1
|
Wan TW, Lee TF, Chen XJ, Hunag YT, Teng LJ, Hsueh PR, Chiu HC. Performance assessment of the Bruker Biotyper MALDI-TOF MS for the identification of difficult-to-identify viridans group streptococci. J Clin Microbiol 2023; 61:e0114323. [PMID: 38038480 PMCID: PMC10729738 DOI: 10.1128/jcm.01143-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Differentiating Streptococcus pneumoniae among nonpneumococcal viridans group streptococci (VGS) is challenging in conventional laboratories. Therefore, we aimed to evaluate the performance of the latest Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system in identifying VGS by comparing the results to those of the specific gene sequencing approach. Clinical isolates were initially identified using the BD Phoenix system to identify Streptococcus species. The optochin test was used to distinguish nonpneumococcal VGS from S. pneumoniae. The species of individual reference strains and clinical isolates were determined by comparing the sequences of the 16S rDNA, gyrB, sodA, groESL, or coaE genes with those in the GenBank sequence databases. We evaluated the performance of the Bruker Biotyper MALDI-TOF MS in VGS identification using two different machines with three databases. We collected a total of 103 nonpneumococcal VGS and 29 S. pneumoniae blood isolates at a medical center in northern Taiwan. Among these isolates, only seven could not be identified at the species level by the specific gene sequencing approach. We found that none of the nonpneumococcal VGS isolates were misidentified as pneumococci by the latest Biotyper system, and vice versa. However, certain strains, especially those in the mitis and bovis groups, could still not be correctly identified. The latest Bruker Biotyper 4.1 (DB_10833) showed significant improvement in identifying VGS strains. However, a specific gene sequencing test is still needed to precisely differentiate the species of strains in the mitis and bovis groups.
Collapse
Affiliation(s)
- Tsai-Wen Wan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiang-Jun Chen
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Tsung Hunag
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Serotypes, antimicrobial resistance and genotypes of Streptococcus pneumoniae associated with infections in cancer patients in Brazil. Diagn Microbiol Infect Dis 2017; 87:281-285. [DOI: 10.1016/j.diagmicrobio.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 11/23/2022]
|
3
|
Tantivitayakul P, Lapirattanakul J, Vichayanrat T, Muadchiengka T. Antibiotic Resistance Patterns and Related Mobile Genetic Elements of Pneumococci and β-Hemolytic Streptococci in Thai Healthy Children. Indian J Microbiol 2016; 56:417-425. [PMID: 27784937 DOI: 10.1007/s12088-016-0607-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/23/2016] [Indexed: 11/29/2022] Open
Abstract
Transmission of antibiotic resistance genes among Streptococcus pneumoniae and beta-hemolytic streptococcus (BHS) was generally associated with transmissible genetic elements. The objectives of this study were to investigate carriage rate, antibiotic resistance and related mobile genetic elements of pneumococci and BHS from school-children. The pneumococci and BHS were recovered from 220 Thai school-children, and then tested for antibiotic susceptibility pattern by disc diffusion. Antibiotic resistance genes and related genetic elements were detected by PCR with specific primers. A total of 77 pneumococcal isolates were resistant to erythromycin (42 %), tetracycline (44 %), clindamycin (8 %), or penicillin (3 %). Fifty-four BHS isolates were resistant to erythromycin (28 %), tetracycline (52 %), or clindamycin (13 %). All isolates tested were 100 % sensitive to penicillin and levofloxacin. Among erythromycin-resistant streptococcal isolates showed different phenotypes of clindamycin resistance. It was found that isolated pneumococci showed constitutive clindamycin resistance (19 %), and inducible clindamycin resistance (12 %). The BHS isolates exhibited constitutive clindamycin resistance (40 %), and inducible resistance (20 %) phenotypes. The predominant erythromycin resistance genes in pneumococci and BHS were mefE and ermB, while the most common tetracycline resistance gene in this population was tetM. Furthermore, almost all erythromycin- and tetracycline-resistant streptococci (97 %) mainly contained various genetic elements, including mega elements and six different transposon types (Tn2009, Tn2017, Tn917, Tn3872, Tn6002 and Tn916). Therefore, carriages of pneumococci and BHS with multidrug resistance in children might be important reservoirs of antibiotic-resistance genes carried by transposons. Tn916-like elements could lead to dissemination of the antibiotic resistance genes among genus streptococcus in human oral cavity and nasopharynx.
Collapse
Affiliation(s)
- P Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400 Thailand
| | - J Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400 Thailand
| | - T Vichayanrat
- Department of Community Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, 10400 Thailand
| | - T Muadchiengka
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400 Thailand
| |
Collapse
|
4
|
Ikryannikova LN, Ischenko DS, Lominadze GG, Kanygina AV, Karpova IY, Kostryukova ES, Mayansky NA, Skvortsov VS, Ilina EN, Govorun VM. The mystery of the fourth clone: comparative genomic analysis of four non-typeable Streptococcus pneumoniae strains with different susceptibilities to optochin. Eur J Clin Microbiol Infect Dis 2015; 35:119-30. [PMID: 26563895 DOI: 10.1007/s10096-015-2516-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022]
Abstract
Optochin-resistant pneumococci can be rarely caught in clinical microbiology laboratories because of the routine identification of all such strains as viridans group non-pneumococci. We were lucky to find four non-typeable Streptococcus pneumoniae clones demonstrating the different susceptibilities to optochin: one of them (Spn_13856) was resistant to optochin, while the other three (Spn_1719, Spn_27, and Spn_2298) were susceptible. Whole genome nucleotide sequences of these strains were compared to reveal the differences between the optochin-resistant and optochin-susceptible strains. Two adjacent genes coding maltose O-acetyltransferase and uridine phosphorylase which were presented in the genomes of all optochin-susceptible strains and missed in the optochin-resistant strain were revealed. Non-synonymous substitutions in 14 protein-coding genes were discovered, including the Ala49Ser mutation in the C-subunit of the F0 part of the ATP synthase rotor usually associated with pneumococcal optochin resistance. Modeling of a process of optochin interaction with the F0 part of the ATP synthase rotor indicates that the complex of optochin with "domain C" composed by wild-type C-subunits is more stable than the same complex composed of Ala49Ser mutant C-subunits.
Collapse
Affiliation(s)
- L N Ikryannikova
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia.
| | - D S Ischenko
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia
| | - G G Lominadze
- Federal State Budgetary Institute "Scientific Center of Children Health" of RAMS, Moscow, Russia
| | - A V Kanygina
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia
| | - I Y Karpova
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia
| | - E S Kostryukova
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia
| | - N A Mayansky
- Federal State Budgetary Institute "Scientific Center of Children Health" of RAMS, Moscow, Russia
| | - V S Skvortsov
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121, Russia
| | - E N Ilina
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia
| | - V M Govorun
- Research Institute of Physical-Chemical Medicine, Ministry of Public Health of Russian Federation, 119992, Malaya Pirogovskaya str., 1a, Moscow, Russia
| |
Collapse
|
5
|
Ramirez M. Streptococcus pneumoniae. MOLECULAR MEDICAL MICROBIOLOGY 2015:1529-1546. [DOI: 10.1016/b978-0-12-397169-2.00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Phenotypic and molecular characterization of optochin-resistant Streptococcus pneumoniae isolates from Brazil, with description of five novel mutations in the ATPC gene. J Clin Microbiol 2013; 51:3242-9. [PMID: 23884994 DOI: 10.1128/jcm.01168-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optochin (Opt) susceptibility is used largely for the identification of Streptococcus pneumoniae in diagnostic laboratories. Opt-resistant (Opt(r)) S. pneumoniae isolates have been reported, however, indicating the potential for misidentification of this important pathogen. Point mutations in the atpC gene have been associated with the emergence of Opt(r) S. pneumoniae, but data on the characterization of such atypical variants of S. pneumoniae are still limited. The present report describes the results of a polyphasic approach to identifying and characterizing 26 Opt(r) S. pneumoniae isolates recovered from patients or carriers living in Brazil. Sixteen isolates consisted of heterogeneous populations, and 10 isolates were homogeneously Opt(r). The isolates had different serotypes and antimicrobial susceptibility profiles. They also presented diverse genetic characteristics, as indicated by pulsed-field gel electrophoresis (PFGE), multilocus variable-number tandem-repeat analysis (MLVA), and pspA gene typing. Except for Opt MICs (4- to 64-fold higher among Opt(r) variants), Opt(r) and Opt-susceptible (Opt(s)) subpopulations originating from the same culture had identical characteristics. Sequencing of the atpC gene of the Opt(r) variants revealed 13 different nucleotide changes distributed among eight different codons. Changes in codon 49 were the most frequent, suggesting that this might be a hot spot for optochin resistance-conferring mutations. On the other hand, five novel types of mutations in the atpC gene (Met13Ile, Gly18Ser, Gly20Ala, Ala31Val, and Ala49Gly) were identified. In silico prediction modeling indicated that the atpC gene mutations corresponded to alterations in the transmembrane region of the ATPase, leading to a higher hydrophobicity profile in α-helix 1 and to a lower hydrophobicity profile in α-helix 2.
Collapse
|
7
|
El Aila NA, Emler S, Kaijalainen T, De Baere T, Saerens B, Alkan E, Deschaght P, Verhelst R, Vaneechoutte M. The development of a 16S rRNA gene based PCR for the identification of Streptococcus pneumoniae and comparison with four other species specific PCR assays. BMC Infect Dis 2010; 10:104. [PMID: 20426878 PMCID: PMC2874796 DOI: 10.1186/1471-2334-10-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is one of the most frequently encountered pathogens in humans but its differentiation from closely related but less pathogenic streptococci remains a challenge. METHODS This report describes a newly-developed PCR assay (Spne-PCR), amplifying a 217 bp product of the 16S rRNA gene of S. pneumoniae, and its performance compared to other genotypic and phenotypic tests. RESULTS The new PCR assay designed in this study, proved to be specific at 57 degrees C for S. pneumoniae, not amplifying S. pseudopneumoniae or any other streptococcal strain or any strains from other upper airway pathogenic species. PCR assays (psaA, LytA, ply, spn9802-PCR) were previously described for the specific amplification of S. pneumoniae, but psaA-PCR was the only one found not to cross-react with S. pseudopneumoniae. CONCLUSION Spne-PCR, developed for this study, and psaA-PCR were the only two assays which did not mis-identify S. pseudopneumoniae as S. pneumoniae. Four other PCR assays and the AccuProbe assay were unable to distinguish between these species.
Collapse
Affiliation(s)
- Nabil Abdullah El Aila
- Laboratory Bacteriology Research, Department of Chemistry, Microbiology and Immunology, University of Ghent, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van der Linden M, Al-Lahham A, Nicklas W, Reinert RR. Molecular characterization of pneumococcal isolates from pets and laboratory animals. PLoS One 2009; 4:e8286. [PMID: 20011527 PMCID: PMC2788425 DOI: 10.1371/journal.pone.0008286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/23/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Between 1986 and 2008 Streptococcus pneumoniae was isolated from 41 pets/zoo animals (guinea pigs (n = 17), cats (n = 12), horses (n = 4), dogs (n = 3), dolphins (n = 2), rat (n = 2), gorilla (n = 1)) treated in medical veterinary laboratories and zoos, and 44 laboratory animals (mastomys (multimammate mice; n = 32), mice (n = 6), rats (n = 4), guinea pigs (n = 2)) during routine health monitoring in an animal facility. S. pneumoniae was isolated from nose, lung and respiratory tract, eye, ear and other sites. METHODOLOGY/PRINCIPAL FINDINGS Carriage of the same isolate of S. pneumoniae over a period of up to 22 weeks was shown for four mastomys. Forty-one animals showed disease symptoms. Pneumococcal isolates were characterized by optochin sensitivity, bile solubility, DNA hybridization, pneumolysin PCR, serotyping and multilocus sequence typing. Eighteen of the 32 mastomys isolates (56%) were optochin resistant, all other isolates were optochin susceptible. All mastomys isolates were serotype 14, all guinea pig isolates serotype 19F, all horse isolates serotype 3. Rats had serotypes 14 or 19A, mice 33A or 33F. Dolphins had serotype 23F, the gorilla serotype 14. Cats and dogs had many different serotypes. Four isolates were resistant to macrolides, three isolates also to clindamycin and tetracycline. Mastomys isolates were sequence type (ST) 15 (serotype 14), an ST/serotype combination commonly found in human isolates. Cats, dogs, pet rats, gorilla and dolphins showed various human ST/serotype combinations. Lab rats and lab mice showed single locus variants (SLV) of human STs, in human ST/serotype combinations. All guinea pig isolates showed the same completely new combination of known alleles. The horse isolates showed an unknown allele combination and three new alleles. CONCLUSIONS/SIGNIFICANCE The isolates found in mastomys, mice, rats, cats, dogs, gorilla and dolphins are most likely identical to human pneumococcal isolates. Isolates from guinea pigs and horses appear to be specialized clones for these animals. Our data redraw attention to the fact that pneumococci are not strictly human pathogens. Pet animals that live in close contact to humans, especially children, can be infected by human isolates and also carriage of even resistant isolates is a realistic possibility.
Collapse
Affiliation(s)
- Mark van der Linden
- Department of Medical Microbiology, National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany.
| | | | | | | |
Collapse
|
9
|
Accuracy of phenotypic methods for identification of Streptococcus pneumoniae isolates included in surveillance programs. J Clin Microbiol 2008; 46:2184-8. [PMID: 18495854 DOI: 10.1128/jcm.00461-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Similarities between Streptococcus pneumoniae and viridans group streptococci may result in misidentification of these organisms. In surveillance programs which assess antimicrobial resistance rates among respiratory tract pathogens, such identification errors could lead to overestimates of pneumococcal resistance rates. DNA probe analysis (Gen-Probe, San Diego, CA), the bile solubility test, optochin susceptibility, colony morphology, and the capsular swelling reaction with Omni serum (Staten Serum Institut, Copenhagen, Denmark) were used to characterize 1,733 organisms provisionally identified as S. pneumoniae in a 2004 to 2005 antimicrobial resistance surveillance program. These organisms were obtained in 41 U.S. medical centers. Among these, 1,647 (95%) were determined to be S. pneumoniae by DNA probe. Elimination of those isolates found not to be S. pneumoniae resulted in 1 to 2% decreases in resistance rate estimates with penicillin, erythromycin, tetracycline, and trimethoprim-sulfamethoxazole. With AccuProbe as a reference standard, the sensitivities and specificities of each phenotypic method for the identification of S. pneumoniae were, respectively, 98.8% and 82.6% for bile solubility, 99.3% and 74.4% for the capsular swelling reaction with Omni serum, and 87.9% and 59.3% for optochin susceptibility. Colony morphology was of limited value, as 391 (23.7%) isolates lacked the typical button or mucoid colony appearance of S. pneumoniae.
Collapse
|
10
|
Characterization of in vitro-generated and clinical optochin-resistant strains of Streptococcus pneumoniae isolated from Argentina. J Clin Microbiol 2008; 46:1930-4. [PMID: 18417665 PMCID: PMC2446823 DOI: 10.1128/jcm.02318-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optochin susceptibility is a key test used for pneumococcal diagnosis, but optochin-resistant (Opt(r)) pneumococci have been reported in the last 2 decades. In this work, we characterized eight Opt(r) clinical strains which presented a new mutation, G47V, a predominant A49S mutation (recently reported in Brazil) and A49T. These mutations were found in the c subunit of the F(0)F(1) ATPase encoded by the atpC gene, and W206C was found in the a subunit encoded by the atpA gene. The Opt(r) clinical isolates were analyzed by BOX PCR, multilocus sequence typing, and serotype and antimicrobial resistance profiles, and they showed no epidemiological relationship. To characterize the Opt(r) mutations that could emerge among clinical strains, we studied a pool of spontaneous Opt(r) colonies obtained in vitro from the virulent D39 strain. We compared the atpAC mutations of these Opt(r) pneumococci (with or without passage through C57BL/6 mice) with those described in the clinical isolates. This analysis revealed three new mutations, G47V and L26M in the c subunit and L184S in the a subunit. Most of the mutations identified in the laboratory-generated Opt(r) strains were also found in clinical strains, with the exception of the L26M and L184S mutations, and we suppose that both mutations could emerge among invasive strains in the future. Considering that atpAC are essential genes, we propose that all spontaneous mutations that confer in vitro optochin resistance would not present severe physiological alterations in S. pneumoniae and may be carried by circulating pneumococcal strains.
Collapse
|
11
|
Optochin resistance among Streptococcus pneumoniae strains colonizing healthy children in Portugal. J Clin Microbiol 2007; 46:321-4. [PMID: 18032618 DOI: 10.1128/jcm.02097-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two percent of 1,973 pneumococcus strains isolated from carriers since 2001 in Portugal were found to be optochin resistant. These strains belonged to eight serotypes (and some were nontypeable), and they had diverse genetic backgrounds. Novel optochin-resistant lineages were detected over time, suggesting that there was a continuous, although sporadic, emergence of optochin resistance.
Collapse
|