1
|
Valiatti TB, Santos FF, Bessa-Neto FO, Veiga R, Simionatto S, de Almeida Souza GH, Vaz MSM, Pignatari ACC, Cayô R, Gales AC. Emergence of multidrug-resistant Providencia rettgeri clone in food-producing animals: A public health threat. One Health 2024; 19:100887. [PMID: 39323428 PMCID: PMC11422129 DOI: 10.1016/j.onehlt.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
The occurrence of carbapenemases encoding genes in Providencia rettgeri is a critical public health concern since this species has intrinsic resistance to several antimicrobials, including polymyxins. The identification of this multidrug-resistant (MDR) pathogen outside the hospital setting has become increasingly frequent, and raises an alert for the global health agencies, as they indicate a possible spread of such pathogens. Herein, we described three MDR P. rettgeri isolates carrying a diversity of antimicrobial resistance genes (ARGs) isolated from stool samples of swine and bovine in Brazil. Molecular analysis revealed that all isolates belonged to the same clone. The whole genome sequencing (WGS) of a representative isolate (PVR-188) was performed by MiSeq Illumina® platform, while the assembling and annotation was achieved using SPAdes and Prooka, respectively. The WGS analyses indicated the presence of ARGs that confer resistance to β-lactams (bla NDM-1, bla CTX-M-2), quinolones (qnrD1), aminoglycosides (aadA2, aadA1, aph(3')-Via), phenicol (catB2), sulfonamides (sul1, sul2), and trimethoprim (dfrA12, dfrA1). The presence of three plasmid replicons (Col3M, IncQ1, and IncT) was detected, but no phage sequences were found. The phylogenetic analyses confirmed the genomic relationship of the PVR-188 with P. rettgeri isolates recovered from animals and humans in the USA and Malaysia. In conclusion, we report the occurrence of MDR P. rettgeri clone colonizing the gut microbiota of food-producing animals in Brazil, revealing the spread of this pathogen beyond hospital boundaries.
Collapse
Affiliation(s)
- Tiago Barcelos Valiatti
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Francisco Ozório Bessa-Neto
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ruanita Veiga
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Simone Simionatto
- Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, MS, Brazil
| | | | - Márcia Soares Mattos Vaz
- Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, MS, Brazil
| | - Antônio Carlos Campos Pignatari
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| |
Collapse
|
2
|
de Bastiani DC, Silva CV, Christoff AP, Cruz GNF, Tavares LD, de Araújo LSR, Tomazini BM, Arns B, Piastrelli FT, Cavalcanti AB, de Oliveira LFV, Pereira AJ. 16S rRNA amplicon sequencing and antimicrobial resistance profile of intensive care units environment in 41 Brazilian hospitals. Front Public Health 2024; 12:1378413. [PMID: 39076419 PMCID: PMC11284946 DOI: 10.3389/fpubh.2024.1378413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Infections acquired during healthcare setting stay pose significant public health threats. These infections are known as Healthcare-Associated Infections (HAI), mostly caused by pathogenic bacteria, which exhibit a wide range of antimicrobial resistance. Currently, there is no knowledge about the global cleaning process of hospitals and the bacterial diversity found in ICUs of Brazilian hospitals contributing to HAI. Objective Characterize the microbiome and common antimicrobial resistance genes present in high-touch Intensive Care Unit (ICU) surfaces, and to identify the potential contamination of the sanitizers/processes used to clean hospital surfaces. Methods In this national, multicenter, observational, and prospective cohort, bacterial profiles and several antimicrobial resistance genes from 41 hospitals across 16 Brazilian states were evaluated. Using high-throughput 16S rRNA amplicon sequencing and real-time PCR, the bacterial abundance and resistance genes presence were analyzed in both ICU environments and cleaning products. Results We identified a wide diversity of microbial populations with a recurring presence of HAI-related bacteria among most of the hospitals. The median bacterial positivity rate in surface samples was high (88.24%), varying from 21.62 to 100% in different hospitals. Hospitals with the highest bacterial load in samples were also the ones with highest HAI-related abundances. Streptococcus spp., Corynebacterium spp., Staphylococcus spp., Bacillus spp., Acinetobacter spp., and bacteria from the Flavobacteriaceae family were the microorganisms most found across all hospitals. Despite each hospital particularities in bacterial composition, clustering profiles were found for surfaces and locations in the ICU. Antimicrobial resistance genes mecA, bla KPC-like, bla NDM-like, and bla OXA-23-like were the most frequently detected in surface samples. A wide variety of sanitizers were collected, with 19 different active principles in-use, and 21% of the solutions collected showed viable bacterial growth with antimicrobial resistance genes detected. Conclusion This study demonstrated a diverse and spread pattern of bacteria and antimicrobial resistance genes covering a large part of the national territory in ICU surface samples and in sanitizers solutions. This data should contribute to the adoption of surveillance programs to improve HAI control strategies and demonstrate that large-scale epidemiology studies must be performed to further understand the implications of bacterial contamination in hospital surfaces and sanitizer solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bruno Martins Tomazini
- Hospital Sírio Libanês, São Paulo, SP, Brazil
- Hcor Research Institute, Paraíso, SP, Brazil
| | - Beatriz Arns
- Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
3
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Camargo CH, Yamada AY, de Souza AR, Sacchi CT, Reis AD, Santos MBN, de Assis DB, de Carvalho E, Takagi EH, Cunha MPV, Tiba-Casas MR. Genomic characterization of New Delhi metallo-beta-lactamase-producing species of Morganellaceae, Yersiniaceae, and Enterobacteriaceae (other than Klebsiella) from Brazil over 2013-2022. Microbiol Immunol 2024; 68:1-5. [PMID: 37859304 DOI: 10.1111/1348-0421.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Over the last decade, New Delhi metallo-beta-lactamase (NDM) carbapenemase has silently spread in Brazil. In this study, we analyzed a large collection of Enterobacterales other than Klebsiella spp. received in our reference laboratory between 2013 and 2022. A total of 32 clinical isolates displaying different pulsed-field gel electrophoresis profiles, and represented by 11 species in the families Enterobacteriaceae (Citrobacter freundii, Citrobacter portucalensis, Enterobacter hormaechei, and Escherichia coli), Morganellaceae (Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Raoultella ornithinolytica), and Yersiniaceae (Serratia marcescens) had their whole genomes sequenced and further analyzed. Antimicrobial susceptibility was determined by disk diffusion, except for polymyxin B, assessed by broth microdilution. The blaNDM-1 allele was predominant (n = 29), but blaNDM-5 was identified in an E. coli specimen with a novel ST, and the blaNDM-7 allele was found in E. hormaechei ST45 and E. coli ST1049. Polymyxin was active against all but one Enterobacteriaceae isolate: an mcr-1-producing E. coli presenting minimal inhibitory concentration (4 mg/L). Isolates producing extended-spectrum β-lactamases were common: cefotaximase from Munich (CTX-M)-15 (n = 10), CTX-M-2 (n = 4), and CTX-M-8 (n = 3) were detected, and the mcr-1-producing E. coli was found to co-produce both CTX-M-8 and CTX-M-55 β-lactamases. The mcr-9 gene was found in 5/8 E. hormaechei isolates, distributed in four different sequence types, all of them presenting susceptibility to polymyxin. This study showed that NDM-producing Enterobacterales other than Klebsiella are already spread in Brazil, in diversified species, and cocarrying important resistance genes. Prompt detection and effective implementation of measures to prevent further spread are mandatory for mitigating the dissemination of NDM carbapenemase in hospital settings and preserving the already limited antimicrobial therapy options.
Collapse
Affiliation(s)
- Carlos Henrique Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Amanda Yaeko Yamada
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kiffer CRV, Rezende TFT, Costa-Nobre DT, Marinonio ASS, Shiguenaga LH, Kulek DNO, Arend LNVS, Santos ICDO, Sued-Karam BR, Rocha-de-Souza CM, Kraft L, Abreu A, Peral RTDS, Carvalho-Assef APD, Pillonetto M. A 7-Year Brazilian National Perspective on Plasmid-Mediated Carbapenem Resistance in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii Complex and the Impact of the Coronavirus Disease 2019 Pandemic on Their Occurrence. Clin Infect Dis 2023; 77:S29-S37. [PMID: 37406041 DOI: 10.1093/cid/ciad260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Carbapenemase production is a global public health threat. Antimicrobial resistance (AMR) data analysis is critical to public health policy. Here we analyzed carbapenemase detection trends using the AMR Brazilian Surveillance Network. METHODS Carbapenemase detection data from Brazilian hospitals included in the public laboratory information system dataset were evaluated. The detection rate (DR) was defined as carbapenemase detected by gene tested per isolate per year. The temporal trends were estimated using the Prais-Winsten regression model. The impact of COVID-19 on carbapenemase genes in Brazil was determined for the period 2015-2022. Detection pre- (October 2017 to March 2020) and post-pandemic onset (April 2020 to September 2022) was compared using the χ2 test. Analyses were performed with Stata 17.0 (StataCorp, College Station, TX). RESULTS 83 282 blaKPC and 86 038 blaNDM were tested for all microorganisms. Enterobacterales DR for blaKPC and blaNDM was 68.6% (41 301/60 205) and 14.4% (8377/58 172), respectively. P. aeruginosa DR for blaNDM was 2.5% (313/12 528). An annual percent increase for blaNDM of 41.1% was observed, and a decrease for blaKPC of -4.0% in Enterobacterales, and an annual increase for blaNDM of 71.6% and for blaKPC of 22.2% in P. aeruginosa. From 2020 to 2022, overall increases of 65.2% for Enterobacterales, 77.7% for ABC, and 61.3% for P. aeruginosa were observed in the total isolates. CONCLUSIONS This study shows the strengths of the AMR Brazilian Surveillance Network with robust data related to carbapenemases in Brazil and the impact of COVID-19 with a change in carbapenemase profiles with blaNDM rising over the years.
Collapse
Affiliation(s)
- Carlos R V Kiffer
- Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
- Infectious Diseases Discipline, Laboratório Especial de Microbiologia Clínica-LEMC/ALERTA, EPM, UNIFESP, São Paulo, Brazil
| | - Thais F T Rezende
- Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
- Infectious Diseases Discipline, Laboratório Especial de Microbiologia Clínica-LEMC/ALERTA, EPM, UNIFESP, São Paulo, Brazil
| | | | | | | | - Debora Nicole Oliveira Kulek
- Laboratorio Central do Paraná - LACENPR, Secretaria de Estado da Saúde, Curitiba, Parana, Brazil
- Escola de Medicina e Ciencias da Vida - EMCV, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba, Parana, Brazil
| | - Lavinia Nery Villa Stangler Arend
- Laboratorio Central do Paraná - LACENPR, Secretaria de Estado da Saúde, Curitiba, Parana, Brazil
- Escola de Medicina e Ciencias da Vida - EMCV, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba, Parana, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Instituto Oswaldo Cruz (IOC)-Fundação Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Infecção Hospitalar-LAPIH, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bruna Ribeiro Sued-Karam
- Instituto Oswaldo Cruz (IOC)-Fundação Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Infecção Hospitalar-LAPIH, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Claudio Marcos Rocha-de-Souza
- Instituto Oswaldo Cruz (IOC)-Fundação Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Infecção Hospitalar-LAPIH, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leticia Kraft
- Coordenação Geral de Laboratórios de Saúde Publica, Departamento de Articulação Estratégica de Vigilância em Saúde e Ambiente, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasilia, Distrito Federal, Brazil
| | - Andre Abreu
- Núcleo de Epidemiologia e Vigilância em Saúde, Instituto Oswaldo Cruz-FIOCRUZ, Brasilia, Distrito Federal, Brazil
| | - Renata Tigulini de Souza Peral
- Coordenação Geral de Laboratórios de Saúde Publica, Departamento de Articulação Estratégica de Vigilância em Saúde e Ambiente, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasilia, Distrito Federal, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Instituto Oswaldo Cruz (IOC)-Fundação Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Infecção Hospitalar-LAPIH, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo Pillonetto
- Laboratorio Central do Paraná - LACENPR, Secretaria de Estado da Saúde, Curitiba, Parana, Brazil
- Escola de Medicina e Ciencias da Vida - EMCV, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba, Parana, Brazil
| |
Collapse
|
6
|
Boralli CMDS, Paganini JA, Meneses RS, Mata CPSMD, Leite EMM, Schürch AC, Paganelli FL, Willems RJL, Camargo ILBC. Characterization of blaKPC-2 and blaNDM-1 Plasmids of a K. pneumoniae ST11 Outbreak Clone. Antibiotics (Basel) 2023; 12:antibiotics12050926. [PMID: 37237829 DOI: 10.3390/antibiotics12050926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The most common resistance mechanism to carbapenems is the production of carbapenemases. In 2021, the Pan American Health Organization warned of the emergence and increase in new carbapenemase combinations in Enterobacterales in Latin America. In this study, we characterized four Klebsiella pneumoniae isolates harboring blaKPC and blaNDM from an outbreak during the COVID-19 pandemic in a Brazilian hospital. We assessed their plasmids' transference ability, fitness effects, and relative copy number in different hosts. The K. pneumoniae BHKPC93 and BHKPC104 strains were selected for whole genome sequencing (WGS) based on their pulsed-field gel electrophoresis profile. The WGS revealed that both isolates belong to ST11, and 20 resistance genes were identified in each isolate, including blaKPC-2 and blaNDM-1. The blaKPC gene was present on a ~56 Kbp IncN plasmid and the blaNDM-1 gene on a ~102 Kbp IncC plasmid, along with five other resistance genes. Although the blaNDM plasmid contained genes for conjugational transfer, only the blaKPC plasmid conjugated to E. coli J53, without apparent fitness effects. The minimum inhibitory concentrations (MICs) of meropenem/imipenem against BHKPC93 and BHKPC104 were 128/64 and 256/128 mg/L, respectively. Although the meropenem and imipenem MICs against E. coli J53 transconjugants carrying the blaKPC gene were 2 mg/L, this was a substantial increment in the MIC relative to the original J53 strain. The blaKPC plasmid copy number was higher in K. pneumoniae BHKPC93 and BHKPC104 than in E. coli and higher than that of the blaNDM plasmids. In conclusion, two ST11 K. pneumoniae isolates that were part of a hospital outbreak co-harbored blaKPC-2 and blaNDM-1. The blaKPC-harboring IncN plasmid has been circulating in this hospital since at least 2015, and its high copy number might have contributed to the conjugative transfer of this particular plasmid to an E. coli host. The observation that the blaKPC-containing plasmid had a lower copy number in this E. coli strain may explain why this plasmid did not confer phenotypic resistance against meropenem and imipenem.
Collapse
Affiliation(s)
- Camila Maria Dos Santos Boralli
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | | | - Rodrigo Silva Meneses
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Anita C Schürch
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Fernanda L Paganelli
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ilana Lopes Baratella Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| |
Collapse
|
7
|
Franco R, de Oliveira Santos IC, Mora MFM, López PVA, Alvarez VET, Arce FHO, Lird G, Silvagni M, Kawabata A, Fariña MCR, Fernández MFA, Oliveira TRTE, Rocha-de-Souza CM, Assef APDAC. Genotypic characterization and clonal relatedness of metallo-β-lactamase-producing non-fermentative gram negative bacteria in the first 5 years of their circulation in Paraguay (2011-2015). Braz J Microbiol 2023; 54:179-190. [PMID: 36564646 PMCID: PMC9943808 DOI: 10.1007/s42770-022-00888-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa and species of Acinetobacter calcoaceticus-baumanii complex are multiresistant intrahospital opportunistic pathogens, able to acquire carbapenemases and produce outbreaks with high morbidity and mortality. Pseudomonas putida has also emerged with similar characteristics. The aim of this research was to characterize the Metallo-β-lactamases (MBLs) detected by surveillance in Paraguay in the first 5 years of their circulation in hospitals. The coexistence of KPC and OXA-type carbapenemases was also investigated. 70 MBL-producing strains from inpatients were detected from clinical samples and rectal swab from 11 hospitals. The strains were identified by manual, automated, and molecular methods. Antimicrobial susceptibility was studied by Kirby-Bauer and automated methods, while colistin susceptibility was determined by broth macrodilution. MBLs were investigated by synergy with EDTA against carbapenems and PCR, and their variants by sequencing. KPC and OXA-carbapenemases were investigated by PCR. Clonality was studied by pulsed-field gel electrophoresis (PFGE). The results demonstrated the circulation of blaVIM-2 (60%), blaNDM-1 (36%), and blaIMP-18 (4%). The MBL-producing species were P. putida (45.7%), P. aeruginosa (17.2%), A. baumannii (24.3%), A. pittii (5.7%), A. nosocomialis, (4.3%) A. haemolyticus (1.4%), and A. bereziniae (1.4%). PFGE analysis showed one dominant clone for A. baumannii, a predominant clone for half of the strains of P. aeruginosa, and a polyclonal spread for P. putida. In the first 5 years of circulation in Paraguay, MBLs were disseminated as unique variants per genotype, appeared only in Pseudomonas spp. and Acinetobacter spp., probably through horizontal transmission between species and vertical by some successful clones.
Collapse
Affiliation(s)
- Rossana Franco
- Sección Antimicrobianos-Departamento de Bacteriología y Micología, Laboratorio Central de Salud Pública, Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
- Departamento de Tuberculosis, Laboratorio Central de Salud Pública, Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | | | | | - Patricia Violeta Araújo López
- Sección Antimicrobianos-Departamento de Bacteriología y Micología, Laboratorio Central de Salud Pública, Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | - Vivian Estela Takahasi Alvarez
- Departamento de Laboratorio, Servicio de Microbiologia. Hospital Nacional de Itauguá. Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | - Flavia Helena Ortiz Arce
- Centro Materno Infantil, Hospital de Clínicas, Campus San Lorenzo, San Lorenzo, Paraguay
- Departamento de Bacteriología y Microbiología, Laboratorio Central del Hospital de Clínicas, Facultad de Ciencias Médicas-Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Graciela Lird
- Departamento de Bacteriología y Micología, Laboratorio Central Hospital de Clínicas, Facultad de Ciencias Médicas-Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Marlene Silvagni
- Servicio de Microbiología. Instituto de Previsión Social, Asunción, Paraguay
| | - Anibal Kawabata
- Sección de Bacteriología, Hospital de Trauma “Dr. Manuel Giagni”, Ministerio de Salud Pública y Bienestar Social, Asunción, Paraguay
| | - María Carolina Rojas Fariña
- Ministerio de Salud Pública y Bienestar Social, Laboratorio de Microbiología - Instituto de Medicina Tropical, Asunción, Paraguay
| | - Mirna Fabiola Agüero Fernández
- Servicio de Bacteriología y Micología, Hospital General Pediatrico Niños de Acosta Ñú, Ministerio de Salud Pública y Bienestar Social, San Lorenzo, Paraguay
| | | | - Claudio M. Rocha-de-Souza
- Laboratorio de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Río de Janeiro, Brazil
| | | |
Collapse
|
8
|
Arend LNVS, Bergamo R, Rocha FB, Bail L, Ito C, Baura VA, Balsanelli E, Pothier JF, Rezzonico F, Pilonetto M, Smits THM, Tuon FF. Dissemination of NDM-producing bacteria in Southern Brazil. Diagn Microbiol Infect Dis 2023; 106:115930. [PMID: 37001228 DOI: 10.1016/j.diagmicrobio.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The dissemination of NDM-1 carbapenemases (New Delhi Metallo-β-lactamase) is a global public health problem, mainly in developing countries. The aim of this study was to characterize the spread of NDM-producing bacteria in the Southern Brazilian states analyzing epidemiological, molecular, and antimicrobial susceptibility aspects. METHODS A total of 10,684 carbapenem-resistant isolates of Enterobacterales, Pseudomonas spp. and Acinetobacter spp. obtained from several hospitals in eight cities in Southern Brazil were screened, and 486 NDM-producing bacteria were selected. RESULTS The incidence varied from 0.5 to 77 cases/100.000 habitants. ST11, ST15, ST340 and ST674 were the most common in K. pneumoniae. A total of 5 plasmids were identified in one K. pneumoniae strain: Col440I, Col440II, IncFIA(HI1), IncFIB(K), IncFIB(pQil)/ IncFII(K), and IncR. CONCLUSIONS The number of patients with NDM-producing bacteria has increased in Southern Brazil, whose gene is present in different plasmids, explaining the expansion of this enzyme.
Collapse
Affiliation(s)
- Lavinia N V S Arend
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil; Public Health Central Laboratory-State of Paraná-LACEN/PR, Molecular Bacteriology Division, São José Dos Pinhais, Paraná, Brazil
| | | | - Fabiano B Rocha
- CGLAB General Coordination of Laboratories of Public Health, Ministry of Health, Brasilia, Federal District, Brazil
| | - Larissa Bail
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Carmen Ito
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Valter A Baura
- Laboratory of Biochemistry, Polytechnic Center, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eduardo Balsanelli
- Laboratory of Biochemistry, Polytechnic Center, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Marcelo Pilonetto
- Public Health Central Laboratory-State of Paraná-LACEN/PR, Molecular Bacteriology Division, São José Dos Pinhais, Paraná, Brazil; Core for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
9
|
de Oliveira Santos IC, da Conceiçāo Neto OC, da Costa BS, Teixeira CBT, da Silva Pontes L, Silveira MC, Rocha-de-Souza CM, Carvalho-Assef APD. Evaluation of phenotypic detection of carbapenemase-producing Pseudomonas spp. from clinical isolates. Braz J Microbiol 2023; 54:135-141. [PMID: 36327041 PMCID: PMC9943810 DOI: 10.1007/s42770-022-00857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Carbapenems are considered last-resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. Although the main mechanism of carbapenem-resistance in Pseudomonas aeruginosa is the loss of OprD porin, carbapenemases continue to be a problem worldwide. The aim of this study was to evaluate the performance of phenotypic tests (Carba NP, Blue Carba, and mCIM/eCIM) for detection of carbapenemase-producing Pseudomonas spp. in Brazil. One hundred twenty-seven Pseudomonas spp. clinical isolates from different Brazilian states were submitted to phenotypic and molecular carbapenemase detection. A total of 90 carbapenemase-producing P. aeruginosa and 5 Pseudomonas putida (35, blaVIM-2; 17, blaSPM-1; 2, blaIMP-10; 1, blaVIM-24; 1, blaNDM-1; 39, blaKPC-2). The phenotypic Carba NP, Blue Carba, and mCIM/eCIM showed sensitivity of 94.7%, 93.6%, and 93.6%, and specificity of 90.6%, 100%, and 96.8%, respectively. However, only the Carba NP presented the highest sensitivity and showed the ability in differentiating the carbapenemases between class A and class B using EDTA. Blue Carba failed to detect most of the class B carbapenemases, having the worst performance using EDTA. Our results show changes in the epidemiology of the spread of carbapenemases and the importance of their detection by phenotypic and genotypic tests. Such, it is essential to use analytical tools that faithfully detect bacterial resistance in vitro in a simple, sensitive, rapid, and cost-effective way. Much effort must be done to improve the current tests and for the development of new ones.
Collapse
Affiliation(s)
- Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Orlando Carlos da Conceiçāo Neto
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Bianca Santos da Costa
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Camila Bastos Tavares Teixeira
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Leilane da Silva Pontes
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Melise Chaves Silveira
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa Em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21045900, Brazil.
| |
Collapse
|
10
|
Intestinal Carriage of Carbapenemase-Producing Enterobacteriaceae Members in Immunocompromised Children During COVID-19 Pandemic. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2023. [DOI: 10.5812/pedinfect-127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Hospital-acquired infection with carbapenem-resistant Enterobacteriaceae (CRE) is a global concern. The administration of antibiotics among the infected and non-infected immunocompromised children with SARS-CoV-2 is associated with an increased risk of intestinal CRE colonization and bacteremia during hospitalization. Objectives: The present study aimed to detect the correlation between the intestinal colonization of carbapenemase encoding Enterobacteriaceae with SARS-CoV-2 infection and antibiotic prescription among immunocompromised children admitted to the oncology and Bone Marrow Transplantation (BMT) wards. Methods: Stool samples were collected from the immunocompromised children, and the members of Enterobacteriaceae were isolated using standard microbiological laboratory methods. Carbapenem resistance isolates were initially characterized by the disc diffusion method according to CLSI 2021 and further confirmed by the PCR assay. SARS-CoV-2 infection was also recorded according to documented real-time PCR results. Results: In this study, 102 Enterobacteriaceae isolates were collected from the stool samples. The isolates were from Escherichia spp. (59/102, 57.8%), Klebsiella spp. (34/102, 33.3%), Enterobacter spp. (5/102, 4.9%), Citrobacter spp. (2/102, 1.9%), and Serratia spp. (2/102, 1.9%). The carbapenem resistance phenotype was detected among 42.37%, 73.52%, 40%, 50%, and 100% of Escherichia spp., Klebsiella spp., Enterobacter spp., Citrobacter spp., and Serratia spp., respectively. Moreover, blaOXA-48 (49.1%) and blaNDM-1 (29.4%), as well as blaVIM (19.6%) and blaKPC (17.6%) were common in the CRE isolates. SARS-CoV-2 infection was detected in 50% of the participants; however, it was confirmed in 65.45% (36/55) of the intestinal CRE carriers. The administration of antibiotics, mainly broad-spectrum antibiotics, had a significant correlation with the CRE colonization in both the infected and non-infected children with SARS-CoV-2 infection. Conclusions: Regardless of the COVID-19 status, prolonged hospitalization and antibiotic prescription are major risk factors associated with the CRE intestinal colonization in immunocompromised children.
Collapse
|
11
|
Genomic Diversity of NDM-Producing Klebsiella Species from Brazil, 2013–2022. Antibiotics (Basel) 2022; 11:antibiotics11101395. [PMID: 36290053 PMCID: PMC9598336 DOI: 10.3390/antibiotics11101395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Since its first report in the country in 2013, NDM-producing Enterobacterales have been identified in all the Brazilian administrative regions. In this study, we characterized by antimicrobial susceptibility testing and by molecular typing a large collection of NDM-producing Klebsiella isolates from different hospitals in Brazil, mainly from the state of Sao Paulo, over the last decade. Methods: Bacterial isolates positive for blaNDM-genes were identified by MALDI-TOF MS and submitted to antimicrobial susceptibility testing by disk diffusion or broth microdilution (for polymyxin B). All isolates were submitted to pulsed-field gel electrophoresis, and isolates belonging to different clusters were submitted to whole genome sequencing by Illumina technology and downstream analysis. Mating out assays were performed by conjugation, plasmid sizes were determined by S1-PFGE, and plasmid content was investigated by hybrid assembly after MinIon long reads sequencing. Results: A total of 135 NDM-producing Klebsiella were identified, distributed into 107 different pulsotypes; polymyxin B was the only antimicrobial with high activity against 88.9% of the isolates. Fifty-four isolates presenting diversified pulsotypes were distributed in the species K. pneumoniae (70%), K. quasipneumoniae (20%), K. variicola (6%), K. michiganensis (a K. oxytoca Complex species, 2%), and K. aerogenes (2%); blaNDM-1 was the most frequent allele (43/54, 80%). There was a predominance of Clonal Group 258 (ST11 and ST340) encompassing 35% of K. pneumoniae isolates, but another thirty-one different sequence types (ST) were identified, including three described in this study (ST6244 and ST6245 for K. pneumoniae, and ST418 for K. michiganensis). The blaNDM-1 and blaNDM-7 were found to be located into IncF and IncX3 type transferable plasmids, respectively. Conclusions: Both clonal (mainly driven by CG258) and non-clonal expansion of NDM-producing Klebsiella have been occurring in Brazil in different species and clones, associated with different plasmids, since 2013.
Collapse
|
12
|
de Oliveira Alves W, Scavuzzi AML, Beltrão EMB, de Oliveira ÉM, Dos Santos Vasconcelos CR, Rezende AM, de Souza Lopes AC. Occurrence of bla NDM-7 and association with bla KPC-2, bla CTX-M15, aac, aph, mph(A), catB3 and virulence genes in a clinical isolate of Klebsiella pneumoniae with different plasmids in Brazil. Arch Microbiol 2022; 204:459. [PMID: 35788427 DOI: 10.1007/s00203-022-03051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
To characterize phenotypically and genotypically an isolate of multidrug-resistant (MDR) K. pneumoniae from a patient with septicemia in a hospital in Recife-PE, Brazil, resistance and virulence genes were investigated using PCR and sequencing the amplicons, and the plasmid DNA was also sequenced. The K74-A3 isolate was resistant to all β-lactams, including carbapenems, as well as to aminoglycosides and quinolones. By conducting a PCR analysis and sequencing, the variants blaNDM-7 associated with blaKPC-2 and the cps, wabG, fim-H, mrkD and entB virulence genes were identified. The analysis of plasmid revealed the presence of blaCTX-M15, aac(3)-IVa, aph(3')-Ia, aph(4)-Ia, aac(6')ib-cr, mph(A) and catB3, and also the plasmids IncX3, IncFIB, IncQ1, ColRNAI and ColpVC. To our knowledge, this is the first report of the blaNDM-7 gene in Recife-PE and we suggest that this variant is located in IncX3. These results alert us to the risk of spreading an isolate with a vast genetic arsenal of resistance, in addition to which several plasmids are present that favor the horizontal transfer of these genes.
Collapse
Affiliation(s)
- Weverton de Oliveira Alves
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Área de Medicina Tropical, Recife, PE, Brasil
| | | | | | - Érica Maria de Oliveira
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Área de Medicina Tropical, Recife, PE, Brasil
| | | | | | - Ana Catarina de Souza Lopes
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Área de Medicina Tropical, Recife, PE, Brasil.
| |
Collapse
|
13
|
de Oliveira Santos JV, da Costa Júnior SD, de Fátima Ramos Dos Santos Medeiros SM, Cavalcanti IDL, de Souza JB, Coriolano DL, da Silva WRC, Alves MHME, Cavalcanti IMF. Panorama of Bacterial Infections Caused by Epidemic Resistant Strains. Curr Microbiol 2022; 79:175. [PMID: 35488983 PMCID: PMC9055366 DOI: 10.1007/s00284-022-02875-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
Antimicrobial resistance (AMR) represents a critical obstacle to public health worldwide, due to the high incidence of strains resistant to available antibiotic therapies. In recent years, there has been a significant increase in the prevalence of resistant epidemic strains, associated with this, public health authorities have been alarmed about a possible scenario of uncontrolled dissemination of these microorganisms and the difficulty in interrupting their transmission, as nosocomial pathogens with resistance profiles previously considered sporadic. They become frequent bacteria in the community. In addition, therapy for infections caused by these pathogens is based on broad-spectrum antibiotic therapy, which favors an increase in the tolerance of remaining bacterial cells and is commonly associated with a poor prognosis. In this review, we present the current status of epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), MDR Mycobacterium tuberculosis, extended-spectrum β-lactamase-producing Enterobacterales (ESBL), Klebsiella pneumoniae carbapenemase (KPC), and—New Delhi Metallo-beta-lactamase-producing Pseudomonas aeruginosa (NDM).
Collapse
Affiliation(s)
- João Victor de Oliveira Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Sérgio Dias da Costa Júnior
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | | | - Iago Dillion Lima Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Jaqueline Barbosa de Souza
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Davi Lacerda Coriolano
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Wagner Roberto Cirilo da Silva
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Maria Helena Menezes Estevam Alves
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, CEP: 55608-680, Brazil.
| |
Collapse
|
14
|
Rodrigues YC, Lobato ARF, Quaresma AJPG, Guerra LMGD, Brasiliense DM. The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics (Basel) 2021; 10:1527. [PMID: 34943739 PMCID: PMC8698286 DOI: 10.3390/antibiotics10121527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem resistance among Klebsiella pneumoniae isolates is often related to carbapenemase genes, located in genetic transmissible elements, particularly the blaKPC gene, which variants are spread in several countries. Recently, reports of K. pneumoniae isolates harboring the blaNDM gene have increased dramatically along with the dissemination of epidemic high-risk clones (HRCs). In the present study, we report the multiclonal spread of New Delhi metallo-beta-lactamase (NDM)-producing K. pneumoniae in different healthcare institutions in the state of Pará, Northern Brazil. A total of 23 NDM-producing isolates were tested regarding antimicrobial susceptibility testing features, screening of carbapenemase genes, and genotyping by multilocus sequencing typing (MLST). All K. pneumoniae isolates were determined as multidrug-resistant (MDR), being mainly resistant to carbapenems, cephalosporins, and fluoroquinolones. The blaNDM-7 (60.9%-14/23) and blaNDM-1 (34.8%-8/23) variants were detected. MLST genotyping revealed the predomination of HRCs, including ST11/CC258, ST340/CC258, ST15/CC15, ST392/CC147, among others. To conclude, the present study reveals the contribution of HRCs and non-HRCs in the spread of NDM-1 and NDM-7-producing K. pneumoniae isolates in Northern (Amazon region) Brazil, along with the first detection of NDM-7 variant in Latin America and Brazil, highlighting the need for surveillance and control of strains that may negatively impact healthcare and antimicrobial resistance.
Collapse
Affiliation(s)
| | | | | | | | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ananindeua 67030-000, PA, Brazil; (Y.C.R.); (A.R.F.L.); (A.J.P.G.Q.); (L.M.G.D.G.)
| |
Collapse
|
15
|
Sereia AFR, Christoff AP, Cruz GNF, da Cunha PA, da Cruz GCK, Tartari DC, Zamparette CP, Klein TCR, Masukawa II, Silva CI, E Vieira MLV, Scheffer MC, de Oliveira LFV, Sincero TCM, Grisard EC. Healthcare-Associated Infections-Related Bacteriome and Antimicrobial Resistance Profiling: Assessing Contamination Hotspots in a Developing Country Public Hospital. Front Microbiol 2021; 12:711471. [PMID: 34484149 PMCID: PMC8415557 DOI: 10.3389/fmicb.2021.711471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Hospital-built environment colonization by healthcare-associated infections-related bacteria (HAIrB) and the interaction with their occupants have been studied to support more effective tools for HAI control. To investigate HAIrB dynamics and antimicrobial resistance (AMR) profile we carried out a 6-month surveillance program in a developing country public hospital, targeting patients, hospital environment, and healthcare workers, using culture-dependent and culture-independent 16S rRNA gene sequencing methods. The bacterial abundance in both approaches shows that the HAIrB group has important representativeness, with the taxa Enterobacteriaceae, Pseudomonas, Staphylococcus, E. coli, and A. baumannii widely dispersed and abundant over the time at the five different hospital units included in the survey. We observed a high abundance of HAIrB in the patient rectum, hands, and nasal sites. In the healthcare workers, the HAIrB distribution was similar for the hands, protective clothing, and mobile phones. In the hospital environment, the healthcare workers resting areas, bathrooms, and bed equipment presented a wide distribution of HAIrB and AMR, being classified as contamination hotspots. AMR is highest in patients, followed by the environment and healthcare workers. The most frequently detected beta-lactamases genes were, blaSHV–like, blaOXA–23–like, blaOXA–51–like, blaKPC–like, blaCTX–M–1, blaCTX–M–8, and blaCTX–M–9 groups. Our results demonstrate that there is a wide spread of antimicrobial resistance due to HAIrB in the hospital environment, circulating among patients and healthcare workers. The contamination hotspots identified proved to be constant over time. In the fight for patient safety, these findings can reorient practices and help to set up new guidelines for HAI control.
Collapse
Affiliation(s)
- Aline Fernanda Rodrigues Sereia
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil.,BiomeHub, Florianópolis, Brazil
| | | | | | - Patrícia Amorim da Cunha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Caetana Paes Zamparette
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Brazil
| | - Taise Costa Ribeiro Klein
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ivete Ioshiko Masukawa
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clarice Iomara Silva
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maria Luiza Vieira E Vieira
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mara Cristina Scheffer
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Edmundo Carlos Grisard
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
16
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
17
|
NDM-1-encoding plasmid in Acinetobacter chengduensis isolated from coastal water. INFECTION GENETICS AND EVOLUTION 2021; 93:104926. [PMID: 34020069 DOI: 10.1016/j.meegid.2021.104926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acinetobacter spp. may cause difficult-to-treat nosocomial infections due to acquisition of carbapenemases, including New Delhi metallo-β-lactamase (NDM). This genus has been pointed out as a possible actor in the early dissemination of blaNDM, and this gene has been documented in a variety of species. OBJECTIVE Here we describe an Acinetobacter chengduensis (isolate FL51) carrying blaNDM recovered from coastal water in Brazil. METHODS In vitro techniques included antimicrobial susceptibility and minimum inhibitory concentration tests, PCR, plasmid profile and matting-out/transformation assays. In silico approaches comprised comparative genomic analyses using appropriate databases. RESULTS FL51 grew at room temperature in a variety of culture media, excluding MacConkey. It showed resistance to all beta-lactams tested and to ciprofloxacin. blaNDM-1 was identified, and a single replicon was observed in plasmid profile. In silico DNA hybridization revealed Acinetobacter FL51 as being Acinetobacter chengduensis. blaNDM-1 was flanked upstream by ISAba14-aphA6-ISAba125 and downstream by bleMBL-trpF-Δtat, inserted in a 41,068 bp non typeable plasmid named pNDM-FL51. This replicon showed high coverage and identity with other sequences present in plasmids deposited on the GenBank database, recovered almost exclusively from Acinetobacter spp., associated with hospital settings and animal sources. CONCLUSION We described a recently described environmental Acinetobacter species carrying a plasmid-borne blaNDM associated with a Tn125-like structure. Our findings suggest that replicon may play an important role in blaNDM dissemination among distinct settings within this genus and may support the theory of blaNDM emergence from an environmental Acinetobacter.
Collapse
|
18
|
Wink PL, Martins AS, Volpato F, Zavascki AP, Barth AL. Increased frequency of bla NDM in a tertiary care hospital in southern Brazil. Braz J Microbiol 2021; 52:299-301. [PMID: 33392936 DOI: 10.1007/s42770-020-00412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022] Open
Abstract
Resistance to carbapenems due to metallo-beta-lactamase NDM-1 was first described in Brazil in 2013. To date, only a few scattered reports of the prevalence of NDM-1 in the country have been reported, and most of them indicated a very low prevalence of this metalloenzyme. In the present study, we report a steady increase in the frequency of NDM among Enterobacterales resistant to carbapenems in a tertiary care hospital in southern Brazil. Carbapenemase genes were evaluated by multiplex real-time polymerase chain using high-resolution melting analysis among 3501 isolates of 8 different species of Enterobacterales recovered from January 2015 to May 2020. The blaKPC-like was identified in 3003 isolates (85.8%) and the blaNDM-like was the second most common gene (351 isolates-10%). There was a steady increase in frequency of blaNDM-like, from 4.2% in 2015 to 24% in 2020. The increase of blaNDM frequency raises an important matter as novel therapeutic options are currently very limited for the treatment of patients infected by bacteria carrying the blaNDM.
Collapse
Affiliation(s)
- Priscila Lamb Wink
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Amanda Silva Martins
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Fabiana Volpato
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre P Zavascki
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Afonso L Barth
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Soares CRP, Oliveira-Júnior JB, Firmo EF. First report of a blaNDM-resistant gene in a Klebsiella aerogenes clinical isolate from Brazil. Rev Soc Bras Med Trop 2021; 54:e02622020. [PMID: 33338110 PMCID: PMC7747820 DOI: 10.1590/0037-8682-0262-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION: Carbapenemase-resistant enterobacteria that produce the blaNDM gene are found worldwide. However, this is the first report of blaNDM in Klebsiella aerogenes in Brazil. METHODS: The identification of bacterial species was performed using anautomated system and confirmed by biochemical tests, 16S rRNA gene sequencing, and detection of resistance genes. RESULTS: The clinical isolate showed minimum inhibitory concentration resistance to meropenem and polymyxin B at 8mg/L and 4mg/L, respectively. Only the blaNDM gene was detected. CONCLUSIONS: The current report of the blaNDM gene in isolated MDR enterobacteria indicates that this gene can spread silently in a hospital setting.
Collapse
|
20
|
Carramaschi IN, Dos S B Ferreira V, Chagas TPG, Corrêa LL, Picão RC, de C Queiroz MM, Rangel K, Jardim R, da Mota FF, Zahner V. Multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae carrying bla NDM-bla CTX-M15 isolated from flies in Rio de Janeiro, Brazil. J Glob Antimicrob Resist 2020; 24:1-5. [PMID: 33302000 DOI: 10.1016/j.jgar.2020.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Flies have been implicated in the dispersal of medically important bacteria including members of the genus Klebsiella between different environmental compartments. The aim of this study was to retrieve and characterize antibiotic-resistant bacteria from flies collected near to hospitals. METHODS Flies were collected in the vicinity of medical facilities and examined for bacteria demonstrating phenotypic resistance to ceftriaxone, followed by determination of phenotypic and genotypic resistance profiles. In addition, whole genome sequencing followed by phylogenetic analysis and resistance genotyping were performed with the multidrug-resistant (MDR) strain Lemef23, identified as Klebsiella quasipneumoniae subsp. similipneumoniae. RESULTS The strain Lemef23, classified by multiple locus sequence typing as novel ST 3397, harboured numerous resistance genes. The blaNDM was located on a Tn3000 element, a common genetic platform for the carriage of this gene in Brazil. Inference of phylogenetic orthology of strain Lemef23 and other clinical isolates suggested an anthropogenic origin. CONCLUSIONS The findings of this study support the role of flies as vectors of MDR bacteria of clinical importance and provide the first record of blaNDM-1 and blaCTXM-15 in a Brazilian isolate of K. quasipneumoniae subsp. similipneumoniae, demonstrating the value of surveying insects as reservoirs of antibiotic resistance.
Collapse
Affiliation(s)
- Isabel N Carramaschi
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Cep 21040-360, Rio de Janeiro, RJ, Brazil
| | - Vítor Dos S B Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Cidade Universitária, Cep 21941-599, Rio de Janeiro, RJ, Brazil
| | - Thiago P G Chagas
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rua Marquês de Paraná, 303, Centro, Cep 24220-000, Niterói, RJ, Brazil
| | - Lais L Corrêa
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Cidade Universitária, Cep 21941-902, Rio de Janeiro, RJ, Brazil
| | - Renata C Picão
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Cidade Universitária, Cep 21941-902, Rio de Janeiro, RJ, Brazil
| | - Margareth M de C Queiroz
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Cep 21040-360, Rio de Janeiro, RJ, Brazil
| | - Karyne Rangel
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) Laboratório de Bioquímica de Proteínas e Peptídeos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Cep 21040-360, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Cep 21040-360, Rio de Janeiro, RJ, Brazil
| | - Fabio F da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Cep 21040-360, Rio de Janeiro, RJ, Brazil
| | - Viviane Zahner
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Cep 21040-360, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Oliveira ÉMD, Beltrão EMB, Scavuzzi AML, Barros JF, Lopes ACS. High plasmid variability, and the presence of IncFIB, IncQ, IncA/C, IncHI1B, and IncL/M in clinical isolates of Klebsiella pneumoniae with bla KPC and bla NDM from patients at a public hospital in Brazil. Rev Soc Bras Med Trop 2020; 53:e20200397. [PMID: 33111914 PMCID: PMC7580274 DOI: 10.1590/0037-8682-0397-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Antibiotic resistance in carbapenemase-producing Klebsiella
pneumoniae is acquired and disseminated mainly by plasmids.
Therefore, we aimed to investigate the occurrence of carbapenemase genes,
analyze the genetic diversity by ERIC-PCR, and examine the most common
plasmid incompatibility groups (Incs) in clinical isolates of K.
pneumoniae from colonization and infection in patients from a
hospital in Brazil. METHODS Twenty-seven isolates of carbapenem-resistant K. pneumoniae
were selected and screened for the presence of carbapenemase genes and Incs
by PCR, followed by amplicon sequencing. RESULTS The blaKPC and blaNDM genes were detected in 24 (88.8 %) and 16 (59.2 %) of the
isolates, respectively. Thirteen isolates (48.1 %) were positive for both
genes. The IncFIB (92.6 %) and IncQ (88.8 %) were the most frequent
plasmids, followed by IncA/C, IncHI1B, and IncL/M, indicating that plasmid
variability existed in these isolates. To our knowledge, this is the first
report of IncHI1B in Brazil. We found eight isolates with clonal
relationship distributed in different sectors of the hospital. CONCLUSIONS The accumulation of resistance determinants, the variability of plasmid
Incs, and the clonal dissemination detected in K.
pneumoniae isolates demonstrate their potential for infection,
colonization, and the dissemination of different resistance genes and
plasmids.
Collapse
Affiliation(s)
- Érica Maria de Oliveira
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área de Medicina Tropical, Recife, PE, Brasil
| | | | | | | | - Ana Catarina Souza Lopes
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área de Medicina Tropical, Recife, PE, Brasil
| |
Collapse
|
22
|
Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob Agents Chemother 2020; 64:e00397-20. [PMID: 32690645 PMCID: PMC7508574 DOI: 10.1128/aac.00397-20] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modern medicine is threatened by the global rise of antibiotic resistance, especially among Gram-negative bacteria. Metallo-β-lactamase (MBL) enzymes are a particular concern and are increasingly disseminated worldwide, though particularly in Asia. Many MBL producers have multiple further drug resistances, leaving few obvious treatment options. Nonetheless, and more encouragingly, MBLs may be less effective agents of carbapenem resistance in vivo, under zinc limitation, than in vitro Owing to their unique structure and function and their diversity, MBLs pose a particular challenge for drug development. They evade all recently licensed β-lactam-β-lactamase inhibitor combinations, although several stable agents and inhibitor combinations are at various stages in the development pipeline. These potential therapies, along with the epidemiology of producers and current treatment options, are the focus of this review.
Collapse
Affiliation(s)
- Sara E Boyd
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - David M Livermore
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Vivas R, Dolabella SS, Barbosa AAT, Jain S. Prevalence of Klebsiella pneumoniae carbapenemase - and New Delhi metallo-beta-lactamase-positive K. pneumoniae in Sergipe, Brazil, and combination therapy as a potential treatment option. Rev Soc Bras Med Trop 2020; 53:e20200064. [PMID: 32401864 PMCID: PMC7269519 DOI: 10.1590/0037-8682-0064-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Carbapenem-resistant Klebsiella pneumoniae infection lacks treatment options and is associated with prolonged hospital stays and high mortality rates. The production of carbapenemases is one of the most important factors responsible for this multi-resistance phenomenon. METHODS In the present study, we analyzed the presence of genes encoding carbapenemases in K. pneumoniae isolates circulating in one of the public hospitals in the city of Aracaju, Sergipe, Brazil. We also determined the best combination of drugs that display in vitro antimicrobial synergy. First, 147 carbapenem-resistant K. pneumoniae isolates were validated for the presence of blaKPC, bla GES, bla NDM, bla SPM, bla IMP, bla VIM, and bla OXA-48 genes using multiplex polymerase chain reaction. Thereafter, using two isolates (97 and 102), the role of double and triple combinational drug therapy as a treatment option was analyzed. RESULTS Seventy-four (50.3%) isolates were positive for bla NDM, eight (5.4%) for bla KPC, and one (1.2%) for both bla NDM and bla KPC. In the synergy tests, double combinations were better than triple combinations. Polymyxin B and amikacin for isolate 97 and polymyxin B coupled with meropenem for isolate 102 showed the best response. CONCLUSIONS Clinicians in normal practice use multiple drugs to treat infections caused by multi-resistant microorganism; however, in most cases, the benefit of the combinations is unknown. In vitro synergistic tests, such as those described herein, are important as they might help select an appropriate multi-drug antibiotic therapy and a correct dosage, ultimately reducing toxicities and the development of antibiotic resistance.
Collapse
Affiliation(s)
- Roberto Vivas
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
| | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
| | - Sona Jain
- Universidade Federal de Sergipe, Programa de Pós-Graduação em
Biologia Parasitária, São Cristóvão, SE, Brasil
- Universidade Tiradentes, Programa de Pós-Graduação em Biotecnologia
Industrial, Aracaju, SE, Brasil
| |
Collapse
|
24
|
Scavuzzi AML, Beltrão EMB, Firmo EF, de Oliveira ÉM, Beserra FG, Lopes ACDS. Emergence of bla VIM-2, bla NDM-1, bla IMP-7 and bla GES-1 in bla KPC-2-harbouring Pseudomonas aeruginosa isolates in Brazil. J Glob Antimicrob Resist 2019; 19:181-182. [PMID: 31542553 DOI: 10.1016/j.jgar.2019.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Alexsandra Maria Lima Scavuzzi
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50.732-970, Recife, PE, Brazil
| | - Elizabeth Maria Bispo Beltrão
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50.732-970, Recife, PE, Brazil
| | - Elza Ferreira Firmo
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50.732-970, Recife, PE, Brazil
| | - Érica Maria de Oliveira
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50.732-970, Recife, PE, Brazil
| | | | - Ana Catarina de Souza Lopes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, 50.732-970, Recife, PE, Brazil.
| |
Collapse
|
25
|
Firmo EF, Beltrão EMB, Silva FRFD, Alves LC, Brayner FA, Veras DL, Lopes ACS. Association of bla NDM-1 with bla KPC-2 and aminoglycoside-modifying enzyme genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J Glob Antimicrob Resist 2019; 21:255-261. [PMID: 31505299 DOI: 10.1016/j.jgar.2019.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Carbapenemase-producing Enterobacterales are frequently involved in healthcare-associated infections worldwide. The objectives of this study were to investigate (i) the frequency of the main genes encoding carbapenemases, 16S rRNA methylases and aminoglycoside-modifying enzymes (AMEs) as well as the mcr gene and (ii) the clonal relationship of enterobacteria isolates resistant to carbapenems and aminoglycosides from colonisation and infection in patients from hospitals in northeastern Brazil. METHODS Antimicrobial susceptibility was determined using an automated VITEK®2 system. Presence of carbapenemase, AME and 16S rRNA methylase genes as well as the mcr gene was determined by PCR and amplicon sequencing. Genetic variability was determined by ERIC-PCR. RESULTS A total of 35 isolates resistant to carbapenems and aminoglycosides were selected for this study. Klebsiella pneumoniae was most common (45.7%), followed by Proteus mirabilis (28.6%) and Serratia marcescens (25.7%). AME genes were found in 97.1% of isolates, most commonly aph(3')-VI and aac(6')-Ib. The blaNDM-1 and blaKPC-2 genes were detected in 25.7% and 88.6% of isolates, respectively; five isolates harboured these genes concomitantly. According to the literature, this is the first report of the association of blaNDM-1 and blaKPC-2 in P. mirabilis and S. marcescens in Brazil. The isolates showed a multiclonal profile by ERIC-PCR. CONCLUSION The emergence of blaNDM-1 associated with blaKPC-2 and AME genes in K. pneumoniae, P. mirabilis and S. marcescens isolates with a multiclonal profile is of concern as this limits therapeutic options. These results should alert medical authorities to establish rigorous detection methods to reduce the spread of these antimicrobial resistance genes.
Collapse
Affiliation(s)
- Elza Ferreira Firmo
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil
| | | | | | - Luis Carlos Alves
- Departamento de Parasitologia, Instituto Aggeu Magalhães - IAM/FIOCRUZ-PE, Recife, PE, Brazil
| | - Fábio André Brayner
- Departamento de Parasitologia, Instituto Aggeu Magalhães - IAM/FIOCRUZ-PE, Recife, PE, Brazil
| | - Dyana Leal Veras
- Departamento de Parasitologia, Instituto Aggeu Magalhães - IAM/FIOCRUZ-PE, Recife, PE, Brazil
| | - Ana Catarina Souza Lopes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil.
| |
Collapse
|