1
|
Gautam N, Sharma P, Yadav N, Rajeswari J, Kesavan K. Tear-Driven Phase Transition Microemulsion for Ocular Delivery of Dexamethasone in the Effective Treatment of Uveitis. Curr Eye Res 2025:1-10. [PMID: 40025691 DOI: 10.1080/02713683.2025.2469243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE The goal of this study was to develop dexamethasone-loaded tear-driven phase transition microemulsions (PTMEs) to effectively treat uveitis. METHODS PTMEs were prepared using the oil titration method. Physicochemical parameters, in vitro release, and ocular irritation studies were performed. The in vivo study, total cell count, and total protein content were estimated on the rabbit eye model. RESULTS The study revealed that developed PTMEs had nanoglobule sizes, acceptable physicochemical properties, and prolonged drug release. Ex-vivo and in-vivo studies concluded that higher permeability and improved anti-inflammatory properties were observed for PTMEs compared to marketed formulation. CONCLUSION The prepared PTMEs showed a sustained release pattern and enhanced therapeutic effectiveness, making them a promising alternative to conventional eye drops for treating uveitis.
Collapse
Affiliation(s)
- Nivedita Gautam
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
- Department of Pharmaceutics, J. K. College of Pharmacy, Bilaspur, Chhattisgarh, India
| | - Priya Sharma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Neelima Yadav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Jothimani Rajeswari
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Karthikeyan Kesavan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
2
|
Liu Y, Liu XX, Wang SY, Pan XY, Wang ZH, Wei YX, Zhou ZM, Nan K, Wang JJ. In Situ Gelling Eye Drops of Tacrolimus with Improved Ocular Delivery and Therapeutic Efficacy. Biomacromolecules 2024; 25:7518-7528. [PMID: 39484724 DOI: 10.1021/acs.biomac.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In situ gelling eye drops of tacrolimus (FK506 Gel) were developed to address the formulation challenge of tacrolimus for anterior ocular inflammatory diseases. Both in silico and in vitro investigations were conducted to screen a suitable cyclodextrin species to increase the drug solubility. Guanosine was employed as the gelator and combined with inclusion complexes of tacrolimus in the presence of borate anions to obtain FK506 Gel, which gelated when came into contact with cations in tear fluid and led to the formation of a nanofibrous hydrogel. The versatility of our design to improve the solubility and ocular retention of the hydrophobic drug was demonstrated in vivo with coumarin 6 as a model drug. A mouse dry eye model was used to evaluate the therapeutic effects of FK506 Gel, which, in combination with the biocompatibility study, suggested that FK506 Gel served as a superior treatment for anterior ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Xin Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Si-Yu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Yang Pan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Han Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu-Xin Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Min Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing-Jie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
3
|
Coco G, Buffon G, Taloni A, Giannaccare G. Recent Advances in Nanotechnology for the Treatment of Dry Eye Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:669. [PMID: 38668163 PMCID: PMC11053557 DOI: 10.3390/nano14080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Dry eye disease (DED) incidence is continuously growing, positioning it to become an emergent health issue over the next few years. Several topical treatments are commonly used to treat DED; however, reports indicate that only a minor proportion of drug bioavailability is achieved by the majority of eye drops available on the market. In this context, enhancing drug ability to overcome ocular barriers and prolonging its residence time on the ocular surface represent a new challenge in the field of ocular carrier systems. Therefore, research has focused on the development of multi-functional nanosystems, such as nanoemulsions, liposomes, dendrimers, hydrogels, and other nanosized carriers. These systems are designed to improve topical drug bioavailability and efficacy and, at the same time, require fewer daily administrations, with potentially reduced side effects. This review summarizes the different nanotechnologies developed, their role in DED, and the nanotechnology-based eyedrops currently approved for DED treatment.
Collapse
Affiliation(s)
- Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (G.B.)
| | - Giacinta Buffon
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (G.B.)
| | - Andrea Taloni
- Department of Ophthalmology, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
4
|
El Zaafarany GM, Hathout RM, Ibrahim SS. Nanocarriers significantly augment the absorption of ocular-delivered drugs: A comparative meta-analysis study. Int J Pharm 2023; 642:123204. [PMID: 37406947 DOI: 10.1016/j.ijpharm.2023.123204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
This study presents a meta-analysis that compiles information collected from several studies aiming to prove, by evidence, that nanocarriers out-perform conventional formulations in augmenting the bioavailability of ocular topically administered drugs. Data was further categorized into two subgroups; polymeric-based nanocarriers versus their lipid-based counterparts, as well as, naturally-driven carriers versus synthetically-fabricated ones. After normalization, the pharmacokinetic factor, area under the curve (AUC), was denoted as the "effect" in the conducted study, and the corresponding Forest plots were obtained. Our meta-analysis study confirmed the absorption enhancement effect of loading drugs into nanocarriers as compared to conventional topical ocular dosage forms. Interestingly, no significant differences were recorded between the polymeric and lipidic nanocarriers included in the study, while naturally-driven nanoplatforms were proven superior to the synthetic alternatives.
Collapse
Affiliation(s)
- Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Lamoudi L, Akretche S, Hadjsadok A, Daoud K. Fusidic Acid Microemulsion Based on a Pseudoternary Phase Diagram: Development, Characterization, and Evaluation. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Sun J, Sun X. Preparation of a novel tacrolimus ion sensitive ocular in situ gel and in vivo evaluation of curative effect of immune conjunctivitis. Pharm Dev Technol 2022; 27:399-405. [PMID: 35579910 DOI: 10.1080/10837450.2022.2067870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of this study was to formulate a novel TAC preparation into an in situ gel for ocular drug delivery, in order to prolong the residence time on mucosal surfaces and increase patient compliance. METHODS The optimal formulation was characterized by surface morphology, gelling capacity, viscosity, stability and in vitro release. In vivo studies were also conducted to evaluate the precorneal retention and pharmacodynamic results. RESULTS In this study, the TAC in situ gel can be prepared by a simple solvent stirring method, and the optimized formulation exhibited good stability within 3 months. During storage, the initial viscosity of the formula had little change. The results of viscosity measurement showed that TAC in situ gel was typical of pseudo plastic systems and exhibited a marked increase in viscosity stimulated with STF. In vitro and in vivo studies illustrated that TAC in situ gel administration facilitated the retention and sustained release of TAC. CONCLUSIONS TAC combined with in situ gelling agents demonstrates an efficient topical drug delivery platform.
Collapse
Affiliation(s)
- Jinfu Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
7
|
El Khaoui S, Talha L, Khatouri M, Ahfir R, Naji M, Filali M. Relaxation modes in a smart system: weakly charged microemulsion and polyelectrolyte. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2075755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. El Khaoui
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - L. Talha
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - M. Khatouri
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - R. Ahfir
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - M. Naji
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - M. Filali
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| |
Collapse
|
8
|
Suriyaamporn P, Opanasopit P, Rangsimawong W, Ngawhirunpat T. Optimal Design of Novel Microemulsions-Based Two-Layered Dissolving Microneedles for Delivering Fluconazole in Treatment of Fungal Eye Infection. Pharmaceutics 2022; 14:pharmaceutics14030472. [PMID: 35335855 PMCID: PMC8951261 DOI: 10.3390/pharmaceutics14030472] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The optimal design of novel microneedles (MNs) for the ocular delivery system is necessary and useful for improving the effectiveness of medication. The objective of this study was to design and develop the optimal fluconazole (FLUZ)-microemulsions (MEs)-loaded two-layered dissolving MNs as a potential treatment for fungal eye infection. The experimental designs using the simplex-lattice design were used to select the optimal formulation. The two-layered dissolving MNs were fabricated from 3% chitosan and 20% polyvinyl alcohol (PVA) in a weight ratio of 1:4 as an outer layer and FLUZ-loaded MEs containing eugenol, tween 80, PEG400, and water as an inner layer. The physical appearance, mechanical properties, penetration ability, dissolution time, in vitro/ex vivo ocular drug delivery, and antifungal activity were evaluated. From the results, the optimal two-layered dissolving MNs exhibited good physical properties, complete insertion, minimally invasive ocular tissue, and high stability at 4 °C and 25 °C for 3 months. Moreover, the optimal two-layered dissolving MNs showed significantly higher FLUZ permeation into the ocular tissue than other formulations, while providing highly potential antifungal activity. In conclusion, the optimal MEs-loaded two-layered MNs’ formulation had appropriate properties for ocular delivery of FLUZ, resulting in an improvement of fungal keratitis treatment.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.S.); (P.O.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.S.); (P.O.)
| | - Worranan Rangsimawong
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Correspondence: (W.R.); (T.N.); Tel.: +66-(045)-353605 (W.R.); +66-(034)-255800 (T.N.); Fax: +66-(045)-353626 (W.R.); +66-(034)-255801 (T.N.)
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (P.S.); (P.O.)
- Correspondence: (W.R.); (T.N.); Tel.: +66-(045)-353605 (W.R.); +66-(034)-255800 (T.N.); Fax: +66-(045)-353626 (W.R.); +66-(034)-255801 (T.N.)
| |
Collapse
|
9
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|
10
|
Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion Microstructure(s): A Tutorial Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1657. [PMID: 32846957 PMCID: PMC7558136 DOI: 10.3390/nano10091657] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed.
Collapse
Affiliation(s)
- Giuseppe Tartaro
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Helena Mateos
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Davide Schirone
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy;
| | - Gerardo Palazzo
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| |
Collapse
|
12
|
Üstündağ Okur N, Çağlar EŞ, Siafaka PI. Novel Ocular Drug Delivery Systems: An Update on Microemulsions. J Ocul Pharmacol Ther 2020; 36:342-354. [PMID: 32255728 DOI: 10.1089/jop.2019.0135] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sufficient ophthalmic drug delivery is still challenging for pharmaceutical technologists, despite various scientific efforts. Several ocular drug carriers have been designed to enhance bioavailability by prolonging the drug retention time. One of the current encouraging approaches is the utilization of colloidal carriers with the characteristic submicron-nanometer size. Microemulsions (MEs) are such colloid systems that present sizes between 5 and 200 nm with significant thermodynamic stability and low surface tension. In addition, MEs as topical ocular carriers can lead to great ocular drug adsorption due to their enhanced retention time. Furthermore, considering that MEs are stable for long time and various temperatures, their ocular application is of great interest. The aim of this study is to cover basic physicochemical principals of ocular MEs such as their possible size, stability, and therapeutic efficacy against various eye disorders. Thus, a comprehensive review for ocular drug delivery systems in the form of MEs that show promising characteristics as their stability and therapeutic efficiency is performed.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Panoraia I Siafaka
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Shoughy SS, Aljassar FM, Tabbara KF. Aqueous penetration of topical tacrolimus. Am J Ophthalmol Case Rep 2020; 17:100582. [PMID: 32025589 PMCID: PMC6997506 DOI: 10.1016/j.ajoc.2019.100582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose To evaluate the penetration of topical tacrolimus 0.05% into the aqueous humor. Observations A total of four patients scheduled for routine cataract surgery were included prospectively. We excluded patients with corneal pathology or ocular surface diseases. Topical tacrolimus 0.05% was compounded at our facility. It was dosed every 1 min for 5 min an hour before the aqueous was sampled. Aqueous samples were collected at the time of cataract surgery and were subjected to detection of presence and level of tacrolimus. There were 2 male and 2 female patients. The age range was 58–73 years with a mean age of 66 years. Tacrolimus was detected in the aqueous humor in all patients. The concentration of tacrolimus in the aqueous ranged from 2.6 to 5.6 ng/ml (mean 4.15 ± 1.18 ng/ml). In all patients, the aqueous tacrolimus concentration was greater than the minimal therapeutic level. The study was registered at clinicaltrials.gov (registration number is NCT02794610). Conclusions and Importance Tacrolimus was detected in the aqueous humor following topical application. Topical tacrolimus may be a promising steroid-sparing modality for the treatment of anterior uveitis.
Collapse
Affiliation(s)
- Samir S Shoughy
- The Eye Center and the Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia
| | - Faisal M Aljassar
- The Eye Center and the Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia
| | - Khalid F Tabbara
- The Eye Center and the Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia.,Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Abstract
Microemulsions (MEs) are thermodynamic stable dispersion of oily phase and aqueous phase stabilized by surfactants and co-surfactants, and are a small droplet size of less than 100 nm. MEs are appropriate systems for ocular drug delivery because they improve ocular drug retention, extended duration of action, high ocular absorption, permeation of loaded drugs and effortlessness of preparation and administration. This review is an effort to summarize the recent development in the area of MEs, self-emulsifying drug delivery systems, which are examined in relation to their uses in ocular drug delivery. The noteworthy patent, toxicity and stability issues related to these ME systems are also explored here.
Collapse
|
15
|
Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf B Biointerfaces 2014; 117:82-8. [DOI: 10.1016/j.colsurfb.2014.02.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/01/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
|