1
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
2
|
Vijayakumar S, Swetha RG, Bakthavatchalam YD, Vasudevan K, Abirami Shankar B, Kirubananthan A, Walia K, Ramaiah S, Biswas I, Veeraraghavan B, Anbarasu A. Genomic investigation unveils colistin resistance mechanism in carbapenem-resistant Acinetobacter baumannii clinical isolates. Microbiol Spectr 2024; 12:e0251123. [PMID: 38214512 PMCID: PMC10846133 DOI: 10.1128/spectrum.02511-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
Colistin resistance in Acinetobacter baumannii is mediated by multiple mechanisms. Recently, mutations within pmrABC two-component system and overexpression of eptA gene due to upstream insertion of ISAba1 have been shown to play a major role. Thus, the aim of our study is to characterize colistin resistance mechanisms among the clinical isolates of A. baumannii in India. A total of 207 clinical isolates of A. baumannii collected from 2016 to 2019 were included in this study. Mutations within lipid A biosynthesis and pmrABC genes were characterized by whole-genome shotgun sequencing. Twenty-eight complete genomes were further characterized by hybrid assembly approach to study insertional inactivation of lpx genes and the association of ISAba1-eptA. Several single point mutations (SNPs), like M12I in pmrA, A138T and A444V in pmrB, and E117K in lpxD, were identified. We are the first to report two novel SNPs (T7I and V383I) in the pmrC gene. Among the five colistin-resistant A. baumannii isolates where complete genome was available, the analysis showed that three of the five isolates had ISAba1 insertion upstream of eptA. No mcr genes were identified among the isolates. We mapped the SNPs on the respective protein structures to understand the effect on the protein activity. We found that majority of the SNPs had little effect on the putative protein function; however, some SNPs might destabilize the local structure. Our study highlights the diversity of colistin resistance mechanisms occurring in A. baumannii, and ISAba1-driven eptA overexpression is responsible for colistin resistance among the Indian isolates.IMPORTANCEAcinetobacter baumannii is a Gram-negative, emerging and opportunistic bacterial pathogen that is often associated with a wide range of nosocomial infections. The treatment of these infections is hindered by increase in the occurrence of A. baumannii strains that are resistant to most of the existing antibiotics. The current drug of choice to treat the infection caused by A. baumannii is colistin, but unfortunately, the bacteria started to show resistance to the last-resort antibiotic. The loss of lipopolysaccharides and mutations in lipid A biosynthesis genes are the main reasons for the colistin resistance. The present study characterized 207 A. baumannii clinical isolates and constructed complete genomes of 28 isolates to recognize the mechanisms of colistin resistance. We showed the mutations in the colistin-resistant variants within genes essential for lipid A biosynthesis and that cause these isolates to lose the ability to produce lipopolysaccharides.
Collapse
Affiliation(s)
- Saranya Vijayakumar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rayapadi G. Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | | | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - Baby Abirami Shankar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council for Medical Research, New Delhi, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas, USA
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Wang C, Zhang T, Wang Y, Wang Y, Pan H, Dong X, Liu S, Cao M, Wang S, Wang M, Li Y, Zhang J, Hu W. Proguanil and chlorhexidine augment the antibacterial activities of clarithromycin and rifampicin against Acinetobacter baumannii. Int J Antimicrob Agents 2024; 63:107065. [PMID: 38122947 DOI: 10.1016/j.ijantimicag.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The emergence of Acinetobacter baumannii infections as a significant healthcare concern in hospital settings, coupled with their association with poorer clinical outcomes, has prompted extensive investigation into novel therapeutic agents and innovative treatment strategies. Proguanil and chlorhexidine, both categorized as biguanide compounds, have displayed clinical efficacy as antimalarial and topical antibacterial agents, respectively. In this study, we conducted an investigation to assess the effectiveness of combining proguanil and chlorhexidine with clarithromycin or rifampicin against both laboratory strains and clinical isolates of A. baumannii. The combination therapy demonstrated rapid bactericidal activity against planktonic multidrug-resistant A. baumannii, exhibiting efficacy in eradicating mature biofilms and impeding the development of antibiotic resistance in vitro. Additionally, when administered in conjunction with clarithromycin or rifampicin, proguanil enhanced the survival rate of mice afflicted with intraperitoneal A. baumannii infections, and chlorhexidine expedited wound healing in mice with skin infections. These findings are likely attributable to the disruption of A. baumannii cell membrane integrity by proguanil and chlorhexidine, resulting in heightened membrane permeability and enhanced intracellular accumulation of clarithromycin and rifampicin. Overall, this study underscores the potential of employing proguanil and chlorhexidine in combination with specific antibiotics to effectively combat A. baumannii infections and improve treatment outcomes in clinically challenging scenarios.
Collapse
Affiliation(s)
- Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Dong
- School of Life Science, Shandong University, Qingdao, Shandong, China
| | - Siyu Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Meng Cao
- Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Jian Zhang
- School of Life Science, Shandong University, Qingdao, Shandong, China.
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Abbasi E, van Belkum A, Ghaznavi-Rad E. High frequency of carbapenemase in extensively drug-resistant Acinetobacter baumannii isolates in central Iran. World J Microbiol Biotechnol 2023; 39:321. [PMID: 37755552 DOI: 10.1007/s11274-023-03778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES We assessed the frequency of occurrence for infections caused by wild-type A. baumannii, multidrug-resistant (MDR) or XDR A. baumannii, and CRAB. We detected different antibiotic resistance genes in the genomes of infectious A. baumannii strains from central Iran. METHODS This study investigated 546 clinical patient samples for the presence of A. baumannii by using conventional culture methods and PCR. Antibiotic resistance profiles, and the phenotypic and genotypic characteristics of various antibiotic genes were analyzed. RESULTS Out of 546 samples, 87 (15.9%) A. baumannii isolates were obtained using culture and all culture positive samples were also positive by PCR. The most effective antibiotics were polymyxin B (n = 84 strains) (96.6% susceptibility), colistin (n = 81) (93.1%), and ampicillin/sulbactam (n = 18) (20.7%). All clinical A. baumannii isolates were ESBL-positive. The number of CRAB was 84 (96.5%). All CRAB isolates were both MDR and XDR. Of all CRAB isolates, 78 out of 84 (92.4%) produced metallo-β-lactamase (MBL) by phenotypic diagnosis. The most abundant genes were blaPER (32/87; 36.7%), blaTEM (29/87; 33.3%), blaVEB (26/87; 29.8%) for ESBL and Ambler class D β -lactamases included blaOXA-23 (69/84; 82.1%), blaOXA-24 (46/84; 54.7%), MBLs included blaVIM (51/84; 60.7%), and blaIMP (28/84; 33.3%) for carbapenemase. CONCLUSION High frequencies of XDR A. baumannii and CRAB (96.5%) were detected in central Iran. Quick and accurate diagnosis, appropriate isolation of patients colonized or infected by CRAB isolates, application of accurate and effective infection control policies and programs, and appropriate preventive measures are deemed helpful in preventing the further spread of these resistant and clinically highly relevant strains.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- , Khomein, Iran
| | | | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- , Arak, Iran.
| |
Collapse
|
5
|
Mobarak-Qamsari M, Jenaghi B, Sahebi L, Norouzi-Shadehi M, Salehi MR, Shakoori-Farahani A, Khoshnevis H, Abdollahi A, Feizabadi MM. Evaluation of Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus respiratory tract superinfections among patients with COVID-19 at a tertiary-care hospital in Tehran, Iran. Eur J Med Res 2023; 28:314. [PMID: 37660109 PMCID: PMC10474718 DOI: 10.1186/s40001-023-01303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND The emergence of healthcare-associated infections (HAIs) or superinfections in COVID-19 patients has resulted in poor prognosis and increased mortality. METHODS In a cross-sectional study, 101 respiratory samples were collected from ICU-admitted COVID-19 patients. The HAI rate, demographics, and antibiotic resistance were assessed. RESULTS The HAI rate was 83.16% (76.62% bacterial and 6.54% fungal). The prevalence of 3 major HAI-causing organisms included Klebsiella pneumoniae (41.5%), Acinetobacter baumannii (20.8%), and Staphylococcus aureus (4.9%). Mortality and intubation ventilation proportions of 90% (p = 0.027) and 92.2% (p = 0.02) were significant among patients with superinfection, respectively. Multiple logistic regression analysis showed SpO2 pressure (odds ratio 0.842; 95% CI 0.750-0.945; p = 0.004) as a predictive factor in the association between antibiotic usage and mortality. More than 50% of patients received carbapenems. The resistance rates to at least one antibiotic of third-generation cephalosporins, aminoglycosides, quinolones/fluoroquinolones, tetracyclines, and β-lactam inhibitors were 95.2%, 95.2%, 90%, 57.1%, and 100% among A. baumannii isolates and 71.4%, 55%, 69%, 61.9%, and 59.5% among K. pneumoniae isolates, respectively. A proportion of 60% was recorded for methicillin-resistant S. aureus isolates. CONCLUSION As a result, antibiotic treatment should be administered following the microbial resistance profile. Contact isolation and infection control measures should be implemented as needed.
Collapse
Affiliation(s)
- Maryam Mobarak-Qamsari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Jenaghi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sahebi
- Family Health Research Institute. Maternal, Fetal, and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Norouzi-Shadehi
- Department of Infectious Disease, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Salehi
- Department of Infectious Diseases, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori-Farahani
- Department of Medical Genetics, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Khoshnevis
- Imam Khomeini Hospital Complex, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Thorax Research Center, Imam Khomeini Hospital Complex., Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zafer MM, Hussein AFA, Al-Agamy MH, Radwan HH, Hamed SM. Retained colistin susceptibility in clinical Acinetobacter baumannii isolates with multiple mutations in pmrCAB and lpxACD operons. Front Cell Infect Microbiol 2023; 13:1229473. [PMID: 37600939 PMCID: PMC10436201 DOI: 10.3389/fcimb.2023.1229473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
The progressive increase in the resistance rates to first- and second-line antibiotics has forced the reuse of colistin as last-line treatment for Acinetobacter baumannii infections, but the emergence of colistin-resistant strains is not uncommon. This has been long linked to acquired chromosomal mutations in the operons pmrCAB and lpxACD. Hence, such mutations are routinely screened in colistin-resistant strains by most studies. The current study was designed to explore the possible existence of pmrCAB and lpxACD mutations in colistin-susceptible isolates. For this purpose, the whole genome sequences of eighteen multi-/extensively drug resistant A. baumannii were generated by Illumina sequencing and screened for missense mutations of the operons pmrCAB and lpxACD. Most of the isolates belonged to global clones (GCs) including GC1 (n=2), GC2 (n=7), GC7 (n=2), GC9 (n=3), and GC11 (n=1). The minimum inhibitory concentrations (MICs) of colistin were determined by the broth microdilution assay. Seventeen isolates were fully susceptible to colistin with MICs ranging from (≤0.125 to 0.5 µg/ml). Interestingly, all colistin-susceptible isolates carried missense mutations in pmrCAB and lpxACD operons with reference to A. baumannii ATCC 19606. Overall, 34 mutations were found. Most substitutions were detected in pmrC (n=20) while no mutations were found in pmrA or lpxA. Notably, the mutation pattern of the two operons was almost conserved among the isolates that belonged to the same sequence type (ST) or GC. This was also confirmed by expanding the analysis to include A. baumannii genomes deposited in public databases. Here, we demonstrated the possible existence of missense mutations in pmrCAB and lpxACD operons in colistin-susceptible isolates, shedding light on the importance of interpreting mutations with reference to colistin-susceptible isolates of the same ST/GC to avoid the misleading impact of the ST/GC-related polymorphism. In turn, this may lead to misinterpretation of mutations and, hence, overlooking the real players in colistin resistance that are yet to be identified.
Collapse
Affiliation(s)
- Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Amira F. A. Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Faculty of Applied Health Science, Galala University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
| |
Collapse
|
7
|
Seethalakshmi PS, Rajeev R, Prabhakaran A, Kiran GS, Selvin J. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiol Res 2023; 270:127316. [PMID: 36812837 DOI: 10.1016/j.micres.2023.127316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
8
|
Colistin Resistance in Acinetobacter baumannii: Molecular Mechanisms and Epidemiology. Antibiotics (Basel) 2023; 12:antibiotics12030516. [PMID: 36978383 PMCID: PMC10044110 DOI: 10.3390/antibiotics12030516] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Acinetobacter baumannii is recognized as a clinically significant pathogen causing a wide spectrum of nosocomial infections. Colistin was considered a last-resort antibiotic for the treatment of infections caused by multidrug-resistant A. baumannii. Since the reintroduction of colistin, a number of mechanisms of colistin resistance in A. baumannii have been reported, including complete loss of LPS by inactivation of the biosynthetic pathway, modifications of target LPS driven by the addition of phosphoethanolamine (PEtN) moieties to lipid A mediated by the chromosomal pmrCAB operon and eptA gene-encoded enzymes or plasmid-encoded mcr genes and efflux of colistin from the cell. In addition to resistance to colistin, widespread heteroresistance is another feature of A. baumannii that leads to colistin treatment failure. This review aims to present a critical assessment of relevant published (>50 experimental papers) up-to-date knowledge on the molecular mechanisms of colistin resistance in A. baumannii with a detailed review of implicated mutations and the global distribution of colistin-resistant strains.
Collapse
|
9
|
Mobarak Qamsari M, Sahebi L, Salehi MR, Labbani-Motlagh Z, Shavandi M, Alijani N, Amini S, Sefidbakht S, Feizabadi MM. Respiratory Bacterial and Fungal Superinfections During the Third Surge of the COVID-19 Pandemic in Iran. Microb Drug Resist 2023; 29:104-111. [PMID: 36603057 DOI: 10.1089/mdr.2022.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective: We characterized bacterial and fungal superinfection and evaluated the antimicrobial resistance profile against the most common superinfection-causing pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus). Methods: In a cross-sectional study, 192 respiratory samples were collected from patients with and without SARS-COV-2 admitted to a teaching hospital in Tehran. Superinfection proportions and the antibiotic resistance profile were assessed and compared with demographic, comorbidities, and other clinical factors. Results: Superinfection rate was 60% among COVID-19 patients (p = 0.629). Intensive care unit admission (p = 0.017), mortality rate (p ≤ 0.001), and antiviral and corticosteroid therapy (p ≤ 0.001) were significantly more common among patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). The most common superinfections were caused by K. pneumoniae (42.7%, 82/192), A. baumannii (14.6%, 28/192), and S. aureus (13%, 25/192). A. baumannii isolates exhibited greater antibiotic resistance. Forty-four percent (11/25) of S. aureus isolates were cefoxitin resistant and also confirmed as methicillin-resistant S. aureus by PCR. Conclusion: The rise of difficult-to-treat infections with a high burden of antibiotic resistance, coupled with an increase in mortality rate of SARS-COV-2 superinfected individuals, illustrates the impact of the COVID-19 pandemic on antimicrobial resistance. Post-pandemic antimicrobial resistance crisis management requires precise microbiological diagnosis, drug susceptibility testing, and prescription of antimicrobials appropriate for the patient's condition.
Collapse
Affiliation(s)
- Maryam Mobarak Qamsari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sahebi
- Family Health Research Institute, Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reaz Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohre Labbani-Motlagh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Shavandi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Alijani
- Department of Infectious Disease, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahideh Amini
- Department of Pulmonary and Critical Care, and Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salma Sefidbakht
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Thoracic Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Overcoming addition of phosphoethanolamine to lipid A mediated colistin resistance in Acinetobacter baumannii clinical isolates with colistin–sulbactam combination therapy. Sci Rep 2022; 12:11390. [PMID: 35794134 PMCID: PMC9259700 DOI: 10.1038/s41598-022-15386-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
Overcoming colistin-resistant Acinetobacter baumannii (CoR-AB) has become a major concern due to the lack of effective antibiotics. This study aimed to explore the prevalence of CoR-AB clinical isolates in Thailand, their mechanisms of resistance, and test the efficacy of colistin plus sulbactam against CoR-AB isolates. The colistin resistance rate among carbapenem-resistant A. baumannii was 15.14%. The mcr gene or its variants were not detected in CoR-AB isolates by PCR screening. The lipid A mass spectra of CoR-AB isolates showed the additional [M–H]− ion peak at m/z = 2034 that correlated to the phosphoethanolamine (pEtN) addition to lipid A (N = 27/30). The important amino acid substitutions were found at position S14P, A138T, A227V in PmrB that are associated with overexpression of the pEtN transferase (PmrC) and contributed the pEtN addition. The lipopolysacccharide production genes (lpxACD) were not related to lipid A mass spectra. A colistin plus sulbactam combination exhibited the synergy rate at 86.7% against CoR-AB isolates compare to sulbactam (85.89% resistance) or colistin (15.14% resistance) alone. The excellent synergistic activity of colistin plus sulbactam combination has the potential for the treatment of CoR-AB infections.
Collapse
|
11
|
Borges Duarte DF, Gonçalves Rodrigues A. Acinetobacter baumannii: insights towards a comprehensive approach for the prevention of outbreaks in health-care facilities. APMIS 2022; 130:330-337. [PMID: 35403751 DOI: 10.1111/apm.13227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is known to be an opportunistic pathogen frequently responsible for outbreaks in health-care facilities, particularly in Intensive Care Units (ICU). It can easily survive in the hospital setting for long periods and can be transmitted throughout the hospital in a variety of ways, explored in this review. It can also easily acquire antibiotic resistance determinants rendering several antibiotic drugs useless. In 2019, the US Centre for Disease Control (CDC) considered the organism as an urgent threat. The aim of this review was to raise the awareness of the medical community about the relevance of this pathogen and discuss how it may impact seriously the healthcare institutions particularly in the aftermath of the recent COVID-19 pandemic. PubMed was searched, and articles that met inclusion criteria were reviewed. We conclude by the need to raise awareness to this pathogen's relevance and to encourage the implementation of preventive measures in order to mitigate its consequences namely the triage of specific high-risk patients.
Collapse
Affiliation(s)
- Diogo Filipe Borges Duarte
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Acácio Gonçalves Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,RISE - Health Research Network, Porto, Portugal.,Burn Unit, Department of Plastic and Reconstructive Surgery, S. Joao University Center Hospital, Porto, Portugal
| |
Collapse
|
12
|
Khoshbayan A, Shariati A, Razavi S, Baseri Z, Ghodousi A, Darban-Sarokhalil D. Mutation in mgrB is the major colistin resistance mechanism in Klebsiella pneumoniae clinical isolates in Tehran, Iran. Acta Microbiol Immunol Hung 2022; 69:61-67. [PMID: 35113039 DOI: 10.1556/030.2022.01679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Colistin is considered as one of a last resort antimicrobial agent against multidrug-resistant Gram-negative bacteria including Escherichia coli and Klebsiella pneumoniae. However, the recent emergence of colistin resistance (ColR) worldwide that severely restricts therapeutic options is a serious threat to global public health. In this study we have investigated the molecular determinants in ColR K. pneumoniae isolates collected from clinical specimens. A total of 98 E. coli and 195 K. pneumoniae clinical isolates were collected from two hospitals from August 2018 to December 2019 in Tehran, Iran. Colistin susceptibility and minimum inhibitory concentrations (MIC) were determined according to the Clinical and Laboratory Standards Institute by disk diffusion method, and microdilution method, respectively. For isolates with colistin MIC ≥4 μg mL-1, PCR was performed for the detection of mcr-1 to mcr-4 genes. Moreover, nucleotide sequences of mgrB, phoP, phoQ, pmrA, and pmrB genes were determined by sequencing. Finally, the transcriptional level of pmrK and pmrC genes was evaluated by quantitative reverse transcription PCR (RT-qPCR). None of the E. coli isolates were resistant to colistin while 21 out 195 K. pneumoniae isolates were identified as resistant, 19 of which carried mutation in the mgrB gene. Three different mutations were observed in the pmrB gene in 3 K. pneumoniae isolates. None of the ColR isolates showed alternations in pmrA, phoP, and phoQ genes. Furthermore, none of the plasmid-encoding genes were detected. Transcriptional level of the pmrK gene increased in all ColR isolates meanwhile, pmrC overexpression was detected in 16 out 21 (76.19%) isolates. Eventually, all ColR isolates were susceptible to tigecycline. Our results demonstrated that the alternation of mgrB gene is the main mechanism related to colistin resistance among ColR K. pneumoniae isolates in this study.
Collapse
Affiliation(s)
- Amin Khoshbayan
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- 2 Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Shabnam Razavi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Baseri
- 3 Department of Pathology and Laboratory Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Ghodousi
- 4 Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Davood Darban-Sarokhalil
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zafer MM, Hussein AFA, Al-Agamy MH, Radwan HH, Hamed SM. Genomic Characterization of Extensively Drug-Resistant NDM-Producing Acinetobacter baumannii Clinical Isolates With the Emergence of Novel bla ADC-257. Front Microbiol 2021; 12:736982. [PMID: 34880837 PMCID: PMC8645854 DOI: 10.3389/fmicb.2021.736982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii has become a major challenge to clinicians worldwide due to its high epidemic potential and acquisition of antimicrobial resistance. This work aimed at investigating antimicrobial resistance determinants and their context in four extensively drug-resistant (XDR) NDM-producing A. baumannii clinical isolates collected between July and October 2020 from Kasr Al-Ainy Hospital, Cairo, Egypt. A total of 20 A. baumannii were collected and screened for acquired carbapenemases (blaNDM, blaVIM and blaIMP) using PCR. Four NDM producer A. baumannii isolates were identified and selected for whole-genome sequencing, in silico multilocus sequence typing, and resistome analysis. Antimicrobial susceptibility profiles were determined using disk diffusion and broth microdilution tests. All blaNDM-positive A. baumannii isolates were XDR. Three isolates belonged to high-risk international clones (IC), namely, IC2 corresponding to ST570Pas/1701Oxf (M20) and IC9 corresponding to ST85Pas/ST1089Oxf (M02 and M11). For the first time, we report blaNDM-1 gene on the chromosome of an A. baumannii strain that belongs to sequence type ST164Pas/ST1418Oxf. Together with AphA6, blaNDM-1 was bracketed by two copies of ISAba14 in ST85Pas isolates possibly facilitating co-transfer of amikacin and carbapenem resistance. A novel blaADC allele (blaADC-257) with an upstream ISAba1 element was identified in M19 (ST/CC164Pas and ST1418Oxf/CC234Oxf). blaADC genes harbored by M02 and M11 were uniquely interrupted by IS1008. Tn2006-associated blaOXA-23 was carried by M20. blaOXA-94 genes were preceded by ISAba1 element in M02 and M11. AbGRI3 was carried by M20 hosting the resistance genes aph(3`)-Ia, aac(6`)-Ib`, catB8, ant(3``)-Ia, sul1, armA, msr(E), and mph(E). Nonsynonymous mutations were identified in the quinolone resistance determining regions (gyrA and parC) of all isolates. Resistance to colistin in M19 was accompanied by missense mutations in lpxACD and pmrABC genes. The current study provided an insight into the genomic background of XDR phenotype in A. baumannii recovered from patients in Egypt. WGS revealed strong association between resistance genes and diverse mobile genetic elements with novel insertion sites and genetic organizations.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Amira F A Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
14
|
Nogbou ND, Nkawane GM, Ntshane K, Wairuri CK, Phofa DT, Mokgokong KK, Ramashia M, Nchabeleng M, Obi LC, Musyoki AM. Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa. Int J Microbiol 2021; 2021:9923816. [PMID: 34659419 PMCID: PMC8516574 DOI: 10.1155/2021/9923816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) has developed several resistance mechanisms. The bacteria have been reported as origin of multiple outbreaks. This study aims to investigate the use of efflux pumps and quinolone resistance-associated genotypic mutations as mechanisms of resistance in A. baumannii isolates at a tertiary hospital. A total number of 103 A. baumannii isolates were investigated after identification and antimicrobial susceptibility testing by VITEK2 followed by PCR amplification of bla OXA-51 . Conventional PCR amplification of the AdeABC efflux pump (adeB, adeS, and adeR) and quinolone (parC and gyrA) resistance genes were performed, followed by quantitative real-time PCR of AdeABC efflux pump genes. Phenotypic evaluation of efflux pump expression was performed by determining the difference between the MIC of tigecycline before and after exposure to an efflux pump inhibitor. The Sanger sequencing method was used to sequence the parC and gyrA amplicons. A phylogenetic tree was drawn using MEGA 4.0 to evaluate evolutionary relatedness of the strains. All the collected isolates were bla OXA-51 -positive. High resistance to almost all the tested antibiotics was observed. Efflux pump was found in 75% of isolates as a mechanism of resistance. The study detected parC gene mutation in 60% and gyrA gene mutation in 85%, while 37% of isolates had mutations on both genes. A minimal evolutionary distance between the isolates was reported. The use of the AdeABC efflux pump system as an active mechanism of resistance combined with point mutation mainly in gyrA was shown to contribute to broaden the resistance spectrum of A. baumannii isolates.
Collapse
Affiliation(s)
- Noel-David Nogbou
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Granny M. Nkawane
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Khanyisa Ntshane
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Charles K. Wairuri
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Dikwata T. Phofa
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Kagiso K. Mokgokong
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Mbudzeni Ramashia
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Maphoshane Nchabeleng
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Microbiology Unit, National Health Laboratory Services, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - Lawrence C. Obi
- School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Andrew M. Musyoki
- Department of Microbiological Pathology, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
15
|
Khoshbayan A, Shariati A, Shahmoradi S, Baseri Z, Mozafari H, Darban-Sarokhalil D. Prevalence and molecular mechanisms of colistin resistance in Acinetobacter baumannii clinical isolates in Tehran, Iran. Acta Microbiol Immunol Hung 2021. [PMID: 34370684 DOI: 10.1556/030.2021.01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023]
Abstract
Colistin is one of the last remaining active antibiotics against multidrug resistant Gram-negative bacteria. However, several recent studies reported colistin-resistant (ColR) Acinetobacter baumannii from different countries. In the current study, we investigated molecular mechanisms involved in colistin resistance in A. baumannii isolates from different clinical samples.A total of 110 clinical A. baumannii isolates were collected from two hospitals in Tehran. Minimum inhibitory concentrations (MICs) were determined by broth microdilution according to the Clinical and Laboratory Standards Institute. For the ColR isolates, mutation was detected in pmrA, pmrB, lpxA, lpxC, and lpxD genes using the polymerase chain reaction (PCR) and sequencing. Moreover, the relative expression of the pmrC gene was calculated using quantitative reverse transcription PCR. Three colistin resistant isolates were identified with MIC between 8 and 16 μg/mL and were resistant to all the tested antimicrobial agents. All the three isolates had a mutation in the pmrB, pmrA, lpxA, lpxD, and lpxC genes. Moreover, the overexpression of pmrC gene was observed in all isolates. Our results showed that the upregulation of the PmrAB two component system was the primary mechanism linked to colistin resistance among the studied colistin resistant A. baumannii isolates.
Collapse
Affiliation(s)
- Amin Khoshbayan
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Shahmoradi
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Baseri
- 2Department of Pathology and Laboratory Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Mozafari
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Sevilla E, Vico JP, Delgado-Blas JF, González-Zorn B, Marín CM, Uruén C, Martín-Burriel I, Bolea R, Mainar-Jaime RC. Resistance to colistin and production of extended-spectrum β-lactamases and/or AmpC enzymes in Salmonella isolates collected from healthy pigs in Northwest Spain in two periods: 2008-2009 and 2018. Int J Food Microbiol 2020; 338:108967. [PMID: 33243630 DOI: 10.1016/j.ijfoodmicro.2020.108967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023]
Abstract
Salmonellosis is a common subclinical infection in pigs and therefore apparently healthy animals may represent a reservoir of antibiotic-resistant Salmonella for humans. This study estimates and characterizes resistance to two classes of antimicrobials considered of the highest priority within the critically important antimicrobials for humans, i.e. colistin (CR) and 3rd generation cephalosporins (3GC), on a collection of Salmonella isolates from pigs from two periods: between 2008 and 09, when colistin was massively used; and in 2018, after three years under a National Plan against Antibiotic Resistance. Prevalence of CR was low (6 out of 625; 0.96%; 95%CI: 0.44-2.1) in 2008-09 and associated mostly to the mcr-1 gene, which was detected in four S. 4,5,12:i:- isolates. Polymorphisms in the pmrAB genes were detected in a S. 9,12:-:- isolate. No CR was detected in 2018 out of 59 isolates tested. Among 270 Salmonella isolates considered for the assessment of resistance to 3GC in the 2008-2009 sampling, only one Salmonella Bredeney (0.37%; 95%CI: 0.07-2.1) showed resistance to 3GC, which was associated with the blaCMY-2 gene (AmpC producer). In 2018, six isolates out of 59 (10.2%; 95%CI: 4.7-20.5) showed resistance to 3GC, but only two different strains were identified (S. 4,12:i:- and S. Rissen), both confirmed as extended-spectrum β-lactamases (ESBL) producers. The blaCTX-M-3 and blaTEM-1b genes in S. 4,12:i:- and the blaTEM-1b gene in S. Rissen seemed to be associated with this resistance. Overall, the prevalence of CR in Salmonella appeared to be very low in 2008-2009 despite the considerable use of colistin in pigs at that time, and seemed to remain so in 2018. Resistance to 3GC was even lower in 2008-2009 but somewhat higher in 2018. Resistance was mostly coded by genes associated with mobile genetic elements. Most serotypes involved in these antimicrobial resistances displayed a multidrug resistance pattern and were considered zoonotic.
Collapse
Affiliation(s)
- Eloísa Sevilla
- Dpto. de Patología Animal y, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Juan P Vico
- IRNASUS-CONICET-Universidad Católica de Córdoba, Córdoba, Argentina
| | - José F Delgado-Blas
- Dpto. de Sanidad Animal y Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno González-Zorn
- Dpto. de Sanidad Animal y Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Clara M Marín
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (IA2), Zaragoza, Spain
| | - Cristina Uruén
- Dpto. de Patología Animal y, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rosa Bolea
- Dpto. de Patología Animal y, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Raúl C Mainar-Jaime
- Dpto. de Patología Animal y, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
17
|
Lunha K, Thet KT, Ngudsuntia A, Charoensri N, Lulitanond A, Tavichakorntrakool R, Wonglakorn L, Faksri K, Chanawong A. PmrB mutations including a novel 10-amino acid repeat sequence insertion associated with low-level colistin resistance in carbapenem-resistant Acinetobacter baumannii. INFECTION GENETICS AND EVOLUTION 2020; 85:104577. [PMID: 33007498 DOI: 10.1016/j.meegid.2020.104577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
The global emergence of colistin resistance in carbapenem-resistant Acinetobacter baumannii (CRAB) clinical isolates is a serious public health concern. We therefore aimed to investigate colistin resistance mechanisms in 5 colistin-resistant (COL-R) CRAB isolates collected from Thai patients in 2016 by whole genome sequencing (WGS) compared with those of 5 colistin-intermediate (COL-I) CRAB isolates from the same period. All isolates were subjected to antimicrobial susceptibility testing, efflux pump inhibitor-based test and WGS. Mutations in known genes associated with colistin resistance were analyzed and deleterious mutations were then predicted by PROVEAN tool. The 10 CRAB isolates carried blaOXA-23 with the addition of blaOXA-58 in 1 isolate. All COL-R isolates exhibited colistin MICs of 4 μg/mL except for 1 isolate with that of 16 μg/mL. They belonged to ST2, ST16, ST23, ST164 and ST215, whereas the COL-I isolates with colistin MICs of ≤0.25-1 μg/mL were ST2, ST164 and ST215. Neither increased efflux pump activity nor mcr gene was found in any COL-R isolate. Three COL-R isolates contained different PmrB variants: a novel 10-amino acid (aa) repeat sequence insertion, VILGCILIFS between positions 27 and 28 (S27_A28insVILGCILIFS) in transmembrane domain (TM); a 1-aa insertion, alanine between positions 162 and 163 (A162_I163insA) in TM; and a 1-aa substitution, A226T in histidine kinase domain. One COL-R isolate possessed PmrA variant with A80V substitution. These alterations were predicted as deleterious. Mechanisms of colistin resistance in the remaining COL-R isolate were still unknown. In conclusion, the alterations in both PmrB and PmrA were predicted and suggested as initial mutations responsible for low-level colistin resistance in our CRAB isolates. Under selective pressure, these isolates may exhibit higher level colistin resistance by the additional mutations, leading to more therapeutic difficulties.
Collapse
Affiliation(s)
- Kamonwan Lunha
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khin Thet Thet
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Arisa Ngudsuntia
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nicha Charoensri
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonlug Lulitanond
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lumyai Wonglakorn
- Clinical Microbiology Laboratory, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonwadee Chanawong
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
18
|
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 2020; 43:490-516. [PMID: 31150547 PMCID: PMC6736374 DOI: 10.1093/femsre/fuz014] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Infections of antibiotic-resistant pathogens pose an ever-increasing threat to mankind. The investigation of novel approaches for tackling the antimicrobial resistance crisis must be part of any global response to this problem if an untimely reversion to the pre-penicillin era of medicine is to be avoided. One such promising avenue of research involves so-called antibiotic resistance breakers (ARBs), capable of re-sensitising resistant bacteria to antibiotics. Although some ARBs have previously been employed in the clinical setting, such as the β-lactam inhibitors, we posit that the broader field of ARB research can yet yield a greater diversity of more effective therapeutic agents than have been previously achieved. This review introduces the area of ARB research, summarises the current state of ARB development with emphasis on the various major classes of ARBs currently being investigated and their modes of action, and offers a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Mark Laws
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Ali Shaaban
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| |
Collapse
|
19
|
Khoshnood S, Savari M, Abbasi Montazeri E, Farajzadeh Sheikh A. Survey on Genetic Diversity, Biofilm Formation, and Detection of Colistin Resistance Genes in Clinical Isolates of Acinetobacter baumannii. Infect Drug Resist 2020; 13:1547-1558. [PMID: 32547124 PMCID: PMC7266307 DOI: 10.2147/idr.s253440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Acinetobacter baumannii is an opportunistic pathogen responsible for nosocomial infections. The emergence of colistin-resistant A. baumannii is a significant threat to public health. The aim of this study was to investigate the molecular characterization and genotyping of clinical A. baumannii isolates in Southwestern Iran. Methods A total of 70 A. baumannii isolates were collected from patients admitted to Imam Khomeini Hospital in Ahvaz, Southwestern Iran. Minimum inhibitory concentration test was conducted by using Vitek 2 system. The presence of biofilm-forming genes and colistin resistance-related genes were evaluated by PCR. The isolates were also examined for their biofilm formation ability and the expression of pmrA and pmrB genes. Finally, multilocus sequence typing (MLST) and PCR-based sequence group were used to determine the genetic relationships of the isolates. Results Overall, 61 (87.1%) and 9 (12.8%) isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR), respectively. Colistin and tigecycline with 2 (2.8%) and 32 (45.7%) resistance rates had the highest effect. Among all the isolates, 55 (78.5%), 7 (10%), and 3 (4.3%) were strong, moderate, and weak biofilm producers, respectively. The frequency rates of biofilm-related genes were 64 (91.4%), 70 (100%), 56 (80%), and 22 (31.42%) for bap, ompA, csuE, and blaPER1, respectively. Overexpression of pmrA and pmrB genes was observed in two colistin-resistance isolates, but the expression of these genes did not change in colistin-sensitive isolates. Additionally, 37 (52.8%) and 8 (11.4%) isolates belonged to groups 1 (ICII) and 2 (IC I), respectively. MLST analysis revealed a total of nine different sequence types that six isolates belonged to clonal complex 92 (corresponding to ST801, ST118, ST138, ST 421, and ST735). Other isolates were belonging to ST133 and ST216, and two colistin-resistant (Ab4 and Ab41) isolates were belonging to ST387 and ST1812. Conclusion The present study revealed the presence of MDR and XDR A. baumannii isolates harboring biofilm genes and emergence of colistin-resistant isolates in Southwestern Iran. These isolates had high diversity, which was affirmed by typing techniques. The control measures and regular surveillance are urgently needed to preclude the spread of these isolates.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Farajzadeh Sheikh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Marano V, Marascio N, Pavia G, Lamberti AG, Quirino A, Musarella R, Casalinuovo F, Mazzitelli M, Trecarichi EM, Torti C, Matera G, Liberto MC. Identification of pmrB mutations as putative mechanism for colistin resistance in A. baumannii strains isolated after in vivo colistin exposure. Microb Pathog 2020; 142:104058. [PMID: 32058026 DOI: 10.1016/j.micpath.2020.104058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Colistin resistance among extensively-resistant Acinetobacter baumannii isolates is a serious health-care problem. Alterations in PmrA-PmrB two-component system have been associated with resistance to colistin. We investigated three pairs of colistin-susceptible and colistin-resistant A. baumannii, sequentially isolated from three patients before and after colistin treatment, respectively. The pmrA and pmrB genes were sequenced by Sanger method. Amino acidic positions and their effect on protein were predicted by InterPro and PROVEAN tools. Expression of pmrA, pmrB and pmrC genes was assessed by semi-quantitative reverse transcription-PCR (qRT-PCR). We found three different nonsynonymous substitutions P233T, E301G and L168K in pmrB coding region, each one in a different colistin resistance strain. The E301G and L168K substitutions represent novel mutations in pmrB, not previously described. Relative expression of pmrA, pmrB and pmrC mRNA increased in all colistin resistant strains. In our study, pmrB substitutions were associated with pmrC over-expression and colistin resistance. Further studies are necessary to understand their impact on modification of lipid A components.
Collapse
Affiliation(s)
- Vito Marano
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Nadia Marascio
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy.
| | - Grazia Pavia
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Angelo G Lamberti
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Rosanna Musarella
- Institute for Experimental Veterinary Medicine of Southern Italy, 88100, Catanzaro, Italy
| | - Francesco Casalinuovo
- Institute for Experimental Veterinary Medicine of Southern Italy, 88100, Catanzaro, Italy
| | - Maria Mazzitelli
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Enrico M Trecarichi
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy
| | - Maria Carla Liberto
- Department of Health Sciences, Unit of Clinical Microbiology, "Magna Graecia" University, 88100, Catanzaro, Italy
| |
Collapse
|
21
|
Amera GM, Khan RJ, Pathak A, Jha RK, Muthukumaran J, Singh AK. Screening of promising molecules against MurG as drug target in multi-drug-resistant-Acinetobacter baumannii - insights from comparative protein modeling, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:5230-5252. [DOI: 10.1080/07391102.2019.1700167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
23
|
Comparison of susceptibility testing methods for determining the activity of colistin against Gram-negative bacilli of clinical origin. J Med Microbiol 2019; 68:60-66. [DOI: 10.1099/jmm.0.000879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|