1
|
Feng L, Shi P, Zhao L, Shang M, Han Y, Han N, Liu Z, Li S, Zhai J, Yin J. Structural characterization of polysaccharides from Panax ginseng C. A. Meyer root and their triggered potential immunoregulatory and radioprotective activities. Int J Biol Macromol 2024; 280:135993. [PMID: 39326612 DOI: 10.1016/j.ijbiomac.2024.135993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
With people's increasing awareness of healthy diet, the diverse health-promoting functions of ginseng have been widely recognized. As one of the key functional components, ginseng polysaccharides have attracted increasing research interest. Here, three purified polysaccharide fractions, GPS-1a, GPS-1b, and GPS-2, were obtained from the root extract of Panax ginseng C. A. Meyer. Structurally, GPS-1a and GPS-1b were both linked in a → 6)-α-D-Glcp-(1 → pattern but composed of glucose and galactose in molar ratios of 9.76:0.24 and 9.81:0.19. In contrast, GPS-2 was composed of glucose, galactose, arabinose, rhamnose, and galacturonic acid in a molar ratio of 1.82:1.94:0.79:0.52:4.93. The main backbone consisted of →4)-α-D-GalpA-(1→, →4)-α-D-GalpA-6OMe-(1→, →3, 4)-α-D-GalpA-(1→, →3)-α-L-Rhap-(1 → linages, and its branches are composed of →5)-α-L-Araf-(1→, →4)-β-D-Galp-(1→, →2)-β-D-Glcp-(1→, α-D-GalAp-(1→. Benefitting from this structural variance, GPS-2 exhibited the most significant immunoregulatory and radioprotective efficacies. Specifically, GPS-2 promoted TLR2, NF-κB, and TRAF6 protein expression levels, thereby significantly improving macrophage phagocytosis, splenic lymphocyte proliferation, and stimulation of NO, IL-1β, IL-6, and TNF-α secretion, which activated RAW264.7 and splenic lymphocytes. The following radioprotection activity tests unveiled that GPS-2 increased the organ index, number of peripheral blood cells, cellularity of splenocytes, and bone marrow cell numbers in irradiated mice. This investigation revealed the contribution of polysaccharide structure characteristics to the bioactive expression and elucidated the potential utilization of GPS-2 as a radioprotective agent or immunomodulator.
Collapse
Affiliation(s)
- Lei Feng
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China
| | - Peixin Shi
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lichun Zhao
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengwen Shang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yubo Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sikai Li
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Wang Y, Su P, Zhuo Z, Jin Y, Zeng R, Wu H, Huang H, Chen H, Li Z, Sha W. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2023; 643:111-120. [PMID: 36592584 DOI: 10.1016/j.bbrc.2022.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Radiation-induced intestinal injury (RIII) frequently occurs during radiotherapy; however, methods for treating RIII are limited. Ginsenoside Rk1 (RK1) is a substance that is derived from ginseng, and it has several biological activities, such as antiapoptotic, antioxidant and anticancer activities. The present study was designed to investigate the potential protective effect of Rk1 on RIII and the potential mechanisms. The results showed that RK1 treatment significantly improved the survival rate of the irradiated rats and markedly ameliorated the structural injury of the intestinal mucosa observed by histology. Treatment with RK1 significantly alleviated radiation-induced intestinal epithelial cell oxidative stress apoptosis. Moreover, RNA-Seq identified 388 differentially expressed genes (DEGs) and showed that the PI3K-AKT pathway might be a key signaling pathway by which RK1 exerts its therapeutic effects on RIII. The western blotting results showed that the p-PI3K, p-AKT and p-mTOR expression levels, which were increased by radiation, were markedly inhibited by Rk1, and these effects were reversed by IGF-1. The present study demonstrates that Rk1 can alleviate RIII and that the mechanism underlying the antiapoptotic effects of RK1 may involve the suppression of the PI3K/Akt/mTOR pathway. This study provides a promising therapeutic agent for RIII.
Collapse
Affiliation(s)
- Yilin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Peizhu Su
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yabin Jin
- Department of Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiwen Huang
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zhaotao Li
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China.
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. PHYTOCHEMISTRY 2022; 200:113213. [PMID: 35472482 DOI: 10.1016/j.phytochem.2022.113213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Rishi Sharma
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y, Qiu Y, Li C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti‑inflammatory effects. Mol Med Rep 2022; 25:188. [PMID: 35362542 PMCID: PMC8985202 DOI: 10.3892/mmr.2022.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Evodiamine (Evo) is an alkaloid that can be extracted from the berry fruit Evodia rutaecarpa and has been reported to exert various pharmacological effects, such as antidiarrheal, antiemetic and antiulcer effects. In vivo, the potential effects of Evo were investigated in a mouse model of dextran sodium sulfate (DSS)‑induced ulcerative colitis (UC) and in adenomatous polyposis coli (Apc)MinC/Gpt C57BL/6 mice with colorectal cancer (CRC), where the latter harbours a point‑mutation in the Apc gene. Evo suppressed the degree of weight loss and colon shortening induced by DSS, decreased the disease activity index value and ameliorated the pathological alterations in the colon of mice with UC as examined via H&E staining of colon tissues. In addition, Evo decreased the number and size of colonic tumors in ApcMinC/Gpt mice. Proteomics (colon tissues), ELISA (colon tissues and serum) and western blotting (colon tissues) results revealed that Evo inhibited NF‑κB to mediate the levels of various cytokines, including, in the DSS‑induced UC model, IL‑1β, IL‑2, IL‑6, IL‑8, TNF‑α, IFN‑γ (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα, S100a9, TLR4 and MyD88 (western blotting of colon tissues), and, in the colorectal cancer model, IL‑1β, IL‑2, IL‑6, IL‑15, IL‑17, IL‑22, TNF‑α (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα and S100a9 (western blotting of colon tissues), to achieve its anti‑inflammatory and antitumor effects. In vitro, Evo also reduced the viability of the colon cancer cell line SW480, inhibited mitochondrial membrane potential (MMP detection), caused G2/M‑phase arrest (cell cycle detection) and suppressed the translocation of phosphorylated‑NF‑κB from the cytoplasm into the nucleus (immunofluorescence of p‑NF‑κB). Theoretical evidence (MD simulations) suggest that Evo may bind to the ordered domain (α‑helix) of NF‑κB to influence this protein. The protein secondary structure changes were analyzed by the cpptraj module in Amber. In addition, these data provide experimental evidence that Evo may be an effective agent for treating UC and CRC.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhao
- Department of Pharmacy, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanyue Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130119, P.R. China
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Yilmaz H, Karakoc Y, Tumkaya L, Mercantepe T, Sevinc H, Yilmaz A, Yılmaz Rakıcı S. The protective effects of red ginseng and amifostine against renal damage caused by ionizing radiation. Hum Exp Toxicol 2022; 41:9603271221143029. [DOI: 10.1177/09603271221143029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This study aimed to elucidate the effects of amifostine (ethyol) (AM), a synthetic radioprotector, and red ginseng (RG), a natural radioprotective agent, against the toxic effect of ionizing radiation (IR) on kidney tissues through changes in biochemical and histopathological parameters in addition to contributions to the use of amifostine and RG in clinical studies . Five groups were established: Group I (control, receiving only saline by gavage), Group II (IR only), and Group III (IR+AM, 200 mg/kg intraperitoneally (i.p.). Group IV (IR + RG, 200 mg/kg orally once a day for 4 weeks), and Group V (IR+RG+AM, 200 mg/kg orally once/day for 4 weeks before IR and 200 mg/kg AM administered (i.p.) 30 min before IR). All groups, except for the control group, were subject to 6-Gy whole-body IR in a single fraction. 24 h after irradiation, all animals were sacrificed under anesthesia. IR enhanced MDA, 8-OHdG, and caspase-3 expression while decreasing renal tissue GSH levels ( p < .05). Significant numbers of necrotic tubules together with diffuse vacuolization in proximal and distal tubule epithelial cells were also observed. The examination also revealed substantial brush boundary loss in proximal tubules as well as relatively unusual glomerular structures. While GSH levels significantly increased in the AM, RG, and AM+RG groups, a decrease in KHDS, MDA, 8-OHdG, and caspase-3 expression was observed, compared to the group subject to IR only ( p < .05). Therefore, reactive oxygen species-scavenging antioxidants may represent a promising treatment for avoiding kidney damage in patients receiving radiation.
Collapse
Affiliation(s)
- Hamit Yilmaz
- Department of Biophysics, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Yunus Karakoc
- Department of Biophysics, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Hacer Sevinc
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Sema Yılmaz Rakıcı
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| |
Collapse
|
6
|
Chen G, Han Y, Zhang H, Tu W, Zhang S. Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Front Oncol 2021; 11:757973. [PMID: 34804953 PMCID: PMC8604098 DOI: 10.3389/fonc.2021.757973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive system consists of the gastrointestinal tract and the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this review, we introduce the physical classification, basic pathogenesis, clinical characteristics, predictive/diagnostic factors, and possible treatment targets of radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies with the dose-volume effect and has a radiation-based organ correlation. Computed tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy can help diagnose and evaluate the radiation-induced lesion level. The latest treatment approaches include improvement in radiotherapy (such as shielding, hydrogel spacers and dose distribution), stem cell transplantation and drug administration. Gut microbiota modulation may become a novel approach to relieving radiogenic gastrointestinal syndrome. Finally, we summarized the possible mechanisms involved in treatment, but they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for more precise radiotherapy. These advances contribute to our understanding of the assessment and treatment of radiation-induced digestive injury.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
8
|
Suo K, Chen S, Li X, Liu X, Yi J, Zhu J, Lu L, Hao L, Kang Q, Lu J. Radioprotective effect of radiation-induced Lactococcus lactis cell-free extract against 60Coγ injury in mice. J Dairy Sci 2021; 104:9532-9542. [PMID: 34218913 DOI: 10.3168/jds.2021-20291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
Ionizing radiation (IR) is widely used in the diagnosis and treatment of various cancers. However, IR can cause damage to human health by producing reactive oxygen species. Lactococcus lactis is a type of microorganism that is beneficial to human health and has a strong antioxidant capacity. In this study, the protective effect of normal and IR-induced L. lactis IL1403 cell-free extracts (CFE and IR-CFE, respectively) against oxidative damage in vitro and the radioprotective effect of IR-CFE in vivo was evaluated using 60Coγ-induced oxidative damage model in mice. Results showed that IR-CFE exhibited a stronger oxidative damage-protective effect than CFE for L. lactis IL1403 under H2O2 in vitro. Moreover, IR-CFE also showed strong radioprotective effect on hepatocyte cells (AML-12) under radiation condition, and the effect was better than that of CFE. Animal experiment indicated that IR-CFE could reduce the IR-induced damage to the hematopoietic system by increasing the number of white blood cells and red blood cells in peripheral blood of irradiated mice. It was also observed that IR-CFE could markedly alleviate the 60Coγ-induced oxidative stress via increasing the activities of superoxide dismutase and glutathione peroxidase, enhancing the levels of glutathione, and decreasing the contents of malondialdehyde in serum, liver, and spleen. In addition, IR-CFE also could reduce the activities of alanine transaminase and aspartate aminotransferase in serum, thereby reducing radiation damage to the liver. These results suggested that IR-CFE could be considered as potential candidates for natural radioprotective agents. This study provides a theoretical basis for improving the application of lactic acid bacteria.
Collapse
Affiliation(s)
- Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Laizheng Lu
- Zhengzhou Mindtek Biological Technology Co. Ltd., Zhengzhou, Henan 450001, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
9
|
Guiqi Baizhu Decoction Alleviates Radiation Inflammation in Rats by Modulating the Composition of the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9017854. [PMID: 33133218 PMCID: PMC7591278 DOI: 10.1155/2020/9017854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiota is important in metabolism and immune modulation, and compositional disruption of the gut microbiota population is closely associated with inflammation caused by ionizing radiation (IR). Guiqi Baizhu decoction (GQBZD) is a medicinal compound used in traditional Chinese medicine with anti-inflammatory and antioxidation effects, especially in the process of radiotherapy. However, the effect of GQBZD on reducing the damage to the normal immune system in radiotherapy remains unclear. Here, we show that GQBZD reduces body weights, water intake, food intake, diarrhea level and quality of life score, and inflammation and enhances immunity function in rats treated with X-ray radiation. Meanwhile, our data indicate that GQBZD not only reverses IR-induced gut dysbiosis as indicated change of α-diversity and β-diversity of microbiota, the composition of Desulfovibrio, Bacteroides, and Parabacteroides, except for Roseburia and Lachnoclostridium, but also maintains intestinal barrier integrity and promoting the formation of short-chain fatty acids (SCFAs). GQBZD can also reduce the level of phosphorylation P65 (p-P65). Our results demonstrate that GQBZD can significantly alleviate the inflammatory responses and improve the immune damage against IR, and may be used as prebiotic agents to prevent gut dysbiosis and radiation-related metabolic disorders in radiotherapy.
Collapse
|
10
|
Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5430407. [PMID: 33062142 PMCID: PMC7537704 DOI: 10.1155/2020/5430407] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs.
Collapse
|
11
|
Wang YG, Gao Y, Feng J, Dou YQ. Effect of Modified Xijiao Dihuang Decoction () on Intestinal Flora and Th17/Treg in Rats with Radiation Enteritis. Chin J Integr Med 2020; 27:198-205. [PMID: 32240475 DOI: 10.1007/s11655-020-3261-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To observe the effect of Modified Xijiao Dihuang Decoction (, MXDD) on rats with radiation enteritis, and explore its action mechanism. METHODS Thirty female Sprague Dawley rats were divided into the control, model, dexamethasone (DXM), golden bifid (GB) and MXDD groups using random number table, 6 rats in each group. Except the control group, the other rats were developed into radiation enteritis model by exposing to a single 60Co-γ ray at a dose of 11 Gy. The rats in the DXM, GB and MXDD groups were treated with DXM (1.425 mg/kg), GB (0.8 g/kg) and MXDD (36.0 g/kg) for 3 days, respectively. Body weight and diarrhea condition of rats were evaluated daily. On day 3, the feces of rats were collected for intestinal flora detection and the small intestinal tissues were also collected. Bacterial species annotation, alpha and beta diversities as well as composition of intestinal flora were detected and compared. The protein and mRNA expressions of interleukin 17 (IL-17), retinoid-related orphan nuclear receptor gamma t (ROR-γt) and forkhead/ winged helix transcription factor p3 (FoxP3) were determined by Western blot and polymerase chain reaction, respectively. The abundance and diversity of intestinal flora as well as the proportion at the phylum and genus levels were assayed by 16S rRNA metagenome sequencing. Correlation between intestinal flora and Th17/Treg was analyzed by heatmap method. RESULTS On day 1 to 3 after radiation, compared with the control group, the body weight in model group was decreased (P<0.05 or P<0.01). Compared with the model group, MXDD could alleviate weight loss and diarrhea caused by irradiation. At the phylum level, MXDD cause a significant increase in Firmicutes, and a decrease in Proteobacteria (P<0.05 or P<0.01). At the genus level, MXDD reduced the proportion of Escherichia Shigella (P<0.01). In addition, IL-17 and FoxP3 mRNA and protein expression levels were down-regulated and ROR-γt was up-regulated by MXDD treatment (P<0.05). Besides, Firmicutes and Lactobacillus were positively correlated with FoxP3 (r=0.73, 0.79, respectively; P<0.01), negatively correlated with IL-17 (r=0.66, 0.64, respectively; P<0.01 or P<0.05) and ROR-γt (r0.73, 0.81, respectively; P<0.01). Proteobacteria and Escherichia Shigella both had positive correlation with IL-17 (r 0.77, 0.57, respectively; P<0.01 or P<0.05 ) and ROR-γt (r=0.94, 0.79, respectively; P<0.01) and negative correlation with FoxP3 (r0.74, 0.65; P<0.01). CONCLUSION MXDD could improve the survival status of irradiated rats by regulating the richness, diversity and composition of intestinal flora, and restoring the balance of Th17/Treg.
Collapse
Affiliation(s)
- Yu-Guo Wang
- Medical School of Chinese People's Liberation Army, The General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jian Feng
- Medical School of Chinese People's Liberation Army, The General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Yong-Qi Dou
- Medical School of Chinese People's Liberation Army, The General Hospital of People's Liberation Army, Beijing, 100853, China.
| |
Collapse
|