1
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Norton CE, Kim HJ, Sivasankaran SK, Li M, Castorena-Gonzalez JA, Drumm BT, Davis MJ. Characterization of the cellular components of mouse collecting lymphatic vessels reveals that lymphatic muscle cells are the innate pacemaker cells regulating lymphatic contractions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.24.554619. [PMID: 37662284 PMCID: PMC10473772 DOI: 10.1101/2023.08.24.554619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Collecting lymphatic vessels (cLVs) exhibit spontaneous contractions with a pressure-dependent frequency, but the identity of the lymphatic pacemaker cell is still debated. By analogy to pacemakers in the GI and lower urinary tracts, proposed cLV pacemaker cells include interstitial cells of Cajal like cells (ICLC) or the lymphatic muscle (LMCs) cells themselves. Here we combined immunofluorescence and scRNAseq analyses with electrophysiological methods to examine the cellular constituents of the mouse cLV wall and assess whether any cell type exhibited morphological and functional processes characteristic of pacemaker cells: a continuous if not contiguous network integrated into the electrical syncytium; spontaneous Ca2+ transients; and depolarization-induced propagated contractions. We employed inducible Cre (iCre) mouse models routinely used to target these specific cell populations including: c-kitCreER T2 to target ICLC; PdgfrβCreER T2 to target pericyte-like cells; PdgfrαCreER ™ to target CD34+ adventitial cells and ICLC; and Myh11CreER T2 to target LMCs directly. These specific inducible Cre lines were crossed to the fluorescent reporter ROSA26mT/mG, the genetically encoded Ca2+ sensor GCaMP6f, and the light-activated cation channel rhodopsin2 (ChR2). c-KitCreER T2 labeled both a sparse population of LECs and round adventitial cells that responded to the mast cell activator compound 48-80. PdgfrβCreER T2 drove recombination in both adventitial cells and LMCs, limiting its power to discriminate a pericyte-specific population. PdgfrαCreER ™ labeled a large population of interconnected, oak leaf-shaped cells primarily along the adventitial surface of the vessel. Of these cells, only LMCs consistently, but heterogeneously, displayed spontaneous Ca2+ events during the diastolic period of the contraction cycle, and whose frequency was modulated in a pressure-dependent manner. Optogenetic depolarization through the expression of ChR2 under control of Myh11CreER T2 , but not PdgfrαCreER ™ or c-KitCreER T2 , resulted in propagated contractions upon photo-stimulation. Membrane potential recordings in LMCs demonstrated that the rate of diastolic depolarization significantly correlated with contraction frequency. These findings support the conclusion that LMCs, or a subset of LMCs, are responsible for mouse cLV pacemaking.
Collapse
Affiliation(s)
- S D Zawieja
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - G A Pea
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - S E Broyhill
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - A Patro
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - K H Bromert
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - C E Norton
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - H J Kim
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | - S K Sivasankaran
- Bioinformatics and Analytics Core, Division of Research, Innovation and Impact, University of Missouri, Columbia, Missouri
| | - M Li
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| | | | - B T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, A91 K584, Ireland
| | - M J Davis
- Dept. of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
2
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
3
|
Pankova MN, Lobov GI. Lymphangiogenesis and Features of Lymphatic Drainage in Different Organs: the Significance for Allograft Fate. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Bioinformatics Analysis of ceRNA Network Related to Polycystic Ovarian Syndrome. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9988347. [PMID: 34211581 PMCID: PMC8208863 DOI: 10.1155/2021/9988347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Introduction Polycystic ovary syndrome (PCOS) is caused by the hormonal environment in utero, abnormal metabolism, and genetics, and it is common in women of childbearing age. A large number of studies have reported that lncRNA is important to the biological process of cancer and can be used as a potential prognostic biomarker. Thus, we studied lncRNAs' roles in PCOS in this article. Methods We obtained mRNAs', miRNAs', and lncRNAs' expression profiles in PCOS specimens and normal specimens from the National Biotechnology Information Gene Expression Comprehensive Center database. The EdgeR software package is used to distinguish the differentially expressed lncRNAs, miRNAs, and mRNAs. Functional enrichment analysis was carried out by the clusterProfiler R Package, and the lncRNA-miRNA-mRNA interaction ceRNA network was built in Cytoscape plug-in BiNGO and Database for Annotation, Visualization, and Integration Discovery (DAVID), respectively. Results We distinguished differentially expressed RNAs, including 1087 lncRNAs, 14 miRNAs, and 566 mRNAs in PCOS. Among them, 410 lncRNAs, 11 miRNAs, and 185 mRNAs were contained in the ceRNA regulatory network. The outcomes from Gene Ontology (GO) analysis showed that the differentially expressed mRNAs (DEMs) were mainly enriched in response to the maternal process involved in female pregnancy, morphogenesis of embryonic epithelium, and the intracellular steroid hormone receptor signaling pathway. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis data showed that DEMs were primarily enriched in pathways related to the TGF-β signaling pathway, Type I diabetes mellitus, and glycolysis/gluconeogenesis. In addition, we chose NONHSAT123397, ENST00000564619, and NONHSAT077997 as key lncRNAs due to their high bearing on PCOS. Conclusion ceRNA networks play an important role in PCOS. The research indicated that specific lncRNAs were related to PCOS development. NONHSAT123397, ENST00000564619, and NONHSAT077997 could be regarded as potential diagnostic mechanisms and biomarkers for PCOS. This discovery might provide more effective and more novel insights into the mechanisms of PCOS worthy of further exploration.
Collapse
|
6
|
Tucker AB, Krishnan P, Agarwal S. Lymphovenous shunts: from development to clinical applications. Microcirculation 2021; 28:e12682. [PMID: 33523573 DOI: 10.1111/micc.12682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/19/2023]
Abstract
The lymphatic system is a vast network of vessels that functions to return excess fluid from the interstitial space to the blood stream. Lymphovenous shunts are anastomoses, either natural or surgical, that connect the lymphatic and venous systems. Connections between the thoracic duct and venous system or between the right lymphatic duct and venous system are prime examples of anatomic lymphovenous shunts. Lymphovenous shunts are also present peripherally in tissues such as lymph nodes. Furthermore, pathologic lymphovenous shunts are observed in conditions such as lymphedema, malignancy, and lymphovenous malformations. Surgically, lymphovenous shunts may be constructed as an approach to treat lymphedema. Here, we discuss anatomic and surgical lymphovenous shunts in the context of normal development and disease. This perspective is intended to give an understanding of the role of lymphovenous shunts in health and disease and to show how they can be leveraged to treat disease surgically.
Collapse
Affiliation(s)
- A Blake Tucker
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Pranav Krishnan
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Cromer WE, Zawieja SD, Doersch KM, Stagg H, Hunter F, Tharakan B, Childs E, Zawieja DC. Burn Injury-Associated MHCII + Immune Cell Accumulation Around Lymphatic Vessels of the Mesentery and Increased Lymphatic Endothelial Permeability Are Blocked by Doxycycline Treatment. Lymphat Res Biol 2018; 16:56-64. [PMID: 29359999 DOI: 10.1089/lrb.2017.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is theorized that toxic agents are transported from the hyperpermeable gut of burn victims through the lymph, to the systemic circulation, causing global injury. We believe that immune cells respond to leakage of "toxic lymph" following trauma causing the attraction of these cells to the perilymphatic space. To test this, we utilized a model of burn on rats to examine changes in a single immune cell population associated with mesenteric lymphatic dysfunction. We examined the ability of serum from these animals to increase permeability in lymphatic endothelial monolayers and disrupt cellular junctions. We also treated burn animals with doxycycline, an inhibitor of microvascular permeability, and observed the effects on immune cell populations, morphometry, and lymphatic endothelial permeability. Burn injury increased the number of MHCII+ immune cells along the vessel (>50%). The size and shape of these cells also changed significantly following burn injury. Serum from burn animals increased lymphatic endothelial permeability (∼1.5-fold) and induced breaks in VE-cadherin staining. Doxycycline treatment blocked the accumulation of immune cells along the vessel, whereas serum from doxycycline-treated animals failed to increase lymphatic endothelial permeability. The size of cells along the vessel in doxycycline-treated burn animals was not affected, suggesting that the cells already present on the lymphatic vessels still respond to substances in the lymph. These findings suggest that factors produced during burn can induce lymphatic endothelial barrier disruption and lymph produced during traumatic injury can influence the attraction and morphology of immune cell populations along the vessel.
Collapse
Affiliation(s)
- Walter E Cromer
- 1 Department of Medical Physiology, Texas A&M University Health Science Center , Temple, Texas
| | - Scott D Zawieja
- 2 Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine , Columbia, South Carolina
| | - Karen M Doersch
- 1 Department of Medical Physiology, Texas A&M University Health Science Center , Temple, Texas
| | - Hayden Stagg
- 3 Department of Surgery, Scott & White Hospital , Temple, Texas
| | - Felicia Hunter
- 3 Department of Surgery, Scott & White Hospital , Temple, Texas.,4 Department of Surgery, Morehouse Medical College , Atlanta, Georgia
| | - Binu Tharakan
- 3 Department of Surgery, Scott & White Hospital , Temple, Texas
| | - Ed Childs
- 3 Department of Surgery, Scott & White Hospital , Temple, Texas.,4 Department of Surgery, Morehouse Medical College , Atlanta, Georgia
| | - David C Zawieja
- 1 Department of Medical Physiology, Texas A&M University Health Science Center , Temple, Texas
| |
Collapse
|
10
|
Demonstration and Analysis of the Suction Effect for Pumping Lymph from Tissue Beds at Subatmospheric Pressure. Sci Rep 2017; 7:12080. [PMID: 28935890 PMCID: PMC5608746 DOI: 10.1038/s41598-017-11599-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Many tissues exhibit subatmospheric interstitial pressures under normal physiologic conditions. The mechanisms by which the lymphatic system extracts fluid from these tissues against the overall pressure gradient are unknown. We address this important physiologic issue by combining experimental measurements of contractile function and pressure generation with a previously validated mathematical model. We provide definitive evidence for the existence of 'suction pressure' in collecting lymphatic vessels, which manifests as a transient drop in pressure downstream of the inlet valve following contraction. This suction opens the inlet valve and is required for filling in the presence of low upstream pressure. Positive transmural pressure is required for this suction, providing the energy required to reopen the vessel. Alternatively, external vessel tethering can serve the same purpose when the transmural pressure is negative. Suction is transmitted upstream, allowing fluid to be drawn in through initial lymphatics. Because suction plays a major role in fluid entry to the lymphatics and is affected by interstitial pressure, our results introduce the phenomenon as another important factor to consider in the study of lymphoedema and its treatment.
Collapse
|
11
|
Zawieja SD, Wang W, Chakraborty S, Zawieja DC, Muthuchamy M. Macrophage alterations within the mesenteric lymphatic tissue are associated with impairment of lymphatic pump in metabolic syndrome. Microcirculation 2016; 23:558-570. [PMID: 27588380 PMCID: PMC5083172 DOI: 10.1111/micc.12307] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The intrinsic lymphatic pump is critical to proper lymph transport and is impaired in models of the MetSyn. Lymphatic contractile inhibition under inflammatory conditions has been linked with elevated NO production by activated myeloid-derived cells. Hence we hypothesized that inhibition of the MLV pump function in MetSyn animals was dependent on NO and was associated with altered macrophage recruitment and polarization within the MLV. METHODS We used a high fructose-fed rat model of MetSyn. Macrophage polarization was determined by whole mount immunofluorescence in mesenteric neurovascular bundles based on expression of CD163, CD206, and MHCII. We also utilized isolated vessel isobaric preparations to determine the role for elevated NO production in the inhibition of MLV contractility. Both LECs and LMCs were used to assess the cytokines and chemokines to test how the lymphatic cells response to inflammatory conditions. RESULTS Data demonstrated a greater accumulation of M1-skewed (CD163+ MHCII+ ) macrophages that were observed both within the perivascular adipose tissue and invested along the lymphatic vessels in MetSyn rats when compared to control rats. LECs and LMCs basally express the macrophage maturation polarization cytokines monocyte colony-stimulating factor and dramatically up regulate the M1 promoting cytokine granulocyte/monocyte colony-stimulating factor in response to lipopolysaccharide stimulation. MetSyn MLVs exhibited altered phasic contraction frequency. Incubation of MetSyn MLVs with LNAME or Glib had a partial restoration of lymphatic contraction frequency. CONCLUSION The data presented here provide the first evidence for a correlation between alterations in macrophage status and lymphatic dysfunction that is partially mediated by NO and KATP channel in MetSyn rats.
Collapse
Affiliation(s)
- Scott D Zawieja
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - Wei Wang
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
12
|
Chakraborty S, Zawieja SD, Wang W, Lee Y, Wang YJ, von der Weid PY, Zawieja DC, Muthuchamy M. Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery. Am J Physiol Heart Circ Physiol 2015; 309:H2042-57. [PMID: 26453331 DOI: 10.1152/ajpheart.00467.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Scott D Zawieja
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Wei Wang
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Yang Lee
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Yuan J Wang
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David C Zawieja
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Cardiovascular Research Institute, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine, College Station, Texas; and
| |
Collapse
|
13
|
Zolla V, Nizamutdinova IT, Scharf B, Clement CC, Maejima D, Akl T, Nagai T, Luciani P, Leroux J, Halin C, Stukes S, Tiwari S, Casadevall A, Jacobs WR, Entenberg D, Zawieja DC, Condeelis J, Fooksman DR, Gashev AA, Santambrogio L. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015; 14:582-94. [PMID: 25982749 PMCID: PMC4531072 DOI: 10.1111/acel.12330] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2015] [Indexed: 01/04/2023] Open
Abstract
The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport.
Collapse
Affiliation(s)
- Valerio Zolla
- Department of Pathology Albert Einstein College of Medicine Bronx NY 10461USA
| | - Irina Tsoy Nizamutdinova
- Department of Medical Physiology College of Medicine Texas A&M University Health Science Center Temple TX 76501USA
| | - Brian Scharf
- Department of Pathology Albert Einstein College of Medicine Bronx NY 10461USA
| | - Cristina C. Clement
- Department of Pathology Albert Einstein College of Medicine Bronx NY 10461USA
| | - Daisuke Maejima
- Department of Medical Physiology College of Medicine Texas A&M University Health Science Center Temple TX 76501USA
- Department of Physiology Shinshu University School of Medicine Matsumoto Japan
| | - Tony Akl
- Department of Biomedical Engineering Texas A&M University College Station TX 77843USA
| | - Takashi Nagai
- Department of Medical Physiology College of Medicine Texas A&M University Health Science Center Temple TX 76501USA
- Department of Physiology Shinshu University School of Medicine Matsumoto Japan
| | - Paola Luciani
- Institute of Pharmaceutical Sciences ETH Zurich Vladimir‐Prelog‐Weg 4 Zurich CH‐8093 Switzerland
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical Sciences ETH Zurich Vladimir‐Prelog‐Weg 4 Zurich CH‐8093 Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences ETH Zurich Vladimir‐Prelog‐Weg 4 Zurich CH‐8093 Switzerland
| | - Sabriya Stukes
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY 10461USA
| | - Sangeeta Tiwari
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY 10461USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY 10461USA
| | - William R. Jacobs
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY 10461USA
| | - David Entenberg
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine Bronx NY 10461USA
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine Bronx NY 10461USA
| | - David C. Zawieja
- Department of Medical Physiology College of Medicine Texas A&M University Health Science Center Temple TX 76501USA
| | - John Condeelis
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine Bronx NY 10461USA
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine Bronx NY 10461USA
| | - David R. Fooksman
- Department of Pathology Albert Einstein College of Medicine Bronx NY 10461USA
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY 10461USA
| | - Anatoliy A. Gashev
- Department of Medical Physiology College of Medicine Texas A&M University Health Science Center Temple TX 76501USA
| | - Laura Santambrogio
- Department of Pathology Albert Einstein College of Medicine Bronx NY 10461USA
- Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY 10461USA
| |
Collapse
|
14
|
Al-Kofahi M, Becker F, Gavins FNE, Woolard MD, Tsunoda I, Wang Y, Ostanin D, Zawieja DC, Muthuchamy M, von der Weid PY, Alexander JS. IL-1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2. Br J Pharmacol 2015; 172:4038-51. [PMID: 25989136 DOI: 10.1111/bph.13194] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The lymphatic system maintains tissue homeostasis by unidirectional lymph flow, maintained by tonic and phasic contractions within subunits, 'lymphangions'. Here we have studied the effects of the inflammatory cytokine IL-1β on tonic contraction of rat mesenteric lymphatic muscle cells (RMLMC). EXPERIMENTAL APPROACH We measured IL-1β in colon-conditioned media (CM) from acute (AC-CM, dextran sodium sulfate) and chronic (CC-CM, T-cell transfer) colitis-induced mice and corresponding controls (Con-AC/CC-CM). We examined tonic contractility of RMLMC in response to CM, the cytokines h-IL-1β or h-TNF-α (5, 10, 20 ng·mL(-1) ), with or without COX inhibitors [TFAP (10(-5) M), diclofenac (0.2 × 10(-5) M)], PGE2 (10(-5) M)], IL-1-receptor antagonist, Anakinra (5 μg·mL(-1) ), or a selective prostanoid EP4 receptor antagonist, GW627368X (10(-6) and 10(-7) M). KEY RESULTS Tonic contractility of RMLMC was reduced by AC- and CC-CM compared with corresponding control culture media, Con-AC/CC-CM. IL-1β or TNF-α was not found in Con-AC/CC-CM, but detected in AC- and CC-CM. h-IL-1β concentration-dependently decreased RMLMC contractility, whereas h-TNF-α showed no effect. Anakinra blocked h-IL-1β-induced RMLMC relaxation, and with AC-CM, restored contractility to RMLMC. IL-1β increased COX-2 protein and PGE2 production in RMLMC.. PGE2 induced relaxations in RMLMC, comparable to h-IL-1β. Conversely, COX-2 and EP4 receptor inhibition reversed relaxation induced by IL-1β. CONCLUSIONS AND IMPLICATIONS The IL-1β-induced decrease in RMLMC tonic contraction was COX-2 dependent, and mediated by PGE2 . In experimental colitis, IL-1β and tonic lymphatic contractility were causally related, as this cytokine was critical for the relaxation induced by AC-CM and pharmacological blockade of IL-1β restored tonic contraction.
Collapse
Affiliation(s)
- M Al-Kofahi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - F Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - M D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - I Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - D Ostanin
- Department of Medicine, Division of Rheumatology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - D C Zawieja
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, College Station, TX, USA
| | - M Muthuchamy
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, College Station, TX, USA
| | - P Y von der Weid
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| |
Collapse
|
15
|
Colonic Insult Impairs Lymph Flow, Increases Cellular Content of the Lymph, Alters Local Lymphatic Microenvironment, and Leads to Sustained Inflammation in the Rat Ileum. Inflamm Bowel Dis 2015; 21:1553-63. [PMID: 25939039 PMCID: PMC4466086 DOI: 10.1097/mib.0000000000000402] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lymphatic dysfunction has been linked to inflammation since the 1930s. Lymphatic function in the gut and mesentery is grossly underexplored in models of inflammatory bowel disease despite the use of lymphatic occlusion in early models of inflammatory bowel disease. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. METHODS To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. RESULTS Lymph transport fell 24 hours after TNBS administration and began recovering at 72 hours. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased myeloperoxidase activity. These changes were preceded by increased MHCII cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. CONCLUSIONS Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation.
Collapse
|
16
|
Breslin JW. Mechanical forces and lymphatic transport. Microvasc Res 2014; 96:46-54. [PMID: 25107458 DOI: 10.1016/j.mvr.2014.07.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
17
|
Rho kinase enhances contractions of rat mesenteric collecting lymphatics. PLoS One 2014; 9:e94082. [PMID: 24710574 PMCID: PMC3978029 DOI: 10.1371/journal.pone.0094082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1–10 μM) and Y-27632 (0.5–50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1–10 μM H1152 or 25–50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose that ROCK modulates Ca2+ sensitivity of contractile proteins in lymphatics.
Collapse
|
18
|
Card CM, Yu SS, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest 2014; 124:943-52. [PMID: 24590280 DOI: 10.1172/jci73316] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Emerging research on the roles of stromal cells in modulating adaptive immune responses has included a new focus on lymphatic endothelial cells (LECs). LECs are presumably the first cells that come into direct contact with peripheral antigens, cytokines, danger signals, and immune cells travelling from peripheral tissues to lymph nodes. LECs can modulate dendritic cell function, present antigens to T cells on MHC class I and MHC class II molecules, and express immunomodulatory cytokines and receptors, which suggests that their roles in adaptive immunity are far more extensive than previously realized. This Review summarizes the emergent evidence that LECs are important in maintaining peripheral tolerance, limiting and resolving effector T cell responses, and modulating leukocyte function.
Collapse
|