1
|
Fu J, Zhang P, Yin X, Zhu L, Zong G, Zhong C, Cao G. A scientific research training programme for teaching biomedical students to identify the horizontal transfer of antibiotic resistance genes. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01219-3. [PMID: 39499398 DOI: 10.1007/s12223-024-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
Worldwide prevalence of multi-antibiotic resistant bacteria is rapidly increasing, and the education of undergraduates and graduates about antibiotic resistance and its associated horizontal gene transfer is critical in the general effort to confront the spread of antibiotic resistance. In this study, a deeper understanding of antibiotic resistance and horizontal gene transfer was achieved by biomedical undergraduate students through a scientific research programme. The enthusiasm of students to participate in the training programme was very high, and results revealed that each student could identify the antibiotic resistance integrative and conjugative element from the Stenotrophomonas maltophilia MER1 genome. Each student could also draw the phylogenetic relationship of the antibiotic resistance integrative and conjugative element. In addition, students proved the horizontal transfer of antibiotic resistance genes from S. maltophilia MER1 to Escherichia coli strain 25DN through conjugation and PCR assays. Each group of students was able to obtain the expected results, indicating that the outcome of the scientific research programme was highly reproducible. This programme improved the theoretical knowledge about antibiotic resistance and horizontal gene transfer and the research skills of biomedical sciences students. Through this programme, students learned that antibiotic resistance genes can be horizontally transferred among different bacteria, laying a solid foundation for students to value the importance of the appropriate use of antibiotics in their future work and life.
Collapse
Affiliation(s)
- Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Xunzhe Yin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, China
| | | | - Gongli Zong
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan, China.
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China.
| |
Collapse
|
2
|
Huang Y, Cai Z, Lv L, Yue C, Liu JH. Emergence of mcr-8.1 gene coexisting with blaNDM in Citrobacter werkmanii isolated from a chicken farm in China. J Antimicrob Chemother 2024; 79:2392-2394. [PMID: 39028643 DOI: 10.1093/jac/dkae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Affiliation(s)
- Ying Huang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Zhongpeng Cai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Chao Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| |
Collapse
|
3
|
Zhang T, Wu H, Ma C, Yang Y, Li H, Yang Z, Zhou S, Shi D, Chen T, Yang D, Li J, Jin M. Emergence of colistin-resistant Stenotrophomonas maltophilia with high virulence in natural aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173221. [PMID: 38750746 DOI: 10.1016/j.scitotenv.2024.173221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
The presence of Stenotrophomonas maltophilia in aquatic environments poses great health risks to immunocompromised individuals because of its multidrug resistance and resultant high mortality. However, a significant gap exists in the isolation and understanding of colistin-resistant S. maltophilia in aquatic environments. In this study, nine colistin-resistant S. maltophilia strains isolated from natural lakes were explored, and their phylogenetic relationship, biofilm formation, virulence, and antibiotic resistance profiles and underlying genetic determinants were assessed. After genome analysis, besides known multi-locus sequence typing (MLST) of ST532, new assigned ST965 and ST966 which phylogenetically clustered into soil isolates were found firstly. All the isolates exhibited resistance to multiple antibiotics, including aminoglycosides, beta-lactams, tetracyclines, and even colistin, with the highest minimum inhibitory concentration (MIC) against colistin reaching 640 mg/L. Comparative genomic analysis revealed aph(3')-Iic, blaL1, tetT, phoP, mcr-3, arnA, pmrE, and efflux pump genes as the genetic determinants underlying this multidrug resistance. Notably, the biofilm-forming capacities of the newly discovered ST965 and ST966 isolates were significant stronger than those of the known ST532 isolates (p < 0.01), resulting in the death of over 50 % of the Galleria mellonella population within 1 day of injection. The ST965 isolates demonstrated the highest virulence against G. mellonella, followed by the ST966 isolates and ST532 isolates which was phylogenetically clustered with clinical isolates, indicating that the novel S. maltophilia strains of ST965 and ST966 may pose considerable health risks to humans. Our findings provide insights into colistin-resistant S. maltophilia in aquatic environments and raise concerns about the health risks posed by the newly assigned sequence types of colistin-resistant S. maltophilia with potential high virulence in natural aquatic environments.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Haiyan Wu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Chenchen Ma
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Yidi Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China.
| |
Collapse
|
4
|
Sapula SA, Hart BJ, Siderius NL, Amsalu A, Blaikie JM, Venter H. Multidrug-resistant Stenotrophomonas maltophilia in residential aged care facilities: An emerging threat. Microbiologyopen 2024; 13:e1409. [PMID: 38682784 PMCID: PMC11057060 DOI: 10.1002/mbo3.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant (MDR), Gram-negative bacterium intrinsically resistant to beta-lactams, including last-resort carbapenems. As an opportunistic pathogen, it can cause serious healthcare-related infections. This study assesses the prevalence, resistance profiles, and genetic diversity of S. maltophilia isolated from residential aged care facilities (RACFs). RACFs are known for their overuse and often inappropriate use of antibiotics, creating a strong selective environment that favors the development of bacterial resistance. The study was conducted on 73 S. maltophilia isolates recovered from wastewater and facility swab samples obtained from three RACFs and a retirement village. Phenotypic and genotypic assessments of the isolates revealed high carbapenem resistance, exemplifying their intrinsic beta-lactam resistance. Alarmingly, 49.3% (36/73) of the isolates were non-wild type for colistin, with minimum inhibitory concentration values of > 4 mg/L, and 11.0% (8/73) were resistant to trimethoprim-sulfamethoxazole. No resistance mechanisms were detected for either antimicrobial. Genotypic assessment of known lineages revealed isolates clustering with Sm17 and Sm18, lineages not previously reported in Australia, suggesting the potential ongoing spread of MDR S. maltophilia. Lastly, although only a few isolates were biocide tolerant (2.7%, 2/73), their ability to grow in high concentrations (64 mg/L) of triclosan is concerning, as it may be selecting for their survival and continued dissemination.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Department of Medical MicrobiologyUniversity of GondarGondarEthiopia
| | - Jack M. Blaikie
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
Stelmaszyk L, Stange C, Hügler M, Sidhu JP, Horn H, Tiehm A. Quantification of β-lactamase producing bacteria in German surface waters with subsequent MALDI-TOF MS-based identification and β-lactamase activity assay. Heliyon 2024; 10:e27384. [PMID: 38486766 PMCID: PMC10937694 DOI: 10.1016/j.heliyon.2024.e27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum β-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of β-lactams was applied to quantify β-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant β-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of β-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of β-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Lara Stelmaszyk
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Michael Hügler
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Jatinder P.S. Sidhu
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, 41 Boggo Road, Brisbane, Australia
| | - Harald Horn
- Karlsruher Institut für Technologie, Engler-Bunte Institute, Wasserchemie und Wassertechnologie, Engler-Bunte-Ring 9a, Karlsruhe, Germany
| | - Andreas Tiehm
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| |
Collapse
|
6
|
Zhu X, Wang X, Wang F, Tian X, Pang J. The integrative and conjugative element ICECiPOL15 mediates horizontal transfer of β-lactam resistance gene in Chryseobacterium indoltheticum POL15. J Glob Antimicrob Resist 2024; 36:223-229. [PMID: 38185239 DOI: 10.1016/j.jgar.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVES The dissemination of antibiotic resistance genes (ARGs) from the environment, including agricultural sources, is of increasing concern. In this study, we examined the antibiotic resistance profile and genomic sequence of a strain of Chryseobacterium indoltheticum obtained from an agricultural location. METHODS The multidrug-resistant bacterial strain POL15 was isolated from the wastewater of a livestock farm in China. Whole-genome sequencing was performed followed by bioinformatics analyses to identify integrative and conjugative elements (ICEs) and ARGs. Mating assays were performed to analyse ICE transferability. RESULTS Whole-genome sequencing and annotation showed that the genome of POL15 encodes ARGs. Additionally, an ICE named ICECiPOL15, which carries a class C β-lactamase-encoding gene blaAQU, was identified in the POL15 genome. Genes encoding an integrase, an excisionase, a relaxase, a type IV coupling protein and conjugative transposon proteins involved in a type IV secretion system were also identified in ICECiPOL15. Sequence alignment revealed that ICECiPOL15 might have evolved from other Chryseobacterium species. The horizontal transferability of ICECiPOL15 was demonstrated by mating experiments between C. indoltheticum POL15 and Escherichia coli DL21. CONCLUSIONS This study represents the first characterization of a mobilizable antibiotic resistance ICE in a species of C. indoltheticum and provides evidence that C. indoltheticum strains could be important reservoirs and vehicles for ARGs on livestock farms.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Shandong Center for Disease Control and Prevention, Ji'nan, 250014, China
| | - Xiangpeng Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Fengtian Wang
- Jinan Municipal Minzu Hospital, Ji'nan, 250001, China
| | - Xinyi Tian
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Jingxiang Pang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
| |
Collapse
|
7
|
Zhong C, Deng X, Jiang A, Liu Y, Liu Y, Fu J, Cao G. The Cell Envelope Integrity Protein Homologue D0Y85_RS06240 of Stenotrophomonas Confers Multiantibiotic Resistance. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:7547514. [PMID: 38283082 PMCID: PMC10821804 DOI: 10.1155/2024/7547514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Background The potential role of cell envelope integrity proteins in mediating antibiotic resistance is not well understood. In this study, we investigated whether the cell envelope integrity protein D0Y85_RS06240 from the multiantibiotic resistant strain Stenotrophomonas sp. G4 mediates antibiotic resistance. Methods Bioinformatics analysis was conducted to identify proteins related to the D0Y85_RS06240 protein. The D0Y85_RS06240 gene was heterologously expressed in Escherichia coli, both antibiotic MICs and the effect of efflux pump inhibitors on antibiotic MICs were determined by the broth microdilution method. A combination of antibiotic and efflux pump inhibitor was used to investigate bacterial killing kinetics, and binding of D0Y85_RS06240 to antibiotic molecules was predicted by molecular docking analysis. Results Sequence homology analysis revealed that D0Y85_RS06240 was related to cell envelope integrity proteins. The D0Y85_RS06240 heterologous expression strains were resistant to multiple antibiotics, including colistin, tetracycline, and cefixime. However, the efflux pump inhibitor N-methylpyrrolidone (NMP) reduced the antibiotic MICs of the D0Y85_RS06240 heterologous expression strain, and bacterial killing kinetics revealed that NMP enhanced the bactericidal rate of tetracycline to the drug-resistant bacteria. Molecular docking analysis indicated that D0Y85_RS06240 could bind colistin, tetracycline, and cefixime. Conclusion The cell envelope integrity protein D0Y85_RS06240 in Stenotrophomonas sp. G4 mediates multiantibiotic resistance. This study lays the foundation for an in-depth analysis of D0Y85_RS06240-mediated antibiotic resistance mechanisms and the use of D0Y85_RS06240 as a target for the treatment of multiantibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Xiaoqiang Deng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Aihua Jiang
- Jinan Urban and Rural Water Bureau, Ji'nan 250099, China
| | - Yayu Liu
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Yuanyuan Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Jiafang Fu
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Guangxiang Cao
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| |
Collapse
|
8
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Karim MR, Zakaria Z, Hassan L, Faiz NM, Ahmad NI. The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. Front Microbiol 2023; 14:1208314. [PMID: 37601372 PMCID: PMC10435970 DOI: 10.3389/fmicb.2023.1208314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The advent of antimicrobials-resistant (AMR), including colistin-resistant bacteria, poses a significant challenge to animal and human health, food safety, socio-economic growth, and the global environment. This study aimed to ascertain the colistin resistance prevalence and molecular mechanisms of colistin resistance in Enterobacteriaceae. The colistin resistance was determined using broth microdilution assay, PCR; and Sanger sequencing of mcr genes responsible for colistin resistance in Enterobacteriaceae (n = 627), including Escherichia coli (436), Salmonella spp. (n = 140), and Klebsiella pneumoniae (n = 51), obtained from chicken and chicken meats. Out of 627 Enterobacteriaceae, 8.6% of isolates exhibited colistin resistance phenotypically. Among these colistin resistant isolates, 9.3% (n = 37) were isolated from chicken meat, 7.2% (n = 11) from the cloacal swab of chicken and 7.9% (n = 6) from the litter samples. Overall, 12.96% of colistin-resistant isolates were positive with mcr genes, in which mcr-1 and mcr-5 genes were determined in 11.11% and 1.85% of colistin-resistant isolates, respectively. The E. coli isolates obtained from chicken meats, cloacal swabs and litter samples were found positive for mcr-1, and Salmonella spp. originated from the chicken meat sample was observed with mcr-5, whereas no mcr genes were observed in K. pneumoniae strains isolated from any of the collected samples. The other colistin resistance genes, including mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were not detected in the studied samples. The mcr-1 and mcr-5 genes were sequenced and found to be 100% identical to the mcr-1 and mcr-5 gene sequences available in the NCBI database. This is the first report of colistin resistance mcr-5 gene in Malaysia which could portend the emergence of mcr-5 harboring bacterial strains for infection. Further studies are needed to characterize the mr-5 harbouring bacteria for the determination of plasmid associated with mcr-5 gene.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Nik Mohd Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Cahill N, Hooban B, Fitzhenry K, Joyce A, O'Connor L, Miliotis G, McDonagh F, Burke L, Chueiri A, Farrell ML, Bray JE, Delappe N, Brennan W, Prendergast D, Gutierrez M, Burgess C, Cormican M, Morris D. First reported detection of the mobile colistin resistance genes, mcr-8 and mcr-9, in the Irish environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162649. [PMID: 36906027 DOI: 10.1016/j.scitotenv.2023.162649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The emergence and dissemination of mobile colistin resistance (mcr) genes across the globe poses a significant threat to public health, as colistin remains one of the last line treatment options for multi-drug resistant infections. Environmental samples (157 water and 157 wastewater) were collected in Ireland between 2018 and 2020. Samples collected were assessed for the presence of antimicrobial resistant bacteria using Brilliance ESBL, Brilliance CRE, mSuperCARBA and McConkey agar containing a ciprofloxacin disc. All water and integrated constructed wetland influent and effluent samples were filtered and enriched in buffered peptone water prior to culture, while wastewater samples were cultured directly. Isolates collected were identified via MALDI-TOF, were tested for susceptibility to 16 antimicrobials, including colistin, and subsequently underwent whole genome sequencing. Overall, eight mcr positive Enterobacterales (one mcr-8 and seven mcr-9) were recovered from six samples (freshwater (n = 2), healthcare facility wastewater (n = 2), wastewater treatment plant influent (n = 1) and integrated constructed wetland influent (piggery farm waste) (n = 1)). While the mcr-8 positive K. pneumoniae displayed resistance to colistin, all seven mcr-9 harbouring Enterobacterales remained susceptible. All isolates demonstrated multi-drug resistance and through whole genome sequencing analysis, were found to harbour a wide variety of antimicrobial resistance genes i.e., 30 ± 4.1 (10-61), including the carbapenemases, blaOXA-48 (n = 2) and blaNDM-1 (n = 1), which were harboured by three of the isolates. The mcr genes were located on IncHI2, IncFIIK and IncI1-like plasmids. The findings of this study highlight potential sources and reservoirs of mcr genes in the environment and illustrate the need for further research to gain a better understanding of the role the environment plays in the persistence and dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland.
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Niall Delappe
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Deirdre Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland; National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Yang X, Shu R, Hou L, Ren P, Lu X, Huang Z, Zhong Z, Wang H. mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics (Basel) 2022; 11:antibiotics11070875. [PMID: 35884129 PMCID: PMC9311533 DOI: 10.3390/antibiotics11070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Colistin is regarded as an antibiotic of last resort against multidrug-resistant Gram-negative bacteria, including Klebsiella pneumoniae and Escherichia coli. Colistin resistance is acquired by microorganisms via chromosome-mediated mutations or plasmid-mediated mobile colistin resistance (mcr) gene, in which the transfer of mcr is the predominant factor underlying the spread of colistin resistance. However, the factors that are responsible for the spread of the mcr gene are still unclear. In this study, we observed that mcr-1 inhibited the transfer of the pHNSHP45 backbone in liquid mating. Similar inhibitory effect of mcr-1.6 and chromosomal mutant ΔmgrB suggested that colistin resistance, acquired from either plasmid or chromosomal mutation, hindered the transfer of colistin resistance-related plasmid in vitro. Dual plasmid system further proved that co-existing plasmid transfer was reduced too. However, this inhibitory effect was reversed in vivo. Some factors in the gut, including bile salt and anaerobic conditions, could increase the transfer frequency of the mcr-1-containing plasmid. Our results demonstrated the potential risk for the spread of colistin resistance in the intestine, provide a scientific basis against the transmission of colistin resistance threat.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Rundong Shu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Leqi Hou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Panpan Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China;
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Correspondence: ; Tel.: +86-25-84396645
| |
Collapse
|
12
|
Dierikx CM, Meijs AP, Hengeveld PD, van der Klis FRM, van Vliet J, Gijsbers EF, Rozwandowicz M, van Hoek AHAM, Hendrickx APA, Hordijk J, Van Duijkeren E. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac041. [PMID: 35445193 PMCID: PMC9015910 DOI: 10.1093/jacamr/dlac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Plasmid-mediated colistin resistance can be transferred from animals to humans. We investigated the prevalence of carriage of mcr-mediated colistin-resistant Escherichia coli and Klebsiella pneumoniae (ColR-E/K) in veterinary healthcare workers and in the general population in the Netherlands. Methods Two cross-sectional population studies were performed: one among veterinary healthcare workers and one in the general population. Participants sent in a faecal sample and filled in a questionnaire. Samples were analysed using selective enrichment and culture. Mobile colistin resistance genes (mcr) were detected by PCR and ColR-E/K were sequenced using Illumina and Nanopore technologies. Results The prevalence of mcr-mediated ColR-E/K was 0.2% (1/482, 95% CI 0.04%–1.17%) among veterinary personnel and 0.8% (5/660, 95% CI 0.3%–1.8%) in the population sample. mcr-1 was found in E. coli from four persons, mcr-8 in K. pneumoniae from one person and another person carried both mcr-1 and mcr-8 in a K. pneumoniae isolate. mcr-1 was found on different plasmid types (IncX4, IncI1 and IncI2), while mcr-8 was found on IncF plasmids only. Conclusions mcr-mediated ColR-E/K resistance was uncommon in both populations. Professional contact with animals does not increase the chance of carriage of these bacteria in the Netherlands at present. mcr-8 was found for the first time in the Netherlands. Surveillance of colistin resistance and its underlying mechanisms in humans, livestock and food is important in order to identify emerging trends in time.
Collapse
Affiliation(s)
- C. M. Dierikx
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
- Corresponding author. E-mail:
| | - A. P. Meijs
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - P. D. Hengeveld
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - F. R. M. van der Klis
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - J. van Vliet
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - E. F. Gijsbers
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - M. Rozwandowicz
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - A. H. A. M. van Hoek
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - A. P. A. Hendrickx
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - J. Hordijk
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - E. Van Duijkeren
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| |
Collapse
|
13
|
Abstract
This paper presents the first description of the mcr-5.1 gene in a colistin-resistant Cupriavidus gilardii isolate from well water that supplies a maternity hospital in Algeria. The whole-genome sequence of this strain showed the presence of putative β-lactamase, aac(3)-IVa, and multidrug efflux pump-encoding genes, which could explain the observed multidrug resistance phenotype. Our findings are of great interest, as we highlight a potential contamination route for the spread of mcr genes. IMPORTANCE Colistin resistance mediated by mcr genes in Gram-negative bacteria has gained significant attention worldwide. This is due to the ability of these genes to be horizontally transferred between different bacterial genera and species. Aquatic environments have been suggested to play an important role in the emergence and spread of this resistance mechanism. Here, we describe the first report of an mcr-5-positive Cupriavidus gilardii aquatic isolate through its isolation from well water in Algeria. The significance of our study is in shedding the light on an important environmental reservoir of mcr genes.
Collapse
|
14
|
Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, Mohebi S, Moghadam MT. Bacteriophage as a Novel Therapeutic Weapon for Killing Colistin-Resistant Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Bacteria. Curr Microbiol 2021; 78:4023-4036. [PMID: 34633487 PMCID: PMC8503728 DOI: 10.1007/s00284-021-02662-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Colistin-resistant multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria are highly lethal and many researchers have tried hard to combat these microorganisms around the world. Infections caused by these bacteria are resistant to the last resort of antibiotic therapy and have posed a major challenge in clinical and public health. Since the production of new antibiotics is very expensive and also very slow compared to the increasing rate of antibiotic resistance, researchers are suggesting the use of natural substances with high antibacterial potential. Bacteriophages are one of the most effective therapeutic measures that are known to exist for use for incurable and highly resistant infections. Phages are highly taken into consideration due to the lack of side effects, potential spread to various body organs, distinct modes of action from antibiotics, and proliferation at the site of infection. Although the effects of phages on MDR and XDR bacteria have been demonstrated in various studies, only a few have investigated the effect of phage therapy on colistin-resistant isolates. Therefore, in this review, we discuss the problems caused by colistin-resistant MDR and XDR bacteria in the clinics, explain the different mechanisms associated with colistin resistance, introduce bacteriophage therapy as a powerful remedy, and finally present new studies that have used bacteriophages against colistin-resistant isolates.
Collapse
Affiliation(s)
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moradi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Saina Karami
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Shahbandeh
- Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Maryam Mirshekar
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Epidemiology of mobile colistin resistance (mcr) genes in aquatic environments. J Glob Antimicrob Resist 2021; 27:51-62. [PMID: 34438108 DOI: 10.1016/j.jgar.2021.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 02/05/2023] Open
Abstract
Colistin is one of the last-line therapies against multidrug-resistant Gram-negative pathogens, especially carbapenemase-producing isolates, making resistance to this compound a major global public-health crisis. Until recently, colistin resistance in Gram-negative bacteria was known to arise only by chromosomal mutations. However, a plasmid-mediated colistin resistance mechanism was described in late 2015. This mechanism is encoded by different mobile colistin resistance (mcr) genes that encode phosphoethanolamine (pEtN) transferases. These enzymes catalyse the addition of a pEtN moiety to lipid A in the bacterial outer membrane leading to colistin resistance. MCR-producing Gram-negative bacteria have been largely disseminated worldwide. However, their environmental dissemination has been underestimated. Indeed, water environments act as a connecting medium between different environments, allowing them to play a crucial role in the spread of antibiotic resistance between the natural environment and humans and other animals. For a better understanding of the role of such environments as reservoirs and/or dissemination routes of mcr genes, this review discusses primarily the various water habitats contributing to the spread of antibiotic resistance. Thereafter, we provide an overview of existing knowledge regarding the global epidemiology of mcr genes in water environments. This review confirms the global distribution of mcr genes in several water environments, including wastewater from different origins, surface water and tap water, making these environments reservoirs and dissemination routes of concern for this resistance mechanism.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
16
|
Xie L, Zhou A, Zhao J, Tang Y, Zhao R, Zhou Y, Cao G, Zhong C, Li J. Comparative insights into multiple drug resistance determinants in Stenotrophomonas maltophilia MER1. J Glob Antimicrob Resist 2021; 27:20-25. [PMID: 34365056 DOI: 10.1016/j.jgar.2021.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multidrug-resistant (MDR) Stenotrophomonas maltophilia strain MER1 was isolated from hospital wastewater in Shandong Province, China. This study aimed to determine the genetic determinants related to its striking MDR phenotype. METHODS Antimicrobial susceptibility testing of strain MER1 was performed by disk diffusion on Mueller-Hinton agar plates, and MICs were interpreted according to Clinical and Laboratory Standards Institute breakpoints. The genome of MER1 was sequenced and assembled using PacBio RS II and BGISEQ-500 platforms. Antimicrobial resistance determinants together with other transferability or adaptability determinants were identified by comparative genomics. Phylogenetic and contextual assays for these elements were conducted to assess the risk of spread of MER1. RESULTS Antimicrobial susceptibility testing revealed that strain MER1 is resistant to nine different antibiotics, including ampicillin, meropenem, amikacin, erythromycin, vancomycin, tetracycline, tigecycline, colistin and ceftazidime. Several genes were identified encoding efflux pumps and drug-inactivating agents, accounting for resistance to the above antibiotics, including meropenem, tigecycline and colistin regarded as last-line therapies for infections caused by MDR Gram-negative bacteria. MER1 co-harbours two non-mobile mcr homologues. A novel genomic region of variability was demonstrated to confer bacterial robustness and adaptability upon strain MER1. CONCLUSION Collective efforts revealed the MDR properties and potential genetic determinants of S. maltophilia MER1 isolated from hospital wastewater. Comparative genomic analysis of S. maltophilia MER1 may provide insights into the prevention and treatment of antimicrobial-resistant infections. Our findings raise concern that the MDR genes in the reservoir of S. maltophilia may further spread into various ecological niches or medically high-risk pathogens.
Collapse
Affiliation(s)
- Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuhang Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China.
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
17
|
Dao TL, Hoang VT, Magmoun A, Ly TDA, Baron SA, Hadjadj L, Canard N, Drali T, Gouriet F, Raoult D, Parola P, Marty P, Rolain JM, Gautret P. Acquisition of multidrug-resistant bacteria and colistin resistance genes in French medical students on internships abroad. Travel Med Infect Dis 2020; 39:101940. [PMID: 33248262 DOI: 10.1016/j.tmaid.2020.101940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/31/2020] [Accepted: 11/22/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Acquisition of multidrug resistant bacteria (MDR) and colistin resistance genes by international travellers has been demonstrated. Studies conducted in medical students during internships abroad are scant. METHODS Nasopharyngeal, rectal, and vaginal swabs samples were collected from 382 French medical students before and after travel to investigate the acquisition of MDR bacteria. The bacterial diversity in the samples was assessed by culture on selective media. We also genetically characterised the isolates of MDR bacteria including Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E), methicillin-resistant Staphylococcus aureus (MRSA), and Carbapenemase-producing Enterobacteriacae (CPE) using the real-time polymerase chain reaction method. The samples were collected from 293 students and were investigated for mcr colistin-resistance genes using RT-PCR directly on the samples, followed by conventional PCR and sequencing. RESULTS A proportion of 29.3% (112/382) of the participants had acquired ESBL-E and 2.6% (10/382) had acquired CPE. The most common species and ESBL-E encoding gene were Escherichia coli (125/127 isolates, 98.4%) and blaCTX-M-A (121/127, 95.3%), respectively. A proportion of 6.8% (20/293) of the participants had acquired mcr-1 genes, followed by mcr-3 (1/293, 0.3%) and mcr-8 (1/293, 0.3%). We found that taking part in humanitarian missions to orphanages (aRR = 2.01, p < 0.0001), being in contact with children during travel (aRR = 1.78, p = 0.006), the primary destination of travel being Vietnam (aRR = 2.15, p < 0.0001) and north India (aRR = 2.41, p = 0.001), using antibiotics during travel (aRR = 1.77, p = 0.01), and studying in 2018 (aRR = 1.55, p = 0.03) were associated with the acquisition of ESBL-E. When the primary destination of travel was Vietnam (aRR = 2.74, p < 0.0001) and the year of study was 2018 (aRR = 1.93, p < 0.002), this was associated with acquisition of colistin resistance genes. CONCLUSION Medical students are at a potential risk of acquiring ESBL-E, CPE and colistin resistance genes. A number of risk factors have been identified, which may be used to develop targeted preventive measures.
Collapse
Affiliation(s)
- Thi Loi Dao
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Van Thuan Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Amal Magmoun
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Tran Duc Anh Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Linda Hadjadj
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Naomie Canard
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Tassadit Drali
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Frédérique Gouriet
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Pierre Marty
- Université Côte D'Azur, Inserm, C3M, Nice Cedex 3, France; Parasitologie-Mycologie, Centre Hospitalier Universitaire L'Archet, Nice Cedex 3, France
| | - Jean-Marc Rolain
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
18
|
Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. Microbiol Resour Announc 2020; 9:9/39/e00783-20. [PMID: 32972937 PMCID: PMC7516148 DOI: 10.1128/mra.00783-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya. The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya.
Collapse
|
19
|
Zhang P, Liu M, Fu J, Zhong C, Zong G, Cao G. Identification of a mobilizable, multidrug-resistant genomic island in Myroides odoratimimus isolated from Tibetan pasture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137970. [PMID: 32217404 DOI: 10.1016/j.scitotenv.2020.137970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Strains of the environmental bacterium Myroides odoratimimus can cause human infections. However, treating M. odoratimimus infections can be difficult because of multidrug resistance in this organism. In this study, we isolated strain M. odoratimimus G13 from pastureland in Tibet, China. The minimum inhibitory concentration analysis suggested that strain G13 has resistance to multiple antibiotics, with an MIC for tetracycline of 168 mg/L. Whole-genome sequencing and bioinformatic analysis revealed that the genome of G13 was rich in virulence factor-encoding genes and antibiotic resistance genes (ARGs). The mobilizable genomic island MGI1313 was also identified and characterized, and six resistance genes related to four types of antibiotics were annotated in MGI1313. Conjugation assays indicated that MGI1313 could be transferred from G13 to Escherichia coli 25DN by horizontal gene transfer, resulting in multidrug-resistant E. coli conjugants. In conclusion, multidrug-resistant M. odoratimimus G13 and the mobility of MGI1313 raise the risk of difficult-to-treat bacterial infections and should be under close surveillance.
Collapse
Affiliation(s)
- Peipei Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Department of Epidemiology, the First Affiliated Hospital of Shandong First Medical University, Jinan 250062, China; Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jiafang Fu
- Department of Epidemiology, the First Affiliated Hospital of Shandong First Medical University, Jinan 250062, China; Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China; Key Laboratory for Biotech-Drugs of National Health Commission, Jinan 250062, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Gongli Zong
- Department of Epidemiology, the First Affiliated Hospital of Shandong First Medical University, Jinan 250062, China; Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China; Key Laboratory for Biotech-Drugs of National Health Commission, Jinan 250062, China
| | - Guangxiang Cao
- Department of Epidemiology, the First Affiliated Hospital of Shandong First Medical University, Jinan 250062, China; Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
20
|
Fleres G, Couto N, Schuele L, Chlebowicz MA, Mendes CI, van der Sluis LWM, Rossen JWA, Friedrich AW, García-Cobos S. Detection of a novel mcr-5.4 gene variant in hospital tap water by shotgun metagenomic sequencing. J Antimicrob Chemother 2020; 74:3626-3628. [PMID: 31504580 PMCID: PMC6857192 DOI: 10.1093/jac/dkz363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Giuseppe Fleres
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Leonard Schuele
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Monika A Chlebowicz
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Catarina I Mendes
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Luc W M van der Sluis
- Center of Dentistry and Oral Hygiene, University Medical Center Groningen, 9712 CP Groningen, The Netherlands
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Alex W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| |
Collapse
|
21
|
Fu J, Zhong C, Zhang P, Zong G, Liu M, Cao G. Novel Mobilizable Genomic Island GEI-D18A Mediates Conjugational Transfer of Antibiotic Resistance Genes in the Multidrug-Resistant Strain Rheinheimera sp. D18. Front Microbiol 2020; 11:627. [PMID: 32318052 PMCID: PMC7155750 DOI: 10.3389/fmicb.2020.00627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Aquatic environments act as reservoirs of antimicrobial-resistant bacteria and antimicrobial resistance (AMR) genes, and the dissemination of antibiotic resistance from these environments is of increasing concern. In this study, a multidrug-resistant bacterial strain, identified as Rheinheimera sp. D18, was isolated from the sea water of an industrial maricultural system in the Yellow Sea, China. Whole-genome sequencing of D18 revealed the presence of a novel 25.8 kb antibiotic resistance island, designated GEI-D18A, which carries several antibiotic resistance genes (ARGs), including aadA1, aacA3, tetR, tet(B), catA, dfrA37, and three sul1 genes. Besides, integrase, transposase, resolvase, and recombinase encoding genes were also identified in GEI-D18A. The transferability of GEI-D18A was confirmed by mating experiments between Rheinheimera sp. D18 and Escherichia coli 25DN, and efflux pump inhibitor assays also suggested that tet(B) in GEI-D18A was responsible for tetracycline resistance in both D18 and the transconjugant. This study represents the first characterization of a mobilizable antibiotic resistance island in a species of Rheinheimera and provides evidence that Rheinheimera spp. could be important reservoirs and vehicles for ARGs in the Yellow Sea area.
Collapse
Affiliation(s)
- Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Key Laboratory for Biotech-Drugs of National Health Commission, Jinan, China
| | - Meng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
22
|
Khedher MB, Baron SA, Riziki T, Ruimy R, Raoult D, Diene SM, Rolain JM. Massive analysis of 64,628 bacterial genomes to decipher water reservoir and origin of mobile colistin resistance genes: is there another role for these enzymes? Sci Rep 2020; 10:5970. [PMID: 32249837 PMCID: PMC7136264 DOI: 10.1038/s41598-020-63167-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 11/09/2022] Open
Abstract
Since 2015, new worrying colistin resistance mechanism, mediated by mcr-1 gene has been reported worldwide along with eight newly described variants but their source(s) and reservoir(s) remain largely unexplored. Here, we conducted a massive bioinformatic analysis of bacterial genomes to investigate the reservoir and origin of mcr variants. We identified 13'658 MCR-1 homologous sequences in 494 bacterial genera. Moreover, analysis of 64'628 bacterial genomes (60 bacterial genera and 1'047 species) allows identifying a total of 6'651 significant positive hits (coverage >90% and similarity >50%) with the nine MCR variants from 39 bacterial genera and more than 1'050 species. A high number of MCR-1 was identified in Escherichia coli (n = 862). Interestingly, while almost all variants were identified in bacteria from different sources (i.e. human, animal, and environment), the last variant, MCR-9, was exclusively detected in bacteria from human. Although these variants could be identified in bacteria from human and animal sources, we found plenty MCR variants in unsuspected bacteria from environmental origin, especially from water sources. The ubiquitous presence of mcr variants in bacteria from water likely suggests another role in the biosphere of these enzymes as an unknown defense system against natural antimicrobial peptides and/or bacteriophage predation.
Collapse
Affiliation(s)
- Mariem Ben Khedher
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
- IHU-Mediterranee Infection, Marseille, France
| | - Toilhata Riziki
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
| | - Raymond Ruimy
- Centre Hospitalier Universitaire de Nice, Laboratoire de bactériologie, Nice, France
| | - Didier Raoult
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France
- IHU-Mediterranee Infection, Marseille, France
| | - Seydina M Diene
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France.
- IHU-Mediterranee Infection, Marseille, France.
| | - Jean-Marc Rolain
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU-Mediterranee Infection, Marseille, France.
- IHU-Mediterranee Infection, Marseille, France.
| |
Collapse
|
23
|
Gil-Gil T, Martínez JL, Blanco P. Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Expert Rev Anti Infect Ther 2020; 18:335-347. [PMID: 32052662 DOI: 10.1080/14787210.2020.1730178] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections.
Collapse
Affiliation(s)
| | | | - Paula Blanco
- Molecular Basis of Adaptation Laboratory, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Antibiotic Resistance Surveillance of Clinical Isolates of Stenotrophomonas maltophilia Strains in the Central South of China from 2016 to 2019. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.94647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Hadjadj L, Baron SA, Olaitan AO, Morand S, Rolain JM. Co-occurrence of Variants of mcr-3 and mcr- 8 Genes in a Klebsiella pneumoniae Isolate From Laos. Front Microbiol 2019; 10:2720. [PMID: 31849875 PMCID: PMC6887894 DOI: 10.3389/fmicb.2019.02720] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Colistin is considered as a last resort antibiotic. The re-use of this antibiotic highlighted the emergence of colistin resistance mediated by chromosomal and plasmidic resistance mechanisms. Five colistin-resistant Klebsiella pneumoniae strains from Laos and Thailand were analyzed by Next Generation Sequencing (NGS) approaches to determine their colistin resistance mechanisms. Antimicrobial susceptibility testing, conjugation and transformation were performed on these strains. Moreover, whole genome sequencing (WGS) combining Illumina (MiSeq) and Oxford Nanopore technologies (MinION) was realized to obtain closed genomes and plasmids. Resistome analyses as well as location of mcr genes and its genetic environments were done in silico. All five strains had colistin MIC of 32 mg/L and were positive for mcr-3 variants including additionally positive for a mcr-8 variant gene. The novel variants were named mcr-3.21, mcr-3.26, mcr-3.28, and mcr-8.3 genes. The mcr-3 variants genes were located on plasmids IncP1, IncFII, and IncI1 type, while mcr-8.3 gene was found on an IncFII type plasmid. The genetic environment of mcr-3.21 and mcr-3.26 genes were composed of a composite transposon ISKpn40- mcr-3-dgkA- ISKpn40. Concerning mcr-8.3 gene, a similar genetic environment of mcr-8.1 gene surrounded by ISIX2 and IS903B was observed. To the best of our knowledge, this is the first description of the novel variants mcr-3.21, mcr-3.26, mcr-3.28 and mcr-8.3 genes as well as the first study on co-occurrence of mcr-3 and mcr-8 genes. Spread and evolution of mcr genes should be monitored.
Collapse
Affiliation(s)
- Linda Hadjadj
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Abiola Olumuyiwa Olaitan
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Évolution, CNRS-IRD-UM2, CC065, Université Montpellier 2, Montpellier, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|