1
|
Janardhan HP, Wachter BT, Trivedi CM. Lymphatic System Development and Function. Curr Cardiol Rep 2024; 26:1209-1219. [PMID: 39172295 DOI: 10.1007/s11886-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW This review delves into recent advancements in understanding generalized and organ-specific lymphatic development. It emphasizes the distinct characteristics and critical anomalies that can impair lymphatic function. By exploring developmental mechanisms, the review seeks to illuminate the profound impact of lymphatic malformations on overall health and disease progression. RECENT FINDINGS The introduction of genome sequencing, single-cell transcriptomic analysis, and advanced imaging technologies has significantly enhanced our ability to identify and characterize developmental defects within the lymphatic system. As a result, a wide range of lymphatic anomalies have been uncovered, spanning from congenital abnormalities present at birth to conditions that can become life-threatening in adulthood. Additionally, recent research highlights the heterogeneity of lymphatics, revealing organ-specific developmental pathways, unique molecular markers, and specialized physiological functions specific to each organ. A deeper understanding of the unique characteristics of lymphatic cell populations in an organ-specific context is essential for guiding future research into lymphatic disease processes. An integrated approach to translational research could revolutionize personalized medicine, where treatments are precisely tailored to individual lymphatic profiles, enhancing effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Harish P Janardhan
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Brianna T Wachter
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
- MD-PhD Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
O’Hagan LA, Phillips ARJ, Windsor JA, Mirjalili SA. Comment on Plutecki et al. The Anatomy of the Thoracic Duct and Cisterna Chyli: A Meta-Analysis with Surgical Implications. J. Clin. Med. 2024, 13, 4285. J Clin Med 2024; 13:5663. [PMID: 39407723 PMCID: PMC11477114 DOI: 10.3390/jcm13195663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
We read, with interest, Plutecki and colleagues' systematic review of the anatomy of the thoracic duct and cisterna chyli, recently published in JCM [...].
Collapse
Affiliation(s)
- Lomani A. O’Hagan
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Anthony R. J. Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.R.J.P.)
- Applied Surgery and Metabolism Laboratory, School of Biological Science, Faculty of Sciences, University of Auckland, Auckland 1010, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.R.J.P.)
| | - S. Ali Mirjalili
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
3
|
Suzuki-Inoue K, Tsukiji N. A role of platelet C-type lectin-like receptor-2 and its ligand podoplanin in vascular biology. Curr Opin Hematol 2024; 31:130-139. [PMID: 38359177 DOI: 10.1097/moh.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Platelets are essential for hemostasis and are also vital in lymphatic and lung development and the maintenance of vascular integrity. Platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and its endogenous ligand podoplanin (PDPN) in lymphatic endothelial cells (LECs) and other cells regulate these processes. This review aims to comprehensively summarize the roles of platelet CLEC-2 and PDPN. This review also focuses on discussing the underlying mechanisms by which platelet CLEC-2 and PDPN mediate blood/lymphatic separation. FINDINGS CLEC-2/PDPN-induced platelet activation in the primary lymph sacs, developmental lymphovenous junctions, neonatal mesentery, and the site of tumor lymphangiogenesis prevents blood/lymphatic vessel misconnection. Further, CLEC-2/PDPN-induced platelet activation is essential for lung development. Mice deficient in CLEC-2 or PDPN show blood-filled lymphatics, lung malformations, and cerebrovascular abnormalities. CLEC-2 deletion in steady-state adult mice did not result in blood/lymphatic vessel mixing. In adulthood, CLEC-2 maintains vascular integrity and that of high endothelial venules in lymph nodes. CLEC-2 deletion in adulthood results in hemorrhage under inflammatory conditions, and hemolymph nodes. SUMMARY The platelet CLEC-2/LEC PDPN interaction prevents blood/lymphatic vessel mixing at active remodeling sites of the blood/lymphatic system, but not in steady-state adult mice. This interaction also regulates vascular integrity when vascular permeability increases before and after birth.
Collapse
Affiliation(s)
- Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | |
Collapse
|
4
|
Jayathungage Don TD, Safaei S, Maso Talou GD, Russell PS, Phillips ARJ, Reynolds HM. Computational fluid dynamic modeling of the lymphatic system: a review of existing models and future directions. Biomech Model Mechanobiol 2024; 23:3-22. [PMID: 37902894 PMCID: PMC10901951 DOI: 10.1007/s10237-023-01780-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
Historically, research into the lymphatic system has been overlooked due to both a lack of knowledge and limited recognition of its importance. In the last decade however, lymphatic research has gained substantial momentum and has included the development of a variety of computational models to aid understanding of this complex system. This article reviews existing computational fluid dynamic models of the lymphatics covering each structural component including the initial lymphatics, pre-collecting and collecting vessels, and lymph nodes. This is followed by a summary of limitations and gaps in existing computational models and reasons that development in this field has been hindered to date. Over the next decade, efforts to further characterize lymphatic anatomy and physiology are anticipated to provide key data to further inform and validate lymphatic fluid dynamic models. Development of more comprehensive multiscale- and multi-physics computational models has the potential to significantly enhance the understanding of lymphatic function in both health and disease.
Collapse
Affiliation(s)
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Gonzalo D Maso Talou
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peter S Russell
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Hayley M Reynolds
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Bauer C, Scala M, Rome JJ, Tulzer G, Dori Y. Lymphatic Imaging and Intervention in Congenital Heart Disease. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:101174. [PMID: 39131972 PMCID: PMC11308220 DOI: 10.1016/j.jscai.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 08/13/2024]
Abstract
The lymphatic system plays a central role in some of the most devastating complications associated with congenital heart defects. Diseases like protein-losing enteropathy, plastic bronchitis, postoperative chylothorax, and chylous ascites are now proven to be lymphatic in origin. Novel imaging modalities, most notably, noncontrast magnetic resonance lymphangiography and dynamic contrast-enhanced magnetic resonance lymphangiography, can now depict lymphatic anatomy and function in all major lymphatic compartments and are essential for modern therapy planning. Based on the new pathophysiologic understanding of lymphatic flow disorders, innovative minimally invasive procedures have been invented during the last few years with promising results. Abnormal lymphatic flow can now be redirected with catheter-based interventions like thoracic duct embolization, selective lymphatic duct embolization, and liver lymphatic embolization. Lymphatic drainage can be improved through surgical or interventional techniques such as thoracic duct decompression or lympho-venous anastomosis.
Collapse
Affiliation(s)
- Christoph Bauer
- Department of Paediatric Cardiology, Kepler University Hospital GmbH, Linz, Austria
- Johannes Kepler University Linz, Linz, Austria
| | - Mario Scala
- Johannes Kepler University Linz, Linz, Austria
- Central Radiology Institute, Kepler University Hospital GmbH, Linz, Austria
| | - Jonathan J. Rome
- Department of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gerald Tulzer
- Department of Paediatric Cardiology, Kepler University Hospital GmbH, Linz, Austria
- Johannes Kepler University Linz, Linz, Austria
| | - Yoav Dori
- Department of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Bauer C, Dori Y, Scala M, Tulzer A, Tulzer G. Current diagnostic and therapeutic strategies for the management of lymphatic insufficiency in patients with hypoplastic left heart syndrome. Front Pediatr 2023; 11:1058567. [PMID: 36911024 PMCID: PMC9999027 DOI: 10.3389/fped.2023.1058567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Children with hypoplastic left heart syndrome share unique hemodynamic features that alter lymphatic integrity at all stages of palliation. Lymphatic congestion is almost universal in this patient group to some extent. It may lead to reversal of lymphatic flow, the development of abnormal lymphatic channels and ultimately decompression and loss of protein rich lymphatic fluid into extra lymphatic compartments in prone individuals. Some of the most devastating complications that are associated with single ventricle physiology, notably plastic bronchitis and protein losing enteropathy, have now been proven to be lymphatic in origin. Based on the new pathophysiologic concept new diagnostic and therapeutic strategies have recently been developed. Dynamic contrast magnetic resonance lymphangiography is now mainstay in diagnosis of lymphatic insufficiency and allows a thorough assessment of anatomy and function of the main lymphatic compartments through intranodal, intrahepatic and intramesenteric lymphatic imaging. Contrast enhanced ultrasound can evaluate thoracic duct patency and conventional fluoroscopic lymphangiography has been refined for evaluation of patients where magnetic resonance imaging cannot be performed. Novel lymphatic interventional techniques, such as thoracic duct embolization, selective lymphatic duct embolization and liver lymphatic embolization allow to seal abnormal lymphatic networks minimally invasive and have shown to resolve symptoms. Innominate vein turn-down procedures, whether surgical or interventional, have been designed to reduce lymphatic afterload and increase systemic preload effectively in the failing Fontan circulation. Outflow obstruction can now be managed with new microsurgical techniques that create lympho-venous anastomosis. Short term results for all of these new approaches are overall promising but evidence is sparse and long-term outcome still has to be defined. This review article aims to summarize current concepts of lymphatic flow disorders in single ventricle patients, discuss new emerging diagnostic and therapeutic strategies and point out lacks in evidence and needs for further research on this rapidly growing topic.
Collapse
Affiliation(s)
- Christoph Bauer
- Department of Paediatric Cardiology, Kepler University Hospital GmbH, Linz, Austria
- Johannes Kepler University Linz, Linz, Austria
| | - Yoav Dori
- Department of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mario Scala
- Johannes Kepler University Linz, Linz, Austria
- Central Radiology Institute, Kepler University Hospital GmbH, Linz, Austria
| | - Andreas Tulzer
- Department of Paediatric Cardiology, Kepler University Hospital GmbH, Linz, Austria
- Johannes Kepler University Linz, Linz, Austria
| | - Gerald Tulzer
- Department of Paediatric Cardiology, Kepler University Hospital GmbH, Linz, Austria
- Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
7
|
Moazzam S, O'Hagan LA, Clarke AR, Itkin M, Phillips ARJ, Windsor JA, Mirjalili SA. The cisterna chyli: a systematic review of definition, prevalence, and anatomy. Am J Physiol Heart Circ Physiol 2022; 323:H1010-H1018. [PMID: 36206050 DOI: 10.1152/ajpheart.00375.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cisterna chyli is a lymphatic structure found at the caudal end of the thoracic duct that receives lymph draining from the abdominal and pelvic viscera and lower limbs. In addition to being an important landmark in retroperitoneal surgery, it is the key gateway for interventional radiology procedures targeting the thoracic duct. A detailed understanding of its anatomy is required to facilitate more accurate intervention, but an exhaustive summary is lacking. A systematic review was conducted, and 49 published human studies met the inclusion criteria. Studies included both healthy volunteers and patients and were not restricted by language or date. The detectability of the cisterna chyli is highly variable, ranging from 1.7 to 98%, depending on the study method and criteria used. Its anatomy is variable in terms of location (vertebral level of T10 to L3), size (ranging 2-32 mm in maximum diameter and 13-80 mm in maximum length), morphology, and tributaries. The size of the cisterna chyli increases in some disease states, though its utility as a marker of disease is uncertain. The anatomy of the cisterna chyli is highly variable, and it appears to increase in size in some disease states. The lack of well-defined criteria for the structure and the wide variation in reported detection rates prevent accurate estimation of its natural prevalence in humans.
Collapse
Affiliation(s)
- Sara Moazzam
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Lomani A O'Hagan
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Alys R Clarke
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Maxim Itkin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - S Ali Mirjalili
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Hinton LR, O'Hagan LA, Griffiths AP, Clark AR, Phillips ARJ, Windsor JA, Mirjalili SA. The effect of respiration and body position on terminal thoracic duct diameter and the lymphovenous junction: An exploratory ultrasound study. Clin Anat 2021; 35:447-453. [PMID: 34658062 DOI: 10.1002/ca.23801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022]
Abstract
The thoracic duct (TD) drains most of the body's lymph back to the venous system via its lymphovenous junction (LVJ), playing a pivotal role in fluid homeostasis, fat absorption and the systemic immune response. The respiratory cycle is thought to assist with lymph flow, but the precise mechanism underpinning terminal TD lymph flow into the central veins is not well understood. The aim of this study was to use ultrasonography (US) to explore the relationship between terminal TD lymph flow, the respiratory cycle, and gravity. The left supraclavicular fossa was scanned in healthy non-fasted volunteers using high-resolution (13-5 MHz) US to identify the terminal TD and the presence of a lymphovenous valve (LVV). The TD's internal diameter was measured in relation to respiration (inspiration vs. expiration) and body positioning (supine vs. Trendelenburg). The terminal TD was visualized in 20/33 (61%) healthy volunteers. An LVV was visualized in only 4/20 (20%) cases. The mean terminal TD diameter in the supine position was 1.7 mm (range 0.8-3.1 mm); this increased in full inspiration (mean 1.8 mm, range 0.9-3.2 mm, p < 0.05), and in the Trendelenburg position (mean 1.8 mm, range 1.2-3.1 mm, p < 0.05). The smallest mean terminal TD diameter occurred in full expiration (1.6 mm, range 0.7-3.1 mm, p < 0.05). Respiration and gravity impact the terminal TD diameter. Due to the challenges of visualizing the TD and LVJ, other techniques such as dynamic magnetic resonance imaging will be required to fully understand the factors governing TD lymph flow.
Collapse
Affiliation(s)
- Lucy R Hinton
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lomani A O'Hagan
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Andrew P Griffiths
- Department of Radiology, Auckland District Health Board, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - S Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|