1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Zavala-Ocampo LM, López-Camacho PY, Aguirre-Hernández E, Cárdenas-Vázquez R, Bonilla-Jaime H, Basurto-Islas G. Neuroprotective effects of Petiveria alliacea on scopolamine-induced learning and memory impairment mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116881. [PMID: 37460029 DOI: 10.1016/j.jep.2023.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Petiveria alliacea L., commonly known as macura and gully root, is an important medicinal plant used in the Caribbean and Central America to treat ailments associated to the central nervous system, including poor memory. AIM OF THE STUDY To assess the effects of the P. alliacea leaves methanol fraction (PMF) on a scopolamine-induced learning and memory impairment mouse model related to acetylcholinesterase activity and oxidative stress. MATERIAL AND METHODS After PMF administration at doses of 500 or 900 mg/kg, cognitive ability was evaluated using the Morris water maze (MWM), Y-maze (YM) and novel object recognition (NOR) tests. The mouse brain tissue was further assessed for acetylcholinesterase activity and antioxidant activity. Levels of oxidative stress were also evaluated by measuring malondialdehyde (MDA) and glutathione activity. Acute toxicity was also evaluated. RESULTS PMF led to memory improvement in the behavioral tests in mice with scopolamine-induced cognitive impairment. Moreover, PMF inhibited acetylcholinesterase activity and showed antioxidant potential that in turn attenuated cholinergic degradation. Additionally, PMF increased glutathione levels and glutathione reductase activity and reduced MDA levels in the brain. Moreover, no acute toxicity was detected with the use of PMF. CONCLUSION In a mouse model of scopolamine-induced cognitive deficit, PMF exhibited protective effects, decreasing oxidative damage and regulating cholinergic function in the brain bearing significant memory enhancing potency. These data suggest that PMF is a promising candidate for developing therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Lizeth M Zavala-Ocampo
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico.
| | - Perla Y López-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Ciudad de México, Mexico.
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - René Cárdenas-Vázquez
- Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, Mexico.
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingeniería, Universidad de Guanajuato, León, Guanajuato, Mexico.
| |
Collapse
|
3
|
Xia T, Zhang J, Guo Y, Jiang Y, Qiao F, Li K, Wang N, Han T, Xin H. Humulus lupulus L. Extract Protects against Senior Osteoporosis through Inhibiting Amyloid β Deposition and Oxidative Stress in APP/PS1 Mutated Transgenic Mice and Osteoblasts. Molecules 2023; 28:molecules28020583. [PMID: 36677642 PMCID: PMC9865655 DOI: 10.3390/molecules28020583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
As aging progresses, β-amyloid (Aβ) deposition and the resulting oxidative damage are key causes of aging diseases such as senior osteoporosis (SOP). Humulus lupulus L. (hops) is an important medicinal plant widely used in the food, beverage and pharmaceutical industries due to its strong antioxidant ability. In this study, APP/PS1 mutated transgenic mice and Aβ-injured osteoblasts were used to evaluate the protective effects of hops extracts (HLE) on SOP. Mice learning and memory levels were assessed by the Morris water maze. Mice femurs were prepared for bone micro-structures and immunohistochemistry experiments. The deposition of Aβ in the hippocampus, cortex and femurs were determined by Congo red staining. Moreover, protein expressions related to antioxidant pathways were evaluated by Western blotting. It was found that HLE markedly improved learning abilities and ameliorated memory impairment of APP/PS1 mice, as well as regulated antioxidant enzymes and bone metabolism proteins in mice serum. Micro-CT tests indicated that HLE enhanced BMD and improved micro-architectural parameters of mice femur. More importantly, it was discovered that HLE significantly reduced Aβ deposition both in the brain and femur. Further in vitro results showed HLE increased the bone mineralization nodule and reduced the ROS level of Aβ-injured osteoblasts. Additionally, HLE increased the expression of antioxidant related proteins Nrf2, HO-1, NQO1, FoxO1 and SOD-2. These results indicated that Humulus lupulus L. extract could protect against senior osteoporosis through inhibiting Aβ deposition and oxidative stress, which provides a reference for the clinical application of hops in the prevention and treatment of SOP.
Collapse
Affiliation(s)
- Tianshuang Xia
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Jiabao Zhang
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Yunxiang Guo
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Yiping Jiang
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Fangliang Qiao
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Kun Li
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Ting Han
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
| | - Hailiang Xin
- School of Pharmacy, Navy Medical University, Shanghai 200433, China
- Correspondence: ; Tel.: +86-021-81871309
| |
Collapse
|
4
|
Jeong J, Lim MK, Han EH, Lee SH, Kang S, Lee S. Extract of Aster glehni ameliorates potassium oxonate-induced hyperuricemia by modulating renal urate transporters and renal inflammation by suppressing TLR4/MyD88 signaling. Food Sci Biotechnol 2022; 31:1729-1739. [PMID: 36312990 PMCID: PMC9596640 DOI: 10.1007/s10068-022-01153-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that Aster glehni extract (AGE) reduces hyperuricemia by preventing xanthine oxidase activity. However, its effect on renal urate transporters responsible for modulating urate excretion has not been examined. This study investigated whether AGE affects gene expressions of urate transporters using potassium oxonate (PO)-induced hyperuricemia rats. Furthermore, the underlying mechanisms of AGE were explored to ameliorate renal inflammation and injury by PO. AGE effectively restored PO-induced dysregulation of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette transporter subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), and organic cation transporter 1 (OCT1), resulting in increasing urate excretion. Additionally, AGE suppressed toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88) signaling, phosphorylation of nuclear factor kappa B (NF-κB), and renal production of IFN-γ, IL-1β, TNF-α, and IL-6. These results suggest that AGE may ameliorate PO-induced hyperuricemia by modulating renal transporters, and further renal inflammation via inhibiting the TLR4/MyD88/NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01153-5.
Collapse
Affiliation(s)
- Jeongho Jeong
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Mi Kyung Lim
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Eun Hye Han
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Sang-Ho Lee
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Soyeon Lee
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
5
|
The effects of the ethanol extract of Cordia myxa leaves on the cognitive function in mice. BMC Complement Med Ther 2022; 22:215. [PMID: 35948926 PMCID: PMC9367120 DOI: 10.1186/s12906-022-03693-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cordia myxa L. (Boraginaceae) is widely distributed in tropical regions and it’s fruits, leaves and stem bark have been utilized in folk medicine for treating trypanosomiasis caused by Trypanosoma cruzi. A population-based study showed that T. cruzi infection is associated with cognitive impairments. Therefore, if C. myxa has ameliorating activities on cognitive function, it would be useful for both T. cruzi infection and cognitive impairments.
Methods
In this study, we evaluated the effects of an ethanol extract of leaves of C. myxa (ELCM) on memory impairments and sensorimotor gating deficits in mice. The phosphorylation level of protein was observed by the Western blot analysis.
Results
The administration of ELCM significantly attenuated scopolamine-induced cognitive dysfunction in mice, as measured by passive avoidance test and novel object recognition test. Additionally, in the acoustic startle response test, we observed that the administration of ELCM ameliorated MK-801-induced prepulse inhibition deficits. We found that these behavioral outcomes were related with increased levels of phosphorylation phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) in the cortex and extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus by western blot analysis.
Conclusions
These results suggest that ELCM would be a potential candidate for treating cognitive dysfunction and sensorimotor gating deficits observed in individuals with neurodegenerative diseases.
Collapse
|
6
|
Wang W, Wang Y, Guo Q, Li H, Wang Z, Li J, Li T, Tang T, Wang Y, Jia Y, Wang Y, Zou J, Shi Y, Guo D, Yang M, Zhang X, Sun J. Valerian essential oil for treating insomnia via the serotonergic synapse pathway. Front Nutr 2022; 9:927434. [PMID: 35990355 PMCID: PMC9387164 DOI: 10.3389/fnut.2022.927434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Valerian volatile oil can be used in the treatment of insomnia; however, the active components and mechanisms of action are currently unclear. Therefore, we used transcriptome sequencing and weight coefficient network pharmacology to predict the effective components and mechanism of action of valerian volatile oil in an insomnia model induced by intraperitoneal injection of para-Chlorophenylalanine (PCPA) in SD rats. Valerian essential oil was given orally for treatment and the contents of 5-hydroxytryptamine receptor 1 A (5-HT1AR), γ-aminobutyric acid (GABA), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) in the hippocampus of rats in each group were detected by enzyme-linked immunosorbent assay (ELISA), western blot, Polymerase Chain Reaction (PCR), and immunohistochemistry. The results showed that after treatment with valerian essential oil, insomnia rats showed significantly prolonged sleep duration and alleviated insomnia-induced tension and anxiety. Regarding the mechanism of action, we believe that caryophyllene in valerian essential oil upregulates the 5-HT1AR receptor to improve the activity or affinity of the central transmitter 5-HT, increase the release of 5-HT, couple 5-HT with a G protein coupled receptor, convert adenosine triphosphate (ATP) into cAMP (catalyzed by ADCY5), and then directly regulate the downstream pathway. Following pathway activation, we propose that the core gene protein kinase PKA activates the serotonergic synapse signal pathway to increase the expression of 5-HT and GABA, thus improving insomnia symptoms and alleviating anxiety. This study provides a theoretical basis for the application of valerian volatile oil in health food.
Collapse
Affiliation(s)
- Wenfei Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yichun Wang
- School of Pharmaceutical Sciences, College of Pharmacy, Kyushu University, Fukuoka, Japan
| | - Qiuting Guo
- Xianyang Vocational Technical College, College of Pharmacy, Xianyang, China
| | - Huiting Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhaoqiang Wang
- Shaanxi Haitian Pharmaceutical Co., Ltd., Xianyang, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanzhuo Jia
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ming Yang
- Xianyang Vocational Technical College, College of Pharmacy, Xianyang, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
7
|
Lee D, Kim JY, Kwon HC, Kwon J, Jang DS, Kang KS. Dual Beneficial Effects of α-Spinasterol Isolated from Aster pseudoglehnii on Glucose Uptake in Skeletal Muscle Cells and Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050658. [PMID: 35270128 PMCID: PMC8912510 DOI: 10.3390/plants11050658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 05/14/2023]
Abstract
Herein, we determined whether α-Spinasterol, a stigmastane-type phytosterol isolated from Aster pseudoglehnii, potentially impacts glucose uptake and glucose-stimulated insulin secretion in skeletal muscle cells and pancreatic β-cells, respectively. We observed that A. pseudoglehnii and its fractions enhanced glucose uptake, with no toxic effects on C2C12 cells, with the n-hexane fraction exhibiting the most potent effect. α-Spinasterol, isolated from the n-hexane fraction, enhanced glucose uptake with no toxic effects on C2C12 cells. Additionally, α-Spinasterol increased the expression of associated proteins, including insulin receptor substrate-1, AMP-activated protein kinase, and glucose transporter type 4, as determined by Western blotting. Furthermore, α-Spinasterol enhanced insulin secretion in response to high glucose concentrations, with no toxic effects on INS-1 cells; this effect was superior to that demonstrated by gliclazide (positive control), commonly prescribed to treat type 2 diabetes (T2D). α-Spinasterol enhanced the expression of associated proteins, including insulin receptor substrate-2, peroxisome proliferator-activated receptor γ, and pancreatic and duodenal homeobox 1, as determined using Western blotting. The insulin secretory effect of α-Spinasterol was enhanced by a K+ channel blocker and L-type Ca2+ channel agonist and was suppressed by a K+ channel activator and L-type Ca2+ channel blocker. α-Spinasterol isolated from A. pseudoglehnii may improve hyperglycemia by improving glucose uptake into skeletal muscle cells and enhancing insulin secretion in pancreatic β-cells. Accordingly, α-Spinasterol could be a potential candidate for anti-T2D therapy.
Collapse
Affiliation(s)
- Dahae Lee
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (H.C.K.); (J.K.)
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (H.C.K.); (J.K.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (D.S.J.); (K.S.K.); Tel.: +82-2-961-0719 (D.S.J.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (D.S.J.); (K.S.K.); Tel.: +82-2-961-0719 (D.S.J.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
8
|
Hong SM, Yoon DH, Lee MK, Lee JK, Kim SY. A Mixture of Ginkgo biloba L. Leaf and Hericium erinaceus (Bull.) Pers. Fruit Extract Attenuates Scopolamine-Induced Memory Impairments in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9973678. [PMID: 35126824 PMCID: PMC8813274 DOI: 10.1155/2022/9973678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by loss of memory and cognitive impairment via dysfunction of the cholinergic nervous system. In cholinergic dysfunction, it is well known that impaired cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling are major pathological markers and are some of the strategies for the development of AD therapy. Therefore, this study is aimed at evaluating whether a mixture comprising Ginkgo biloba L. leaf (GL) and Hericium erinaceus (Bull.) Pers. (HE) fruit extract (GH mixture) alleviated cognitive impairment induced in a scopolamine-induced model. It was discovered that GH reduced neuronal apoptosis and promoted neuronal survival by activating BDNF signaling in an in vitro assay. In addition, the GH (p.o. 240 mg/kg) oral administration group significantly restored the cognitive deficits of the scopolamine-induced mouse group (i.p. 1.2 mg/kg) in the behavior tests such as Y-maze and novel object recognition task (NORT) tests. This mixture also considerably enhanced cholinergic system function in the mouse brain. Furthermore, GH markedly upregulated the expressed levels of extracellular signal-regulated kinase (ERK), CREB, and BDNF protein levels. These results demonstrated that GH strongly exerted a neuroprotective effect on the scopolamine-induced mouse model, suggesting that an optimized mixture of GL and HE could be used as a good material for developing functional foods to aid in the prevention of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Seong Min Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Da Hye Yoon
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | | | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
9
|
Evaluation of Subchronic Toxicity and Genotoxicity of Ethanolic Extract of Aster glehni Leaves and Stems. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1018101. [PMID: 35003288 PMCID: PMC8736694 DOI: 10.1155/2021/1018101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Aster glehni, a traditional plant on Ulleung Island in the Republic of Korea, has been recognized for its multiple medicinal properties. However, potential toxicity and safety analyses of A. glehni have not been previously investigated. Therefore, this study aimed to evaluate the safety profile of ethanolic extract of A. glehni leaves and stems (EAG) in terms of genotoxicity and subchronic oral animal toxicity under OECD guidelines and GLP conditions. Toxicological assessments were performed at doses of 1,250, 2,500, and 5,000 mg/kg/day in a 13-week oral repeated-dose toxicity study of EAG in male and female SD rats. In addition, an Ames test, an in vitro mammalian chromosomal aberration test, and a micronucleus test were performed. No toxicological changes in clinical signs, body weights, water and food consumption, urinalysis, hematology, clinical biochemistry, gross findings, and histopathological examinations were observed in subchronic oral animal toxicity. In addition, EAG gave negative results when evaluated using in vitro and in vivo genotoxicity tests. In conclusion, the no-observed-adverse-effect level (NOAEL) of EAG was considered to be 5,000 mg/kg/day, and no target organs were identified in both sexes of rats. EAG was also classified as nonmutagenic and nonclastogenic in genotoxicity testing. Collectively, these results show a lack of general toxicity and genotoxicity for EAG that supports clinical work for development as a herbal medicine.
Collapse
|
10
|
Xin J, Wang C, Cheng X, Xie C, Zhang Q, Ke Y, Huang X, Chen X, Pan X. CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation. Chin Med J (Engl) 2021; 135:205-215. [PMID: 34732662 PMCID: PMC8769116 DOI: 10.1097/cm9.0000000000001769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microglia plays an indispensable role in the pathological process of sleep deprivation (SD). Here, the potential role of microglial CX3C-chemokine receptor 1 (CX3CR1) in modulating the cognition decline during SD was evaluated in terms of microglial neuroinflammation and synaptic pruning. In this study, we aimed to investigat whether the interference in the microglial function by the CX3CR1 knockout affects the CNS's response to SD. METHODS Middle-aged wild-type (WT) C57BL/6 and CX3CR1-/- mice were either subjected to SD or allowed normal sleep (S) for 8 h to mimic the pathophysiological changes of middle-aged people after staying up all night. After which, behavioral and histological tests were used to explore their different changes. RESULTS CX3CR1 deficiency prevented SD-induced cognitive impairments, unlike WT groups. Compared with the CX3CR1-/- S group, the CX3CR1-/- SD mice reported a markedly decreased microglia and cellular oncogene fos density in the dentate gyrus (DG), decreased expression of pro-inflammatory cytokines, and decreased microglial phagocytosis-related factors, whereas increased levels of anti-inflammatory cytokines in the hippocampus and a significant increase in the density of spines of the DG were also noted. CONCLUSIONS These findings suggest that CX3CR1 deficiency leads to different cerebral behaviors and responses to SD. The inflammation-attenuating activity and the related modification of synaptic pruning are possible mechanism candidates, which indicate CX3CR1 as a candidate therapeutic target for the prevention of the sleep loss-induced cognitive impairments.
Collapse
Affiliation(s)
- Jiawei Xin
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Chao Wang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaojuan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Changfu Xie
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Qiuyang Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xuanyu Huang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
11
|
Neuroprotective and anti-neuroinflammatory effects of ethanolic extract from leaves and stems of Aster glehni. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Bae HJ, Kim J, Kim J, Goo N, Cai M, Cho K, Jung SY, Kwon H, Kim DH, Jang DS, Ryu JH. The effect of maslinic acid on cognitive dysfunction induced by cholinergic blockade in mice. Br J Pharmacol 2020; 177:3197-3209. [PMID: 32133639 DOI: 10.1111/bph.15042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is the most prevalent disease associated with cognitive dysfunction. Current AD therapeutic agents have several gastrointestinal or psychological adverse effects and therefore, novel therapeutic agents with fewer adverse effects must be developed. Previously, we demonstrated that oleanolic acid, which is similar in chemical structure to maslinic acid, ameliorates cognitive impairment through the activation of tropomyosin receptor kinase (TrkB)-ERK-cAMP response element-binding protein (CREB) phosphorylation and increased levels of brain-derived neurotrophic factor (BDNF). In the present study, we investigate the effect of maslinic acid on cholinergic blockade-induced memory impairment in mice. METHODS AND KEY RESULTS Maslinic acid reversed scopolamine-induced memory impairment, as determined by the Y-maze, passive avoidance and Morris water maze tests. In addition, we also observed that ERK-CREB, PI3K and PKB (Akt) phosphorylation levels were increased by maslinic acid administration in the mouse hippocampus. Moreover, we determined that the effects of maslinic acid on scopolamine-induced memory impairment in the passive avoidance test were abolished by a specific TrkB receptor antagonist (ANA-12). Additionally, we observed similar temporal changes in the expression levels between BDNF and tissue plasminogen activator in the hippocampus. CONCLUSION AND IMPLICATIONS These findings suggest that maslinic acid enhances cognitive function through the activation of BDNF and its downstream pathway signalling in the hippocampus and that it might be a potential therapeutic agent for cognitive decline, such as that observed in AD.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jihyun Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehoon Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Nayeon Goo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Mudan Cai
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungnam Cho
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Seo Yun Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|