1
|
Renda G, Gökkaya İ, Şöhretoğlu D. Immunomodulatory properties of triterpenes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:537-563. [PMID: 34812259 PMCID: PMC8600492 DOI: 10.1007/s11101-021-09785-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
The immune system is one of the main defence mechanisms of the human body. Inadequacy of this system or immunodeficiency results in increased risk of infections and tumours, whereas over-activation of the immune system causes allergic or autoimmune disorders. A well-balanced immune system is important for protection and for alleviation of these diseases. There is a growing interest to maintain a well-balanced immune system, especially after the Covid-19 pandemic. Many biological extracts, as well as natural products, have become popular due to their wide array of immunomodulatory effects and influence on the immune system. Triterpenes, one of the secondary metabolite groups of medicinal plants, exhibit immunomodulatory properties by various mechanisms. Different triterpenes, including components of commonly consumed plants, can promote some protection and alleviation of disease symptoms linked with immune responses and thus enhance overall well-being. This review aims to highlight the efficacy of triterpenes in light of the available literature evidence regarding the immunomodulatory properties of triterpenes. We have reviewed widely investigated immunomodulatory triterpenes; oleanolic acid, glycyrrhizin, glycyrrhetinic acid, pristimerin, ursolic acid, boswellic acid, celastrol, lupeol, betulin, betulinic acid, ganoderic acid, cucumarioside, and astragalosides which have important immunoregulatory properties. In spite of many preclinical and clinical trials were conducted on triterpenes related to their immunoregulatory actions, current studies have several limitations. Therefore, especially more clinical studies with optimal design is essential.
Collapse
Affiliation(s)
- Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - İçim Gökkaya
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - Didem Şöhretoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara Turkey
| |
Collapse
|
2
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
3
|
Malyarenko OS, Ivanushko LA, Chaikina EL, Kusaykin MI, Silchenko AS, Avilov SA, Kalinin VI, Ermakova SP. In Vitro and In Vivo Effects of Holotoxin A1 From the Sea Cucumber Apostichopus japonicus During Ionizing Radiation. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20932033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Radiation therapy is one of the most important approaches to cancer therapy, but radiotoxicity to normal tissue is a serious limitation of this treatment. Compounds which are able to either sensitize cancer cells or protect normal cells to radiation are of great interest. The cytotoxicity of holotoxin A1 and the effects of radiation against DLD-1 and HT-29 cells were measured by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. The effect of the combination of holotoxin A1 with X-ray on colony formation of cancer cells was determined by the soft agar assay. The effect of holotoxin A1 on the recovery of peripheral blood leukocyte number, mass, and cellularity of the lymphoid organs of irradiated mice, as well as on growth of murine Ehrlich solid carcinoma was studied. Holotoxin A1 enhanced the sensitivity of colorectal carcinoma cells to radiation in vitro. Injection of holotoxin A1 to mice led to an increase in the spleen endogenous colony number and peripheral blood leukocyte number, as well as the weight and cellularity of the lymphoid organs of the irradiated mice. Holotoxin A1 in combination with X-ray radiation effectively inhibited the growth of Ehrlich solid carcinoma in vivo. Holotoxin A1 is suggested to be a promising agent for improving the efficiency of radiotherapy.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Lyudmila A. Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Elena L. Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Mikhail I. Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
4
|
Abstract
Background:
Immunomodulation-based therapy has achieved a breakthrough in
the last decade, which stimulates the passion of searching for potential immunomodulatory
substances in recent years.
Objective:
Marine natural products are a unique source of immunomodulatory substances.
This paper summarized the emerging marine natural small-molecules and related synthesized
derivatives with immunomodulatory activities to provide readers an overview of these bioactive
molecules and their potential in immunomodulation therapy.
Conclusion:
An increasing number of immunomodulatory marine small-molecules with diverse
intriguing structure-skeletons were discovered. They may serve as a basis for further
studies of marine natural products for their chemistry, related mechanism of action and structure-
activity relationships.
Collapse
Affiliation(s)
- Ran Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu-Cheng Gu
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Li L, Feng Y, Hong Y, Lin X, Shen L. Recent Advances in Drug Delivery System for Bioactive Glycosides from Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1791-1824. [PMID: 30482025 DOI: 10.1142/s0192415x18500908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Traditional Chinese Medicine (TCM) has been used in China for thousands of years for the prevention and treatment of various diseases. The materials that exert a therapeutic effect are called the active ingredients. The bioactive glycosides are important active ingredients from TCM that can make significant contributions to treating diseases. Because of the possibilities of various clinical applications, the properties and administration of these bioactive glycosides deserve further investigation. Their promising treatment effects, however, are hindered by their poor solubility, poor stability and rapid elimination. Therefore, it is necessary that we improve the therapeutic efficacy of bioactive glycosides by overcoming these problems. Meanwhile, some practical design strategies and novel drug delivery vehicles based on drug delivery systems provide favorable support in clinical practice for these active ingredients. This review summarizes diverse pharmacological activities of bioactive glycosides and focuses on recent advances in delivery system for these active constitutes; in particular, some glycol glycosides can effectively cure intractable diseases through targeted drug delivery. This review elucidates some design strategies for drug delivery system that are mainly based on two methods (avoiding physical barriers by changing dosage forms and enhancing the ability to bind to receptors or proteins after administration) and indicate the current challenges during the combination of delivery vehicles and these glycosides in hopes of promoting the process of receiving ideal therapeutic efficacy of them in future studies.
Collapse
Affiliation(s)
- Lei Li
- * School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yi Feng
- † Engineering Research Center of Modern Preparation, Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yanlong Hong
- ‡ Shanghai Innovation Center of Traditional Chinese, Medicine Health Service, Shanghai, P. R. China
| | - Xiao Lin
- * School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,† Engineering Research Center of Modern Preparation, Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Lan Shen
- * School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,† Engineering Research Center of Modern Preparation, Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
6
|
Zhao YC, Xue CH, Zhang TT, Wang YM. Saponins from Sea Cucumber and Their Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7222-7237. [PMID: 29932674 DOI: 10.1021/acs.jafc.8b01770] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sea cucumbers, belonging to the phylum Echinodermata, have been valued for centuries as a nutritious and functional food with various bioactivities. Sea cucumbers can produce highly active substances, notably saponins, the main secondary metabolites, which are the basis of their chemical defense. The saponins are mostly triterpene glycosides with triterpenes or steroid in aglycone, which possess multiple biological properties including antitumor, hypolipidemic activity, improvement of nonalcoholic fatty liver, inhibition of fat accumulation, antihyperuricemia, promotion of bone marrow hematopoiesis, antihypertension, etc. Sea cucumber saponins have received attention due to their rich sources, low toxicity, high efficiency, and few side effects. This review summarizes current research on the structure and activities of sea cucumber saponins based on the physiological and pharmacological activities from source, experimental models, efficacy, and mechanisms, which may provide a valuable reference for the development of sea cucumber saponins.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
| | - Chang-Hu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs & Biological Products , Qingdao 266237 , China
| | - Tian-Tian Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
| | - Yu-Ming Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs & Biological Products , Qingdao 266237 , China
| |
Collapse
|
7
|
Pislyagin EA, Manzhulo IV, Gorpenchenko TY, Dmitrenok PS, Avilov SA, Silchenko AS, Wang YM, Aminin DL. Cucumarioside A₂-2 Causes Macrophage Activation in Mouse Spleen. Mar Drugs 2017; 15:md15110341. [PMID: 29104230 PMCID: PMC5706031 DOI: 10.3390/md15110341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
The immunomodulatory effect of triterpene glycoside cucumarioside A2-2 (CA2-2), isolated from the Far Eastern sea cucumber Cucumaria japonica, was compared with lipopolysaccharide (LPS) on mouse spleen. It has been shown that the intraperitoneal (i.p.) glycoside administration leads to increased spleen macrophage activating markers iba-1, IL-1β, iNOs, ROS and NO formation, with additional change of macrophage phenotype to M1. The mass spectrometry profiles of peptide/protein were obtained using MALDI-TOF-MS on the different parts of spleen sections isolated by laser mircodissection techniques. It was found that i.p. stimulation of animals with CA2-2 leads to marked changes in the intensity of the characteristic peaks of spleen peptides/proteins, primarily in red pulp.
Collapse
Affiliation(s)
- Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Igor V Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Science, 690041 Vladivostok, Russia.
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia.
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City 300, Taiwan.
| | - Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia.
| |
Collapse
|
8
|
Aminin D, Pislyagin E, Astashev M, Es'kov A, Kozhemyako V, Avilov S, Zelepuga E, Yurchenko E, Kaluzhskiy L, Kozlovskaya E, Ivanov A, Stonik V. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors. Sci Rep 2016; 6:39683. [PMID: 28004778 PMCID: PMC5177912 DOI: 10.1038/srep39683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Since ancient times, edible sea cucumbers have been considered a jewel of the seabed and used in Asian folk medicine for stimulation of resistance against different diseases. However, the power of this sea food has not been established on a molecular level. A particular group of triterpene glycosides was found to be characteristic metabolites of the animals, responsible for this biological action. Using one of them, cucumarioside A2-2 (CA2-2) from the edible Cucumaria japonica species as an example as well as inhibitory analysis, patch-clamp on single macrophages, small interfering RNA technique, immunoblotting, SPR analysis, computer modeling and other methods, we demonstrate low doses of CA2-2 specifically to interact with P2X receptors (predominantly P2X4) on membranes of mature macrophages, enhancing the reversible ATP-dependent Ca2+ intake and recovering Ca2+ transport at inactivation of these receptors. As result, interaction of glycosides of this type with P2X receptors leads to activation of cellular immunity.
Collapse
Affiliation(s)
- Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Maxim Astashev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Andrey Es'kov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Valery Kozhemyako
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Sergei Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Ekaterina Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | | | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Valentin Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
9
|
Kang HK, Seo CH, Park Y. The effects of marine carbohydrates and glycosylated compounds on human health. Int J Mol Sci 2015; 16:6018-56. [PMID: 25785562 PMCID: PMC4394518 DOI: 10.3390/ijms16036018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 02/02/2023] Open
Abstract
Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.
Collapse
Affiliation(s)
- Hee-Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
10
|
Park JI, Bae HR, Kim CG, Stonik VA, Kwak JY. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front Chem 2014; 2:77. [PMID: 25250309 PMCID: PMC4159031 DOI: 10.3389/fchem.2014.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022] Open
Abstract
Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.
Collapse
Affiliation(s)
- Joo-In Park
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
| | - Hae-Rahn Bae
- Department of Physiology, School of Medicine, Dong-A UniversityBusan, South Korea
| | - Chang Gun Kim
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| | - Valentin A. Stonik
- The Laboratory of Chemistry of Marine Natural Products, G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of ScienceVladivostok, Russia
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| |
Collapse
|
11
|
Aminin DL, Pislyagin EA, Menchinskaya ES, Silchenko AS, Avilov SA, Kalinin VI. Immunomodulatory and Anticancer Activity of Sea Cucumber Triterpene Glycosides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00003-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Menchinskaya ES, Aminin DL, Avilov SA, Silchenko AS, Andryjashchenko PV, Kalinin VI, Stonik VA. Inhibition of Tumor Cells Multidrug Resistance by Cucumarioside A 2-2, Frondoside A and their Complexes with Cholesterol. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In non-cytotoxic concentrations, frondoside A (1) from the sea cucumber Cucumaria okhotensis and cucumarioside A2-2 (2) from C. japonica, as well as their complexes with cholesterol block the activity of membrane transport P-glycoprotein in cells of the ascite form of mouse Ehrlich carcinoma. They prevent in this way an efflux of fluorescent probe Calcein from the cells. Since the blocking of P-glycoprotein activity results in decrease of multidrug resistance, these glycosides and their complexes with cholesterol may be considered as potential inhibitors of multidrug resistance of tumor cells.
Collapse
Affiliation(s)
- Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Aleksandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pelageya V. Andryjashchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| |
Collapse
|
13
|
Pislyagin E, Dmitrenok P, Gorpenchenko T, Avilov S, Silchenko A, Aminin D. Determination of cucumarioside A2-2 in mouse spleen by radiospectroscopy, MALDI-MS and MALDI-IMS. Eur J Pharm Sci 2013; 49:461-7. [DOI: 10.1016/j.ejps.2013.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 11/24/2022]
|
14
|
Abstract
This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
3β-O-Glycosylated 16β-acetoxy-9β-H-lanosta-7,24-diene-3β,18,20β-triol, an intermediate metabolite from the sea cucumber Eupentacta fraudatrix and its biosynthetic significance. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Pislyagin EA, Gladkikh RV, Kapustina II, Kim NY, Shevchenko VP, Nagaev IY, Avilov SA, Aminin DL. Interaction of holothurian triterpene glycoside with biomembranes of mouse immune cells. Int Immunopharmacol 2012; 14:1-8. [PMID: 22683181 DOI: 10.1016/j.intimp.2012.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/21/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
The in vitro interactions between triterpene glycoside, cucumarioside A(2)-2, isolated from the Far-Eastern holothurian Cucumaria japonica, and mouse splenocyte and peritoneal macrophage biomembranes were studied. Multiple experimental approaches were employed, including determination of biomembrane microviscosity, membrane potential and Ca(2+) signaling, and radioligand binding assays. Cucumarioside A(2)-2 exhibited strong cytotoxic effect in the micromolar range of concentrations and showed pronounced immunomodulatory activity in the nanomolar concentration range. It was established that the cucumarioside A(2)-2 effectively interacted with immune cells and increased the cellular biomembrane microviscosity. This interaction led to a dose-dependent reversible shift in cellular membrane potential and temporary biomembrane depolarization; and an increase in [Ca(2+)](i) in the cytoplasm. It is suggested that there are at least two binding sites for [(3)H]-cucumarioside A(2)-2 on cellular membranes corresponding to different biomembrane components: a low affinity site match to membrane cholesterol that is responsible for the cytotoxic properties, and a high affinity site corresponding to a hypothetical receptor that is responsible for immunostimulation.
Collapse
Affiliation(s)
- E A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | | | | | | | | | | | | | | |
Collapse
|