renal function (78%), biological hallmark suggesting thrombotic microangiopathy (TMA; 61%), oedematous syndrome (17%) or nephritic syndrome (11%). The pathological findings included typical features of isolated TMAs in 11 cases, isolated focal segmental glomerulosclerosis (FSGS) lesions in 2 cases and 5 cases with concomitant TMA and FSGS lesions. An exploration of the alternative complement pathway performed in 10 cases (63%) did not identify mutations in genes that regulate the complement system. The statistical analysis highlighted that the occurrence of IFN-β-associated TMA was significantly associated with Rebif, with a weekly dose >50 µg and with multiple weekly injections. In all cases, IFN-β therapy was discontinued. Patients with TMA lesions received other therapies, including corticosteroids (44%), eculizumab (13%) and plasma exchanges (25%). At the end of a 36-month median follow-up, persistent HT and persistent protU were observed in 61% and 22% of patients, respectively. Estimated glomerular filtration rate <60 mL/min/1.73 m2 was present in 61% of patients. Conclusions IFN-β-associated nephropathy must be sought in the case of HT and/or protU onset during treatment. When TMA and/or FSGS are observed on renal biopsy, early discontinuation of IFN-β is essential.
Collapse
Affiliation(s)
- Maxime Dauvergne
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Néphrologie et Dialyses, Paris, France
| | - David Buob
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Cédric Rafat
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Urgences Néphrologiques et Transplantation Rénale, Paris, France
| | - Marie-Flore Hennino
- Centre Hospitalier de Valenciennes, Service de Néphrologie, Valenciennes, France
| | - Mathilde Lemoine
- CHU de Rouen, Service de Néphrologie, Dialyse et Transplantation, Rouen, France
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie et Transplantation, Centre de Référence Maladie Rare Syndrome Néphrotique Idiopathique, Fédération Hospitalo-Universitaire Innovative Therapy for Immune Disorders, Créteil, France
| | - Dominique Chauveau
- CHU Rangueil, Département de Néphrologie et Transplantation d'Organes et Centre de Référence Maladies Rénales Rares SORARE, Toulouse, France
| | - David Ribes
- CHU Rangueil, Département de Néphrologie et Transplantation d'Organes et Centre de Référence Maladies Rénales Rares SORARE, Toulouse, France
| | | | - Eric Daugas
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Néphrologie, Paris, France
| | - Evangéline Pillebout
- Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Louis, Service de Néphrologie, Paris, France
| | - Vincent Vuiblet
- Département de Néphro-Pathologie, Unité de Pathologie, CHU Reims, Reims, France
| | - Jean-Jacques Boffa
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Néphrologie et Dialyses, Paris, France
| | | |
Collapse
|
6
|
Aref Z, Quax PHA. In Vivo Matrigel Plug Assay as a Potent Method to Investigate Specific Individual Contribution of Angiogenesis to Blood Flow Recovery in Mice. Int J Mol Sci 2021; 22:ijms22168909. [PMID: 34445616 PMCID: PMC8396178 DOI: 10.3390/ijms22168909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neovascularization restores blood flow recovery after ischemia in peripheral arterial disease. The main two components of neovascularization are angiogenesis and arteriogenesis. Both of these processes contribute to functional improvements of blood flow after occlusion. However, discriminating between the specific contribution of each process is difficult. A frequently used model for investigating neovascularization is the murine hind limb ischemia model (HLI). With this model, it is difficult to determine the role of angiogenesis, because usually the timing for the sacrifice of the mice is chosen to be optimal for the analysis of arteriogenesis. More importantly, the occurring angiogenesis in the distal calf muscles is probably affected by the proximally occurring arteriogenesis. Therefore, to understand and subsequently intervene in the process of angiogenesis, a model is needed which investigates angiogenesis without the influence of arteriogenesis. In this study we evaluated the in vivo Matrigel plug assay in genetic deficient mice to investigate angiogenesis. Mice deficient for interferon regulatory factor (IRF)3, IRF7, RadioProtective 105 (RP105), Chemokine CC receptor CCR7, and p300/CBP-associated factor (PCAF) underwent the in vivo Matrigel model. Histological analysis of the Matrigel plugs showed an increased angiogenesis in mice deficient of IRF3, IRF7, and RP105, and a decreased angiogenesis in PCAF deficient mice. Our results also suggest an involvement of CCR7 in angiogenesis. Comparing our results with results of the HLI model found in the literature suggests that the in vivo Matrigel plug assay is superior in evaluating the angiogenic response after ischemia.
Collapse
Affiliation(s)
| | - Paul H. A. Quax
- Correspondence: ; Tel.: +31-71-526-1584; Fax: +31-71-526-6570
| |
Collapse
|
7
|
Anastasiou M, Newton GA, Kaur K, Carrillo-Salinas FJ, Smolgovsky SA, Bayer AL, Ilyukha V, Sharma S, Poltorak A, Luscinskas FW, Alcaide P. Endothelial STING controls T cell transmigration in an IFNI-dependent manner. JCI Insight 2021; 6:e149346. [PMID: 34156982 PMCID: PMC8410041 DOI: 10.1172/jci.insight.149346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The stimulator of IFN genes (STING) protein senses cyclic dinucleotides released in response to double-stranded DNA and functions as an adaptor molecule for type I IFN (IFNI) signaling by activating IFNI-stimulated genes (ISG). We found impaired T cell infiltration into the peritoneum in response to TNF-α in global and EC-specific STING-/- mice and discovered that T cell transendothelial migration (TEM) across mouse and human endothelial cells (EC) deficient in STING was strikingly reduced compared with control EC, whereas T cell adhesion was not impaired. STING-/- T cells showed no defect in TEM or adhesion to EC, or immobilized endothelial cell-expressed molecules ICAM1 and VCAM1, compared with WT T cells. Mechanistically, CXCL10, an ISG and a chemoattractant for T cells, was dramatically reduced in TNF-α-stimulated STING-/- EC, and genetic loss or pharmacologic antagonisms of IFNI receptor (IFNAR) pathway reduced T cell TEM. Our data demonstrate a central role for EC-STING during T cell TEM that is dependent on the ISG CXCL10 and on IFNI/IFNAR signaling.
Collapse
Affiliation(s)
- Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Gail A. Newton
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Sasha A. Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Abraham L. Bayer
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Vladimir Ilyukha
- Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russia
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA.,Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russia
| | - Francis W. Luscinskas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q, Li X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021; 10:1929005. [PMID: 34262796 PMCID: PMC8253121 DOI: 10.1080/2162402x.2021.1929005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are a large family of pleiotropic cytokines that regulate both innate and adaptive immunity and show anti-cancer effects in various cancer types. Moreover, it was revealed that IFN signaling plays critical roles in the success of cancer therapy strategies, thereby enhancing their therapeutic effects. However, IFNs have minimal or even adverse effects on cancer eradication, and mediate cancer immune escape in some instances. Thus, IFNs have a double-edged effect on the cancer immune response. Recent studies suggest that IFNs regulate each step of the cancer immunity-cycle, consisting of cancer antigen release, presentation of antigens and activation of T cells, trafficking and infiltration of effector T cells into the tumor microenvironment, and recognition and killing of cancer cells, which contributes to our understanding of the mechanisms of IFNs in regulating cancer immunity. In this review, we focus on IFNs and cancer immunity and elaborate on the roles of IFNs in regulating the cancer-immunity cycle.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Zhengbin Yan
- Department of Stomatology, the PeopIe's Hospital of Longhua, Shenzhen, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobo Li
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers (Basel) 2021; 13:2695. [PMID: 34070756 PMCID: PMC8198217 DOI: 10.3390/cancers13112695] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery systems that would allow for sustained inflammation in the tumor microenvironment could potentially augment response rates to current immunotherapy approaches and overcome acquired resistance. In this review, we will focus on the latest developments in STING-targeted therapies and provide an update on the clinical development and application of STING agonists administered alone, or in combination with immune checkpoint blockade or other approaches.
Collapse
Affiliation(s)
- Afsaneh Amouzegar
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Manoj Chelvanambi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
| | - Jessica N. Filderman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
| | - Walter J. Storkus
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jason J. Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
10
|
Nikolai-Yogerst A, White P, Iwashima M. IFN-β reduces NRP-1 expression on human cord blood monocytes and inhibits VEGF-induced chemotaxis. Cytokine 2021; 143:155519. [PMID: 33858750 DOI: 10.1016/j.cyto.2021.155519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Type I interferons (IFNs) inhibit angiogenesis, the sprouting of new blood vessels, during tissue development, remodeling, and tumor growth. One of the major targets type I IFNs inhibit are circulating monocytes, which promote vascular development by secreting growth factors, chemokines, and proteases. This study tested the hypothesis that IFN-β directly inhibits monocyte chemotaxis towards VEGF. We were interested in looking at chemotaxis towards VEGF because VEGF is known to create a pro-angiogenesis environment by acting as a stimulator and chemotactic factor for endothelial cells and monocytes. Here, we demonstrate that IFN-β, a type I IFN, downregulates neuropilin-1 (NRP-1) expression by human monocytes and inhibits chemotaxis induced by vascular endothelial growth factor (VEGF), a NRP-1 ligand. Together, the data suggest that IFN-β directly downregulates NRP-1 expression in monocytes, thus inhibiting monocyte chemotaxis toward a VEGF enriched environment.
Collapse
Affiliation(s)
- Anya Nikolai-Yogerst
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Paula White
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States.
| |
Collapse
|
11
|
Investigation of Plasmid DNA Delivery and Cell Viability Dynamics for Optimal Cell Electrotransfection In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electroporation is an effective method for delivering plasmid DNA molecules into cells. The efficiency of gene electrotransfer depends on several factors. To achieve high transfection efficiency while maintaining cell viability is a tedious task in electroporation. Here, we present a combined study in which the dynamics of both evaluation types of transfection efficiency and the cell viability were evaluated in dependence of plasmid concentration as well as at the different number of high voltage (HV) electric pulses. The results of this study reveal a quantitative sigmoidal (R2 > 0.95) dependence of the transfection efficiency and cell viability on the distance between the cell membrane and the nearest plasmid. We propose this distance value as a new, more accurate output parameter that could be used in further optimization studies as a predictor and a measure of electrotransfection efficiency.
Collapse
|
12
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
13
|
Abstract
Over the past decade, preclinical and clinical research have confirmed the essential role of interferons for effective host immunological responses to malignant cells. Type I interferons (IFNα and IFNβ) directly regulate transcription of >100 downstream genes, which results in a myriad of direct (on cancer cells) and indirect (through immune effector cells and vasculature) effects on the tumour. New insights into endogenous and exogenous activation of type I interferons in the tumour and its microenvironment have given impetus to drug discovery and patient evaluation of interferon-directed strategies. When combined with prior observations or with other effective modalities for cancer treatment, modulation of the interferon system could contribute to further reductions in cancer morbidity and mortality. This Review discusses new interferon-directed therapeutic opportunities, ranging from cyclic dinucleotides to genome methylation inhibitors, angiogenesis inhibitors, chemoradiation, complexes with neoantigen-targeted monoclonal antibodies, combinations with other emerging therapeutic interventions and associations of interferon-stimulated gene expression with patient prognosis - all of which are strategies that have or will soon enter translational clinical evaluation.
Collapse
|
14
|
Mastrangeli R, Palinsky W, Bierau H. How unique is interferon-β within the type I interferon family? Cytokine 2018; 111:206-208. [PMID: 30176558 DOI: 10.1016/j.cyto.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
All type I interferons share structural homology and bind to a common heterodimeric receptor consisting of the IFNAR1 and IFNAR2 subunits, which are expressed on most cell types. Although binding to the same receptor pair, they evoke a broad range of activities within the cell affecting the expression of numerous genes and resulting in profound cellular changes. Differential activation results from multiple levels of cellular and molecular events including binding affinity, receptor density, cell type-specific variations, and post-translational modification of signaling molecules downstream. Within the type I interferon family the Asn-Gly-Arg (NGR) sequence motif is unique to interferon-β and, together with its deamidated variants Asp-Gly-Arg (DGR) and iso-Asp-Gly-Arg (iso-DGR), imparts additional binding specificities that go beyond that of the canonical IFNAR1/IFNAR2. These warrant further investigations and functional studies and may eventually shed new light on differential effects observed for this molecule in oncology and autoimmune diseases.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA (an affiliate of Merck KgaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Rome), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma (an affiliate of Merck KgaA, Darmstadt, Germany), Zone Industrielle de l'Ouriettaz, Aubonne 1170, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA (an affiliate of Merck KgaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Rome), Italy.
| |
Collapse
|
15
|
|
16
|
Mastrangeli R, D'amici F, D'Acunto CW, Fiumi S, Rossi M, Terlizzese M, Palinsky W, Bierau H. A deamidated interferon-β variant binds to integrin αvβ3. Cytokine 2018; 104:38-41. [PMID: 29414325 DOI: 10.1016/j.cyto.2018.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Human type I interferons are a family of pleiotropic cytokines with antiviral, anti-proliferative and immunomodulatory activities. They signal through the same cell surface receptors IFNAR1 and IFNAR2 yet evoking markedly different physiological effects. One differentiating factor of interferon-beta (IFN-β) from other type I interferons is the presence of theAsn-Gly-Arg (NGR) sequence motif, which, upon deamidation, converts to Asp-Gly-Arg (DGR) and iso-Asp-Gly-Arg (iso-DGR) motifs. In other proteins, the NGR and iso-DGR motifs are reported as CD13- and αvβ3, αvβ5, αvβ6, αvβ8 and α5β1 integrin-binding motifs, respectively. The scope of this study was to perform exploratory surface plasmon resonance (SPR) experiments to assess the binding properties of a deamidated IFN-β variant to integrins. For this purpose, integrin αvβ3 was selected as a reference model within the iso-DGR- integrin binding members. The obtained results show that deamidated IFN-β binds integrin αvβ3 with nanomolar affinity and that the response was dependent on the deamidation extent. Based on these results, it can be expected that deamidated IFN-β also binds to other integrin family members that are able to bind to the iso-DGR binding motif. The novel binding properties could help elucidate specific IFN-β attributes that under physiological conditions may be modulated by the deamidation.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Fabio D'amici
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Cosimo-Walter D'Acunto
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Sabrina Fiumi
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Mara Rossi
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Mariagrazia Terlizzese
- Pharmaceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma (an affiliate of Merck KGaA, Darmstadt, Germany), Zone Industrielle de l'Ouriettaz, Aubonne 1170, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Via Luigi Einaudi, 11, 00012 Guidonia Montecelio (Roma), Italy.
| |
Collapse
|
17
|
Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Sci Rep 2018; 8:1510. [PMID: 29367646 PMCID: PMC5784113 DOI: 10.1038/s41598-018-20027-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/11/2018] [Indexed: 11/23/2022] Open
Abstract
Targeting drugs to endothelial cells has shown the ability to improve outcomes in animal models of inflammatory, ischemic and thrombotic diseases. Previous studies have revealed that certain pairs of ligands (antibodies and antibody fragments) specific for adjacent, but distinct, epitopes on PECAM-1 enhance each other’s binding, a phenomenon dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL. This discovery has been leveraged to enable simultaneous delivery of multiple therapeutics to the vascular endothelium. Given the known role of PECAM-1 in promoting endothelial quiescence and cell junction integrity, we sought here to determine if CEPAL might induce unintended vascular effects. Using a combination of in vitro and in vivo techniques and employing human and mouse endothelial cells under physiologic and pathologic conditions, we found only modest or non-significant effects in response to antibodies to PECAM-1, whether given solo or in pairs. In contrast, these methods detected significant elevation of endothelial permeability, pro-inflammatory vascular activation, and systemic cytokine release following antibody binding to the related endothelial junction protein, VE-Cadherin. These studies support the notion that PECAM-1-targeted CEPAL provides relatively well-tolerated endothelial drug delivery. Additionally, the analysis herein creates a template to evaluate potential toxicities of vascular-targeted nanoparticles and protein therapeutics.
Collapse
|
18
|
Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000249] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by early microvascular abnormalities, immune dysregulation and chronic inflammation, and subsequent fibrosis of the skin and internal organs. Excessive fibrosis, distinguishing hallmark of SSc, is the end result of a complex series of interlinked vascular injury and immune activation, and represents a maladaptive repair process. Activated vascular, epithelial, and immune cells generate pro-fibrotic cytokines, chemokines, growth factors, lipid mediators, autoantibodies, and reactive oxygen species. These paracrine and autocrine cues in turn induce activation, differentiation, and survival of mesenchymal cells, ensuing tissue fibrosis through increased collagen synthesis, matrix deposition, tissue rigidity and remodeling, and vascular rarefaction. This review features recent insights of the pathogenic process of SSc, highlighting three major characteristics of SSc, microvasculopathy, excessive fibrosis, and immune dysregulation, and sheds new light on the understanding of molecular and cellular mechanisms contributing to the pathogenesis of SSc and providing novel avenues for targeted therapies.
Collapse
|
19
|
Boccia A, Virata C, Lindner D, English N, Pathan N, Brickelmaier M, Hu X, Gardner JL, Peng L, Wang X, Zhang X, Yang L, Perron K, Yco G, Kelly R, Gamez J, Scripps T, Bennett D, Joseph IB, Baker DP. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models. J Interferon Cytokine Res 2016; 37:20-31. [PMID: 27835061 DOI: 10.1089/jir.2016.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao Hu
- 1 Biogen, Inc. , Cambridge, Massachusetts
| | | | | | | | | | - Lu Yang
- 1 Biogen, Inc. , Cambridge, Massachusetts
| | | | - Grace Yco
- 1 Biogen, Inc. , Cambridge, Massachusetts
| | | | | | | | | | | | | |
Collapse
|