1
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|
2
|
Kawasuji H, Ikezawa Y, Morita M, Sugie K, Somekawa M, Ezaki M, Koshiyama Y, Takegoshi Y, Murai Y, Kaneda M, Kimoto K, Nagaoka K, Niimi H, Morinaga Y, Yamamoto Y. High Incidence of Metastatic Infections in Panton-Valentine Leucocidin-Negative, Community-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia: An 11-Year Retrospective Study in Japan. Antibiotics (Basel) 2023; 12:1516. [PMID: 37887217 PMCID: PMC10604685 DOI: 10.3390/antibiotics12101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Panton-Valentine leucocidin (PVL)-negative community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was originally disseminated in Japan and has since replaced healthcare-associated MRSA (HA-MRSA). However, the clinical characteristics of CA-MRSA bacteremia (CA-MRSAB) compared with those of HA-MRSA bacteremia (HA-MRSAB) are unknown. We aim to clarify differences and investigate associations between the clinical manifestations and virulence genes associated with plasma-biofilm formation in PVL-negative CA-MRSA. From 2011 to 2021, when CA-MRSA dramatically replaced HA-MRSA, 79 MRSA strains were collected from blood cultures and analyzed via SCCmec typing and targeted virulence gene (lukSF-PV, cna, and fnbB) detection. The incidence of metastatic infection was significantly higher in CA-MRSAB than in HA-MRSAB. PVL genes were all negative, although cna and fnbB were positive in 55.6% (20/36) and 50% (18/36) of CA-MRSA strains and 3.7% (1/27) and 7.4% (2/27) of HA-MRSA strains, respectively. cna and fnbB carriage were not associated with the development of metastatic infections in MRSAB; however, the bacteremia duration was significantly longer in CA-MRSAB harboring cna. CA-MRSAB may be more likely to cause metastatic infections than HA-MRSAB. Since CA-MRSA is dominant in Japan, suspected metastatic infection foci should be identified by computed tomography, magnetic resonance imaging, and echocardiography when treating MRSAB.
Collapse
Affiliation(s)
- Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Yoshihiro Ikezawa
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Mika Morita
- Department of Clinical Laboratory and Molecular Pathology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Kazushige Sugie
- Department of Clinical Laboratory and Molecular Pathology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Mayu Somekawa
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Masayoshi Ezaki
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Yuki Koshiyama
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Yusuke Takegoshi
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Yushi Murai
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Makito Kaneda
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Kou Kimoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Kentaro Nagaoka
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Loyola-Cruz MÁ, Gonzalez-Avila LU, Martínez-Trejo A, Saldaña-Padilla A, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023; 12:pathogens12050743. [PMID: 37242413 DOI: 10.3390/pathogens12050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The ESKAPE group constitute a threat to public health, since these microorganisms are associated with severe infections in hospitals and have a direct relationship with high mortality rates. The presence of these bacteria in hospitals had a direct impact on the incidence of healthcare-associated coinfections in the SARS-CoV-2 pandemic. In recent years, these pathogens have shown resistance to multiple antibiotic families. The presence of high-risk clones within this group of bacteria contributes to the spread of resistance mechanisms worldwide. In the pandemic, these pathogens were implicated in coinfections in severely ill COVID-19 patients. The aim of this review is to describe the main microorganisms of the ESKAPE group involved in coinfections in COVID-19 patients, addressing mainly antimicrobial resistance mechanisms, epidemiology, and high-risk clones.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Arturo Martínez-Trejo
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Ciudad de México 07760, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
4
|
Ahmad S, Rahman H, Qasim M, Nawab J, Alzahrani KJ, Alsharif KF, Alzahrani FM. Staphylococcus epidermidis Pathogenesis: Interplay of icaADBC Operon and MSCRAMMs in Biofilm Formation of Isolates from Pediatric Bacteremia in Peshawar, Pakistan. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1510. [PMID: 36363467 PMCID: PMC9696285 DOI: 10.3390/medicina58111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023]
Abstract
Background and Objective: Staphylococcus epidermidis is an opportunistic pathogen from pediatric bacteremia that is commonly isolated. Biofilm is the major virulence factor of S. epidermidis; however, the role of biofilm determinants in biofilm formation is highly contradictory and diverse. The current study aimed to investigate the role of polysaccharide-dependent and polysaccharide-independent pathogenic determinants in biofilm formation under physiological stress conditions. Materials and Methods: The isolates (n = 75) were identified and screened for the icaADBC operon, IS256, and an array of MSCRAMMs (Microbial Surface Component Recognizing Adhesive Matrix Molecules) through PCR analysis. The activity of the icaADBC operon was detected by Congo red assay, and the biofilm formation was analyzed through microtiter plate assay. Results: S. epidermidis isolates produced biofilm (n = 65; 86.6%) frequently. The icaA was the major representative module of the actively expressing icaADBC operon (n = 21; 80.7% sensitivity). The MSCRAMMs, including fbe (n = 59; 90.7%; p = 0.007), and embp (n = 57; 87.6%; p = 0.026), were highly prevalent and associated with biofilm positive S. epidermidis. The prevalence of icaADBC operon in biofilm positive and negative S. epidermidis was not significant (n = 41; 63%; p = 0.429). No significant association was found between IS256 and actively complete icaADBC operon (n = 10; 47.6%; p = 0.294). In the presence of 5% human plasma and glucose stress, S. epidermidis produced a strong biofilm (n = 55; 84.6%). Conclusion: The polysaccharide-dependent biofilm formation is significantly replaced (n = 21; 28%; p = 0.149) by a polysaccharide-independent mechanism (n = 59; 90.7%; p = 0.007), in which the MSCRAMMs might actively play their role. The fibrinogen-binding protein and extracellular matrix-binding protein might be potential anti-biofilm drug targets, markers of rapid diagnosis, and potential vaccine candidates of S. epidermidis involved in pediatric bacteremia.
Collapse
Affiliation(s)
- Saghir Ahmad
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
5
|
Complete Genome Sequence of Staphylococcus aureus PS/BAC/169/17/W, Isolated from a Contaminated Platelet Concentrate in England. Microbiol Resour Announc 2021; 10:e0084121. [PMID: 34761954 PMCID: PMC8582312 DOI: 10.1128/mra.00841-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the genome sequence of Staphylococcus aureus PS/BAC/169/17/W, which was isolated in 2017 from a contaminated platelet concentrate at the National Health Service Blood and Transplant. Assessment of the genome sequence of this strain showed the presence of a 2,753,746-bp chromosome and a plasmid of 2,762 bp.
Collapse
|
6
|
Complete Genome Sequence of Staphylococcus aureus CI/BAC/25/13/W, Isolated from Contaminated Platelet Concentrates in England. Microbiol Resour Announc 2021; 10:e0084021. [PMID: 34761952 PMCID: PMC8582310 DOI: 10.1128/mra.00840-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the genome sequence of Staphylococcus aureus CI/BAC/25/13/W, which was isolated in 2013 as a contaminant of a platelet concentrate with abnormal clotting at the National Health Service Blood and Transplant. Assessment of the genome sequence showed the presence of one chromosome (2,719,347 bp) and one plasmid (1,533 bp).
Collapse
|
7
|
Hamada M, Yamaguchi T, Sato A, Ono D, Aoki K, Kajiwara C, Kimura S, Maeda T, Sasaki M, Murakami H, Ishii Y, Tateda K. Increased Incidence and Plasma-Biofilm Formation Ability of SCC mec Type IV Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Patients With Bacteremia. Front Cell Infect Microbiol 2021; 11:602833. [PMID: 33842382 PMCID: PMC8032974 DOI: 10.3389/fcimb.2021.602833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
In Japan, Staphylococcal cassette chromosome mec (SCCmec) type IV methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prominent cause of bacteremia, but the virulence of most of these strains is unclear. We aimed to investigate the relationship between the molecular characteristics and the ability to form biofilms in the presence of blood plasma (plasma-biofilms) of MRSA strains isolated from bloodstream infections. In this study, the molecular characteristics and biofilms of MRSA strains isolated from blood cultures between 2015 and 2017 were analyzed by PCR-based assays, crystal violet staining, and confocal reflection microscopy methods. Among the 90 MRSA isolates, the detection rate of SCCmec type II clones decreased from 60.7 to 20.6%. The SCCmec type IV clone replaced the SCCmec type II clone as the dominant clone, with a detection rate increasing from 32.1 to 73.5%. The plasma-biofilm formation ability of the SCCmec type IV clone was higher than the SCCmec type II clone and even higher in strains harboring the cna or arcA genes. Plasma-biofilms, mainly composed of proteins, were formed quickly and strongly. Our study demonstrated the increased plasma-biofilm formation ability of SCCmec type IV strains.
Collapse
Affiliation(s)
- Masakaze Hamada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Ayami Sato
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Daisuke Ono
- Department of Infectious Diseases and Infection Control, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tadashi Maeda
- Department of General Medicine and Emergency Care, Toho University Omori Medical Center, Tokyo, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Hinako Murakami
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| |
Collapse
|
8
|
Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK. Antimicrobial Hypochlorous Wound Irrigation Solutions Demonstrate Lower Anti-biofilm Efficacy Against Bacterial Biofilm in a Complex in-vitro Human Plasma Biofilm Model (hpBIOM) Than Common Wound Antimicrobials. Front Microbiol 2020; 11:564513. [PMID: 33162949 PMCID: PMC7583357 DOI: 10.3389/fmicb.2020.564513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Biofilms pose a relevant factor for wound healing impairment in chronic wounds. With 78% of all chronic wounds being affected by biofilms, research in this area is of high priority, especially since data for evidence-based selection of appropriate antimicrobials and antiseptics is scarce. Therefore, the objective of this study was to evaluate the anti-biofilm efficacy of commercially available hypochlorous wound irrigation solutions compared to established antimicrobials. Using an innovative complex in-vitro human plasma biofilm model (hpBIOM), quantitative reduction of Pseudomonas aeruginosa, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA) biofilms by three hypochlorous irrigation solutions [two <0.08% and one 0.2% sodium hypochlorite (NaClO)] was compared to a 0.04% polyhexanide (PHMB) irrigation solution and 0.1% octenidine-dihydrochloride/phenoxyethanol (OCT/PE). Efficacy was compared to a non-challenged planktonic approach, as well as with increased substance volume over a prolonged exposure (up to 72 h). Qualitative visualization of biofilms was performed by scanning electron microscopy (SEM). Both reference agents (OCT/PE and PHMB) induced significant biofilm reductions within 72 h, whereby high volume OCT/PE even managed complete eradication of P. aeruginosa and MRSA biofilms after 72 h. The tested hypochlorous wound irrigation solutions achieved no relevant penetration and eradication of biofilms despite increased volume and exposure. Only 0.2% NaClO managed a low reduction under prolonged exposure. The results demonstrate that low-dosed hypochlorous wound irrigation solutions are significantly less effective than PHMB-based irrigation solution and OCT/PE, thus unsuitable for biofilm eradication on their own. The used complex hpBIOM thereby mimics the highly challenging clinical wound micro-environment, providing a more profound base for future clinical translation.
Collapse
Affiliation(s)
- Julian-Dario Rembe
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Lioba Huelsboemer
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Isabell Plattfaut
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Manuela Besser
- Chair for Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Ewa K. Stuermer
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107. [PMID: 32257966 PMCID: PMC7089872 DOI: 10.3389/fcimb.2020.00107] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases are the second most important cause of human death worldwide; Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, S. aureus can be divided into methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of S. aureus are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of S. aureus infection. A large number of researchers believe that analyzing the molecular characteristics of S. aureus can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by S. aureus and further monitor the evolution of S. aureus. This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.
Collapse
Affiliation(s)
- Yunlei Guo
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiling Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107. [PMID: 32257966 DOI: 10.3389/fcimb.2020.00107/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 05/20/2023] Open
Abstract
Infectious diseases are the second most important cause of human death worldwide; Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, S. aureus can be divided into methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of S. aureus are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of S. aureus infection. A large number of researchers believe that analyzing the molecular characteristics of S. aureus can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by S. aureus and further monitor the evolution of S. aureus. This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.
Collapse
Affiliation(s)
- Yunlei Guo
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiling Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|