1
|
Hasegawa LA, Vilela FP, Falcão JP. Antimicrobial resistance, virulence potential and genomic epidemiology of global genomes of the rare Salmonella enterica serovar Orion. Zoonoses Public Health 2024; 71:591-599. [PMID: 38702905 DOI: 10.1111/zph.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
AIMS Our aim is to characterize through whole-genome sequencing (WGS) the antimicrobial resistance (AMR) and heavy metal tolerance (HMT) genes content, plasmid presence, virulence potential and genomic diversity of the rare non-typhoid Salmonella enterica serovar Orion (S. Orion) from 19 countries of the African, American, Eastern Mediterranean, European, Southeastern Asia and Western Pacific regions. METHODS AND RESULTS Totally 324 S. Orion genomes were screened for AMR, HMT and virulence genes, plasmids and Salmonella Pathogenicity Islands (SPIs). Genomic diversity was investigated using Multi-Locus Sequence Typing (MLST) and core-genome MLST (cgMLST). Efflux pump encoding genes mdsA and mdsB were present in all genomes analysed, while quinolone chromosomal point mutations and aminoglycoside, beta-lactam, colistin, lincosamide, macrolide, phenicol, sulphonamide, trimethoprim, tetracycline and disinfectant resistance genes were found in 0.3%-5.9%. A total of 17 genomes (5.2%) from Canada, the United Kingdom, the USA and Tanzania showed a potential multi-drug resistance profile. Gold tolerance genes golS and golT were detected in all genomes analysed, while arsenic, copper, mercury, silver and tellurium tolerance genes were found in 0.3%-35.5%. Col(MGD2) was the most frequently detected plasmid, in 15.4% of the genomes. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, serum resistance, stress adaptation, type III secretion systems and six SPIs (1, 2, 3, 4, 5, 9, 12, 13, 14 and C63PI) were detected. ST639 was assigned to 89.2% of the S. Orion genomes, while cgMLST showed core-genome STs and clusters of strains specific by countries. CONCLUSION The high virulence factor frequencies, the genomic similarity among some non-clinical and clinical strains circulating worldwide and the presence of a strain carrying a resistance gene against a last resource antimicrobial like colistin, highlight the potential risk of S. Orion strains for public health and food safety and reinforce the importance to not underestimate the potential hazard of rare non-typhoid Salmonella serovars.
Collapse
Affiliation(s)
- Leticia Ayumi Hasegawa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Ribeirao Preto, SP, Brazil
| | - Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Ribeirao Preto, SP, Brazil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Ribeirao Preto, SP, Brazil
| |
Collapse
|
2
|
Vilela FP, Imori PFM, Allard MW, Falcão JP. Insights into the genomic traits of Yersinia frederiksenii, Yersinia intermedia and Yersinia kristensenii isolated from diverse sources in Brazil. Antonie Van Leeuwenhoek 2024; 117:86. [PMID: 38829455 DOI: 10.1007/s10482-024-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Priscilla Fernanda Martins Imori
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
3
|
Furmanek-Blaszk B, Sektas M, Rybak B. High Prevalence of Plasmid-Mediated Quinolone Resistance among ESBL/AmpC-Producing Enterobacterales from Free-Living Birds in Poland. Int J Mol Sci 2023; 24:12804. [PMID: 37628984 PMCID: PMC10454011 DOI: 10.3390/ijms241612804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we investigated the occurrence of plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase- (ESBL) and/or AmpC-type β-lactamase-producing Enterobacterales isolates from free-living birds in Poland. The prevalence of the qnrB19 gene was 63%, and the distribution of isolates in terms of bacterial species was as follows: 67% (22/33) corresponded to Escherichia coli, 83% (5/6) to Rahnella aquatilis, 44% (4/9) to Enterobacter cloacae and 33% (1/3) to Klebsiella pneumoniae. The qnrB19 gene was also found in a single isolate of Citrobacter freundii. The molecular characteristics of qnrB19-positive isolates pointed to extended-spectrum beta lactamase CTX-M as the most prevalent one (89%) followed by TEM (47%), AmpC (37%) and SHV (16%). This study demonstrates the widespread occurrence of PMQR-positive and ESBL/AmpC-producing Enterobacterales isolates in fecal samples from wild birds. In this work, plasmid pAM1 isolated from Escherichia coli strain SN25556 was completely sequenced. This plasmid is 3191 nucleotides long and carries the qnrB19 gene, which mediates decreased susceptibility to quinolones. It shares extensive homology with other previously described small qnrB19-harboring plasmids. The nucleotide sequence of pAM1 showed a variable region flanked by an oriT locus and a Xer recombination site. The presence of a putative recombination site was detected, suggesting that interplasmid recombination events might have played a role in the development of pAM1. Our results highlight the broad geographical spread of ColE-type Qnr resistance plasmids in clinical and environmental isolates of Enterobacterales. As expected from the results of phenotypic susceptibility testing, no resistance genes other than qnrB19 were identified.
Collapse
Affiliation(s)
- Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland;
| |
Collapse
|
4
|
Pasquali F, Crippa C, Parisi A, Lucchi A, Gambi L, Merlotti A, Remondini D, Stonfer M, Manfreda G. Genetic Diversity and Antimicrobial Resistance of Extraintestinal E. coli Populations Pre- and Post-Antimicrobial Therapy on Broilers Affected by Colisepticemia. Animals (Basel) 2023; 13:2590. [PMID: 37627381 PMCID: PMC10451725 DOI: 10.3390/ani13162590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of the present study was to investigate the genetic diversity and antimicrobial resistance (AMR) of E. coli during enrofloxacin therapy in broilers affected by colisepticemia. Three unrelated farms with ongoing colibacillosis outbreaks were sampled at day 1 before treatment and at days 5, 10 and 24 post-treatment. A total of 179 E. coli isolates were collected from extraintestinal organs and submitted to serotyping, PFGE and the minimum inhibitory concentration (MIC) against enrofloxacin. PFGE clusters shifted from 3-6 at D1 to 10-16 at D5, D10 and D24, suggesting an increased population diversity after the treatment. The majority of strains belonged to NT or O78 and to ST117 or ST23. PFGE results were confirmed with SNP calling: no persistent isolates were identified. An increase in resistance to fluoroquinolones in E. coli isolates was observed along the treatment. Resistome analyses revealed qnrB19 and qnrS1 genes along with mutations in the gyrA, parC and parE genes. Interestingly, despite a fluoroquinolone selective pressure, qnr-carrying plasmids did not persist. On the contrary, two conjugative AMR plasmid clusters (AB233 and AA474) harboring AMR genes other than qnr were persistent since they were identified in both D1 and D10 genomes in two farms. Further studies should be performed in order to confirm plasmid persistence not associated (in vivo) to antimicrobial selective pressure.
Collapse
Affiliation(s)
- Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy (A.L.); (L.G.); (G.M.)
| | - Cecilia Crippa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy (A.L.); (L.G.); (G.M.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, 71121 Foggia, Italy;
| | - Alex Lucchi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy (A.L.); (L.G.); (G.M.)
| | - Lucia Gambi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy (A.L.); (L.G.); (G.M.)
| | - Alessandra Merlotti
- Department of Physics and Astronomy, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (A.M.); (D.R.)
| | - Daniel Remondini
- Department of Physics and Astronomy, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (A.M.); (D.R.)
| | | | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy (A.L.); (L.G.); (G.M.)
| |
Collapse
|
5
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. The rare Salmonella enterica serovar Isangi: genomic characterization of the antimicrobial resistance, virulence potential and epidemiology of Brazilian strains in comparison to global isolates. J Med Microbiol 2023; 72. [PMID: 37462464 DOI: 10.1099/jmm.0.001736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Introduction. Salmonella enterica serovar Isangi (S. Isangi) is a rare non-typhoidal serovar, related to invasive nosocomial infections in various countries and to increasing antimicrobial resistance rates.Gap statement. Despite existing reports on S. Isangi, there is a lack of information of specific traits regarding this serovar, which could be improved through genomic analyses.Aim. Our goals were to characterize the antimicrobial resistance, virulence potential and genomic relatedness of 11 S. Isangi strains from Brazil in comparison to 185 genomes of global isolates using whole-genome sequencing (WGS) data.Methodology. Phenotypic resistance was determined by disc-diffusion. The search for resistance genes, plasmids, prophages, Salmonella pathogenicity islands (SPIs) and virulence genes, plus multi-locus sequence typing (MLST) and core-genome MLST (cgMLST) were performed using WGS.Results. Brazilian S. Isangi strains showed phenotypic resistance to nalidixic acid, ciprofloxacin and streptomycin, and harboured antimicrobial resistance [qnrB19, aac(6')-Iaa, mdsAB] and heavy metal tolerance (arsD, golST) genes. Col(pHAD28) and IncFII(S) plasmids, virulence genes related to adherence, macrophage induction, magnesium uptake, regulation and type III secretion systems, 12 SPIs and eight prophages were detected. The 185 additional global genomes analysed harboured resistance genes against 11 classes of antimicrobial compounds, 22 types of plasmids, 32 prophages, 14 SPIs, and additional virulence genes related to serum resistance, stress adaptation and toxins. Sequence type (ST)216 was assigned to genomes from Brazil and other countries, while ST335 was the most frequent ST, especially among South African genomes. cgMLST showed that Brazilian genomes were more closely related to genomes from European and African countries, the USA and Taiwan, while the majority of South African genomes were more closely related among each other.Conclusion. The presence of S. Isangi strains from Brazil and different countries showing a close genomic correlation, antimicrobial resistance profiles to drugs used in human therapy and a large number of virulence determinants reinforced the need for stronger initiatives to monitor rare non-typhoidal Salmonella serovars such as S. Isangi in order to prevent its dissemination among human and non-human sources.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Chacón RD, Ramírez M, Rodríguez-Cueva CL, Sánchez C, Quispe-Rojas WU, Astolfi-Ferreira CS, Piantino Ferreira AJ. Genomic Characterization and Genetic Profiles of Salmonella Gallinarum Strains Isolated from Layers with Fowl Typhoid in Colombia. Genes (Basel) 2023; 14:genes14040823. [PMID: 37107581 PMCID: PMC10138188 DOI: 10.3390/genes14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella Gallinarum (SG) is the causative agent of fowl typhoid (FT), a disease that is harmful to the poultry industry. Despite sanitation and prophylactic measures, this pathogen is associated with frequent disease outbreaks in developing countries, causing high morbidity and mortality. We characterized the complete genome sequence of Colombian SG strains and then performed a comparative genome analysis with other SG strains found in different regions worldwide. Eight field strains of SG plus a 9R-derived vaccine were subjected to whole-genome sequencing (WGS) and bioinformatics analysis, and the results were used for subsequent molecular typing; virulome, resistome, and mobilome characterization; and a comparative genome study. We identified 26 chromosome-located resistance genes that mostly encode efflux pumps, and point mutations were found in gyrase genes (gyrA and gyrB), with the gyrB mutation S464T frequently found in the Colombian strains. Moreover, we detected 135 virulence genes, mainly in 15 different Salmonella pathogenicity islands (SPIs). We generated an SPI profile for SG, including C63PI, CS54, ssaD, SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-9, SPI-10, SPI-11, SPI-12, SPI-13, and SPI-14. Regarding mobile genetic elements, we found the plasmids Col(pHAD28) and IncFII(S) in most of the strains and 13 different prophage sequences, indicating a frequently obtained profile that included the complete phage Gifsy_2 and incomplete phage sequences resembling Escher_500465_2, Shigel_SfIV, Entero_mEp237, and Salmon_SJ46. This study presents, for the first time, the genomic content of Colombian SG strains and a profile of the genetic elements frequently found in SG, which can be further studied to clarify the pathogenicity and evolutionary characteristics of this serotype.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
- Inter-Units Program in Biotechnology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Manuel Ramírez
- Unidad de Bioinformática, Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista 07006, Peru
| | - Carmen L Rodríguez-Cueva
- Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Christian Sánchez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Wilma Ursula Quispe-Rojas
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
7
|
Neffe L, Abendroth L, Bautsch W, Häussler S, Tomasch J. High plasmidome diversity of extended-spectrum beta-lactam-resistant Escherichia coli isolates collected during one year in one community hospital. Genomics 2022; 114:110368. [PMID: 35447310 DOI: 10.1016/j.ygeno.2022.110368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 04/09/2022] [Indexed: 01/14/2023]
Abstract
Plasmid-encoded antibiotic resistance encompasses many classes of currently used antibiotics. In globally distributed Escherichia coli lineages plasmids, which spread via horizontal gene transfer, are responsible for the dissemination of genes encoding extended-spectrum β-lactamases (ESBL). In this study, we combined 2nd and 3rd generation sequencing techniques to reconstruct the plasmidome of overall 97 clinical ESBL-E. coli isolates. Our results highlight the enormous plasmid diversity in respect to size, replicon-type and genetic content. Furthermore, we emphasize the diverse plasmid distribution patterns among the clinical isolates and the high intra- and extracellular mobility potential of resistance conferring genes. While the majority of resistance conferring genes were located on large plasmids of known replicon type, small cryptic plasmids seem to be underestimated resistance gene vectors. Our results contribute to a better understanding of the dissemination of resistance-conferring genes through horizontal gene transfer as well as clonal spread.
Collapse
Affiliation(s)
- Lisa Neffe
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Abendroth
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, Hannover, Germany; Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30265 Hannover, Germany.
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Wang H, Zhang L, Cao L, Zeng X, Gillespie B, Lin J. Isolation and characterization of Escherichia albertii originated from the broiler farms in Mississippi and Alabama. Vet Microbiol 2022; 267:109379. [PMID: 35219009 DOI: 10.1016/j.vetmic.2022.109379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Escherichia albertii is an emerging foodborne enteropathogen with increasing outbreaks worldwide, particularly in Japan recently. However, major features of this zoonotic pathogen, such as prevalence, virulence, and antibiotic resistance (AR), still remain under characterized. In a recent pilot study, we reported isolation of E. albertii from a chicken farm in Tennessee, suggesting chicken is an important reservoir for E. albertii. In this large-scale study, we examined prevalence of E. albertii in 9 farms in Mississippi and Alabama. Of a total of 270 cloacal swabs (30 per farm), 43 were PCR positive and 12 E. albertii strains were isolated with different isolation rates in individual farms ranging from 0 to 23.3 %. Both PFGE and whole genome analysis showed the E. albertii from different farms were phylogenetically distant, but those from the same farm displayed clonal relationships. Consistently, the antibiogram, AR gene profiles, and plasmid replicon types were similar across the strains in the same farm. Notably, 9 of the 12 E. albertii strains displayed multidrug resistance; one strain was even resistant to imipenem, a clinically important carbapenem antibiotic. In addition, comparative genomics analysis showed that two chicken E. albertii clusters displayed very close evolutionary relationships and similar virulence gene profiles to human E. albertii strains. In vitro growth assay demonstrated that the anti-enterobactin antibodies could dramatically inhibit the growth of two representative chicken E. albertii, supporting the feasibility of the novel enterobactin-based immune intervention for controlling this emerging pathogen. Taken together, the findings from this study further indicated chickens as an important reservoir for E. albertii in the U.S., highlighting the need to prevent and control E. albertii in poultry production.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Liu Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Barbara Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Shaheen A, Tariq A, Iqbal M, Mirza O, Haque A, Walz T, Rahman M. Mutational Diversity in the Quinolone Resistance-Determining Regions of Type-II Topoisomerases of Salmonella Serovars. Antibiotics (Basel) 2021; 10:antibiotics10121455. [PMID: 34943668 PMCID: PMC8698434 DOI: 10.3390/antibiotics10121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/24/2023] Open
Abstract
Quinolone resistance in bacterial pathogens has primarily been associated with mutations in the quinolone resistance-determining regions (QRDRs) of bacterial type-II topoisomerases, which are DNA gyrase and topoisomerase IV. Depending on the position and type of the mutation (s) in the QRDRs, bacteria either become partially or completely resistant to quinolone. QRDR mutations have been identified and characterized in Salmonella enterica isolates from around the globe, particularly during the last decade, and efforts have been made to understand the propensity of different serovars to carry such mutations. Because there is currently no thorough analysis of the available literature on QRDR mutations in different Salmonella serovars, this review aims to provide a comprehensive picture of the mutational diversity in QRDRs of Salmonella serovars, summarizing the literature related to both typhoidal and non-typhoidal Salmonella serovars with a special emphasis on recent findings. This review will also discuss plasmid-mediated quinolone-resistance determinants with respect to their additive or synergistic contributions with QRDR mutations in imparting elevated quinolone resistance. Finally, the review will assess the contribution of membrane transporter-mediated quinolone efflux to quinolone resistance in strains carrying QRDR mutations. This information should be helpful to guide the routine surveillance of foodborne Salmonella serovars, especially with respect to their spread across countries, as well as to improve laboratory diagnosis of quinolone-resistant Salmonella strains.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
- Correspondence: (A.S.); (M.R.); Tel.: +92-53-3643112-187 (A.S.); +92-42-35953122 (M.R.)
| | - Anam Tariq
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.T.); (M.I.)
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.T.); (M.I.)
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Abdul Haque
- Human Infectious Diseases Group, Akhuwat First University, Faisalabad 38000, Pakistan;
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA;
| | - Moazur Rahman
- School of Biological Sciences, Quaid-I-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (A.S.); (M.R.); Tel.: +92-53-3643112-187 (A.S.); +92-42-35953122 (M.R.)
| |
Collapse
|
10
|
Tate H, Li C, Nyirabahizi E, Tyson GH, Zhao S, Rice-Trujillo C, Jones SB, Ayers S, M’ikanatha NM, Hanna S, Ruesch L, Cavanaugh ME, Laksanalamai P, Mingle L, Matzinger SR, McDermott PF. A National Antimicrobial Resistance Monitoring System Survey of Antimicrobial-Resistant Foodborne Bacteria Isolated from Retail Veal in the United States. J Food Prot 2021; 84:1749-1759. [PMID: 34015113 PMCID: PMC11586651 DOI: 10.4315/jfp-21-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Little is known about the prevalence of antimicrobial-resistant (AMR) bacteria in veal meat in the United States. We estimated the prevalence of bacterial contamination and AMR in various veal meats collected during the 2018 U.S. National Antimicrobial Resistance Monitoring System (NARMS) survey of retail outlets in nine states and compared the prevalence with the frequency of AMR bacteria from other cattle sources sampled for NARMS. In addition, we identified genes associated with resistance to medically important antimicrobials and gleaned other genetic details about the resistant organisms. The prevalence of Campylobacter, Salmonella, Escherichia coli, and Enterococcus in veal meats collected from grocery stores in nine states was 0% (0 of 358), 0.6% (2 of 358), 21.1% (49 of 232), and 53.5% (121 of 226), respectively, with ground veal posing the highest risk for contamination. Both Salmonella isolates were resistant to at least one antimicrobial agent as were 65.3% (32 of 49) of E. coli and 73.6% (89 of 121) of Enterococcus isolates. Individual drug and multiple drug resistance levels were significantly higher (P < 0.05) in E. coli and Enterococcus from retail veal than in dairy cattle ceca and retail ground beef samples from 2018 NARMS data. Whole genome sequencing was conducted on select E. coli and Salmonella from veal. Cephalosporin resistance (blaCMY and blaCTX-M), macrolide resistance (mph), and plasmid-mediated quinolone resistance (qnr) genes and gyrA mutations were found. We also identified heavy metal resistance genes ter, ars, mer, fieF, and gol and disinfectant resistance genes qac and emrE. An stx1a-containing E. coli was also found. Sequence types were highly varied among the nine E. coli isolates that were sequenced. Several plasmid types were identified in E. coli and Salmonella, with the majority (9 of 11) of isolates containing IncF. This study illustrates that veal meat is a carrier of AMR bacteria. HIGHLIGHTS
Collapse
Affiliation(s)
- Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Epiphanie Nyirabahizi
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Crystal Rice-Trujillo
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Sonya Bodeis Jones
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Sherry Ayers
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Nkuchia M. M’ikanatha
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, 7 and Forster Streets, Harrisburg, PA 17120
| | - Samir Hanna
- Tennessee Department of Health, 710 James Robertson Parkway, Nashville, TN 37243
| | - Laura Ruesch
- Animal Disease Research and Diagnostic Lab, South Dakota State University, Brookings, SD 57007
| | | | - Pongpan Laksanalamai
- Laboratories Administration, Maryland Department of Health, 1770 Ashland Ave., Baltimore, MD 21205
| | - Lisa Mingle
- Wadsworth Center Division of Infectious Diseases, New York State Department of Health, Albany, NY 12208
| | - Shannon R. Matzinger
- Colorado Department of Public Health and Environment, 8100 Lowry Boulevard, Denver, CO 80230
| | - Patrick F. McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| |
Collapse
|
11
|
Kagambèga A, Belem S, McMillan EA, Hiott LM, Ramadan H, Soro DK, Sharma P, Gupta SK, Barro N, Jackson CR, Frye JG. Genome analysis of Salmonella strains isolated from imported frozen fish in Burkina Faso. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Fish is an excellent source of protein and vitamins for humans, but improperly handled, fish can expose consumers to pathogenic bacteria. This study was aimed to isolate and characterize the genomes of Salmonella strains isolated from imported fish sold in the open market in Ouagadougou.
Methods
One hundred and fifty-nine fish were collected from open markets and were cultured for Salmonella. Antimicrobial susceptibility was determined by broth microdilution. Whole-genome sequencing was done to further study antibiotic resistance genes, plasmid replicons, and MSLT types. Serotyping was done using SeqSero 2.
Result
Out of the 159 fish samples analyzed, 30 (18.9%) were found to be contaminated with Salmonella. Among the isolated Salmonella strains, six different serotypes, Nima, Liverpool, Kokomlemle, Teshie, Derby, and Tennessee, were found using SeqSero2. Salmonella Tennessee was the predominant serotype. All the isolates possessed at least one resistance gene. The aac6-Iaa aminoglycoside resistance gene was the most prevalent gene found in the strains. The gene fosA7 was detected in three strains. All the S. Nima isolates were of Multilocus Sequence Type (MLST) 8086, S. Teshie isolate was ST 530; Liverpool was ST 1959; Derby was ST 7880; Kokomlemle was ST 2696. The Tennessee isolates gave two different STs including ST 8395 and 8398.
Conclusion
The presented results highlight the prevalence of Salmonella on imported fish purchased from the open markets. More attention should be paid regarding fish selling conditions in the country to prevent the potential health risk for consumers.
Collapse
|
12
|
Jibril AH, Okeke IN, Dalsgaard A, Menéndez VG, Olsen JE. Genomic Analysis of Antimicrobial Resistance and Resistance Plasmids in Salmonella Serovars from Poultry in Nigeria. Antibiotics (Basel) 2021; 10:99. [PMID: 33498344 PMCID: PMC7909428 DOI: 10.3390/antibiotics10020099] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance is a global public health concern, and resistance genes in Salmonella, especially those located on mobile genetic elements, are part of the problem. This study used phenotypic and genomic methods to identify antimicrobial resistance and resistance genes, as well as the plasmids that bear them, in Salmonella isolates obtained from poultry in Nigeria. Seventy-four isolates were tested for susceptibility to eleven commonly used antimicrobials. Plasmid reconstruction and identification of resistance and virulence genes were performed with a draft genome using in silico approaches in parallel with plasmid extraction. Phenotypic resistance to ciprofloxacin (50.0%), gentamicin (48.6%), nalidixic acid (79.7%), sulphonamides (71.6%) and tetracycline (59.5%) was the most observed. Antibiotic resistance genes (ARGs) detected in genomes corresponded well with these observations. Commonly observed ARGs included sul1, sul2, sul3, tet (A), tet (M), qnrS1, qnrB19 and a variety of aminoglycoside-modifying genes, in addition to point mutations in the gyrA and parC genes. Multiple ARGs were predicted to be located on IncN and IncQ1 plasmids of S. Schwarzengrund and S. Muenster, and most qnrB19 genes were carried by Col (pHAD28) plasmids. Seventy-two percent (19/24) of S. Kentucky strains carried multidrug ARGs located in two distinct variants of Salmonella genomic island I. The majority of strains carried full SPI-1 and SPI-2 islands, suggesting full virulence potential.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto 234840, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan 234200, Nigeria;
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Vanesa García Menéndez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
| |
Collapse
|
13
|
Moreno-Switt AI, Pezoa D, Sepúlveda V, González I, Rivera D, Retamal P, Navarrete P, Reyes-Jara A, Toro M. Corrigendum: Transduction as a Potential Dissemination Mechanism of a Clonal qnrB19-Carrying Plasmid Isolated From Salmonella of Multiple Serotypes and Isolation Sources. Front Microbiol 2020; 11:547. [PMID: 32318037 PMCID: PMC7155417 DOI: 10.3389/fmicb.2020.00547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2019.02503.].
Collapse
Affiliation(s)
- Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - David Pezoa
- Facultad de Ciencias, Escuela de Medicina Veterinaria, Universidad Mayor, Santiago, Chile
| | - Vanessa Sepúlveda
- Facultad de Ciencias, Escuela de Medicina Veterinaria, Universidad Mayor, Santiago, Chile
| | - Iván González
- Facultad de Ciencias, Escuela de Medicina Veterinaria, Universidad Mayor, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Patricio Retamal
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Magaly Toro
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Moreno-Switt AI, Pezoa D, Sepúlveda V, González I, Rivera D, Retamal P, Navarrete P, Reyes-Jara A, Toro M. Transduction as a Potential Dissemination Mechanism of a Clonal qnrB19-Carrying Plasmid Isolated From Salmonella of Multiple Serotypes and Isolation Sources. Front Microbiol 2019; 10:2503. [PMID: 31787939 PMCID: PMC6854032 DOI: 10.3389/fmicb.2019.02503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial resistance is an increasing problem worldwide, and Salmonella spp. resistance to quinolone was classified by WHO in the high priority list. Recent studies in Europe and in the US reported the presence of small plasmids carrying quinolone resistance in Enterobacteriaceae isolated from poultry and poultry products. The aims of this study were to identify and characterize plasmid-mediated quinolone resistance in Salmonella spp. and to investigate transduction as a possible mechanism associated to its dissemination. First, we assessed resistance to nalidixic acid and/or ciprofloxacin in 64 Salmonella spp. and detected resistance in eight of them. Genomic analyses determined that six isolates of different serotypes and sources carried an identical 2.7-kb plasmid containing the gene qnrB19 which confers quinolone resistance. The plasmid detected also has high identity with plasmids reported in the US, Europe, and South America. The presence of similar plasmids was later surveyed by PCR in a local Salmonella collection (n = 113) obtained from diverse sources: food (eggs), wild and domestic animals (pigs, horse, chicken), and human clinical cases. qnrB19-carrying plasmids were found in 8/113 Salmonella tested strains. A bioinformatics analysis including Chilean and previously described plasmids revealed over 95.0% of nucleotide identity among all the sequences obtained in this study. Furthermore, we found that a qnrB19-carrying plasmid can be transferred between Salmonella of different serotypes through a P22-mediated transduction. Altogether our results demonstrate that plasmid-mediated quinolone resistance (PMQR) is widespread in Salmonella enterica of different serotypes isolated from human clinical samples, wild and domestic animals, and food in Chile and suggest that transduction could be a plausible mechanism for its dissemination. The occurrence of these antimicrobial resistance elements in Salmonella in a widespread area is of public health and food safety concern, and it indicates the need for increased surveillance for the presence of these plasmids in Salmonella strains and to assess their actual impact in the rise and spread of quinolone resistance.
Collapse
Affiliation(s)
- Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - David Pezoa
- Facultad de Ciencias, Escuela de Medicina Veterinaria, Universidad Mayor, Santiago, Chile
| | - Vanessa Sepúlveda
- Facultad de Ciencias, Escuela de Medicina Veterinaria, Universidad Mayor, Santiago, Chile
| | - Iván González
- Facultad de Ciencias, Escuela de Medicina Veterinaria, Universidad Mayor, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Patricio Retamal
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Magaly Toro
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Circulation of Plasmids Harboring Resistance Genes to Quinolones and/or Extended-Spectrum Cephalosporins in Multiple Salmonella enterica Serotypes from Swine in the United States. Antimicrob Agents Chemother 2019; 63:AAC.02602-18. [PMID: 30745386 DOI: 10.1128/aac.02602-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Nontyphoidal Salmonella enterica (NTS) poses a major public health risk worldwide that is amplified by the existence of antimicrobial-resistant strains, especially those resistant to quinolones and extended-spectrum cephalosporins (ESC). Little is known on the dissemination of plasmids harboring the acquired genetic determinants that confer resistance to these antimicrobials across NTS serotypes from livestock in the United States. NTS isolates (n = 183) from U.S. swine clinical cases retrieved during 2014 to 2016 were selected for sequencing based on their phenotypic resistance to enrofloxacin (quinolone) or ceftiofur (3rd-generation cephalosporin). De novo assemblies were used to identify chromosomal mutations and acquired antimicrobial resistance genes (AARGs). In addition, plasmids harboring AARGs were identified using short-read assemblies and characterized using a multistep approach that was validated by long-read sequencing. AARGs to quinolones [qnrB15, qnrB19, qnrB2, qnrD, qnrS1, qnrS2, and aac(6')Ib-cr] and ESC (bla CMY-2, bla CTX-M-1, bla CTX-M-27, and bla SHV-12) were distributed across serotypes and were harbored by several plasmids. In addition, chromosomal mutations associated with resistance to quinolones were identified in the target enzyme and efflux pump regulation genes. The predominant plasmid harboring the prevalent qnrB19 gene was distributed across serotypes. It was identical to a plasmid previously reported in S. enterica serovar Anatum from swine in the United States (GenBank accession number KY991369.1) and similar to Escherichia coli plasmids from humans in South America (GenBank accession numbers GQ374157.1 and JN979787.1). Our findings suggest that plasmids harboring AARGs encoding mechanisms of resistance to critically important antimicrobials are present in multiple NTS serotypes circulating in swine in the United States and can contribute to resistance expansion through horizontal transmission.
Collapse
|
16
|
Soares FB, Camargo CH, Cunha MPV, de Almeida EA, Bertani AMDJ, de Carvalho E, de Paiva JB, Fernandes SA, Tiba-Casas MR. Subtyping of plasmid-mediated quinolone resistance among Salmonella serotypes by whole genome sequencing. Diagn Microbiol Infect Dis 2019; 94:403-406. [PMID: 30955894 DOI: 10.1016/j.diagmicrobio.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
Most known plasmids are identified by conferring virulence or antimicrobial resistance phenotypes and such characteristics aid in the success of the dispersion of different plasmid types between bacteria from different sources. This study aimed to perform the subtyping of the plasmid-mediated quinolone resistance, detected in Salmonella spp. A total of 34 Salmonella strains non-susceptible to ciprofloxacin were evaluated. Strains were selected based on the presence of PMQR determined by Polymerase Chain Reaction and further submitted to Next Generation Sequencing. Most of the strains presented the qnrB19 in small ColE-like plasmids and qnrB2 gene associated with IncN/ST5 plasmids also detected. Our results indicated the co-occurrence of PMQR and ESBLs in plasmids that are a lineage of epidemic plasmids circulating in Salmonella in which additional resistances were detected, highlighting the potential threat of resistance Salmonella to public health, particularly in infections in which antimicrobial therapy is needed.
Collapse
|
17
|
Heuvelink A, Wiegel J, Kehrenberg C, Dijkman R, Soriano-Vargas E, Feberwee A. Antimicrobial susceptibility of Avibacterium paragallinarum isolates from outbreaks of infectious coryza in Dutch commercial poultry flocks, 2008-2017. Vet Microbiol 2018; 217:135-143. [PMID: 29615246 DOI: 10.1016/j.vetmic.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/17/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022]
Abstract
The objective of the present study was to determine the in vitro antimicrobial susceptibility of Avibacterium paragallinarum isolates from infectious coryza outbreaks in Dutch commercial poultry, from 2008 till mid-2017. By using a broth microdilution method, minimal inhibitory concentrations (MICs) of 15 antimicrobial agents were assessed, and MIC50 and MIC90 values were determined. Additionally, isolates were subjected to different PCRs for the presence of genes that may confer antimicrobial resistance. Besides field isolates, a set of reference strains, among which the nine Kume strains and one Page serovar strain, were included in the study. For broth microdilution testing a new growth medium, recently developed for susceptibility testing of Haemophilus parasuis, was used. The medium proved to be suitable for broth microdilution susceptibility testing of NAD dependent Av. paragallinarum as well; visible growth was obtained in growth control wells and accepting a deviation of one dilution step, MIC values were reproducible. Results of 44 field isolates originating from 25 outbreaks showed relatively good susceptibility to antimicrobial agents that are recommended for the treatment of infectious coryza in the Netherlands, except for tetracycline; circa 75% of the isolates were characterized by MIC values of tetracycline of ≥16 μg/ml. In almost a quarter of these isolates with high MICs of tetracycline, tet genes were detected. For the remaining isolates with elevated MIC values, the mechanism conferring resistance remains to be studied. Of most agents, low MIC values were determined for the nine Kume and one Page serovar reference strains, as well as negative PCR results for resistance genes, being concordant with agar diffusion results reported for these strains.
Collapse
Affiliation(s)
- Annet Heuvelink
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands.
| | - Jeanine Wiegel
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands
| | - Corinna Kehrenberg
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Remco Dijkman
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands
| | - Edgardo Soriano-Vargas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Anneke Feberwee
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, The Netherlands
| |
Collapse
|