1
|
Liu H, Fan S, Zhang X, Yuan Y, Zhong W, Wang L, Wang C, Zhou Z, Zhang S, Geng Y, Peng G, Wang Y, Zhang K, Yan Q, Luo Y, Shi K, Zhong Z. Antibiotic-resistant characteristics and horizontal gene transfer ability analysis of extended-spectrum β-lactamase-producing Escherichia coli isolated from giant pandas. Front Vet Sci 2024; 11:1394814. [PMID: 39132438 PMCID: PMC11310934 DOI: 10.3389/fvets.2024.1394814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/09/2024] [Indexed: 08/13/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) is regarded as one of the most important priority pathogens within the One Health interface. However, few studies have investigated the occurrence of ESBL-EC in giant pandas, along with their antibiotic-resistant characteristics and horizontal gene transfer abilities. In this study, we successfully identified 12 ESBL-EC strains (8.33%, 12/144) out of 144 E. coli strains which isolated from giant pandas. We further detected antibiotic resistance genes (ARGs), virulence-associated genes (VAGs) and mobile genetic elements (MGEs) among the 12 ESBL-EC strains, and the results showed that 13 ARGs and 11 VAGs were detected, of which bla CTX-M (100.00%, 12/12, with 5 variants observed) and papA (83.33%, 10/12) were the most prevalent, respectively. And ISEcp1 (66.67%, 8/12) and IS26 (66.67%, 8/12) were the predominant MGEs. Furthermore, horizontal gene transfer ability analysis of the 12 ESBL-EC showed that all bla CTX-M genes could be transferred by conjugative plasmids, indicating high horizontal gene transfer ability. In addition, ARGs of rmtB and sul2, VAGs of papA, fimC and ompT, MGEs of ISEcp1 and IS26 were all found to be co-transferred with bla CTX-M. Phylogenetic analysis clustered these ESBL-EC strains into group B2 (75.00%, 9/12), D (16.67%, 2/12), and B1 (8.33%, 1/12), and 10 sequence types (STs) were identified among 12 ESBL-EC (including ST48, ST127, ST206, ST354, ST648, ST1706, and four new STs). Our present study showed that ESBL-EC strains from captive giant pandas are reservoirs of ARGs, VAGs and MGEs that can co-transfer with bla CTX-M via plasmids. Transmissible ESBL-EC strains with high diversity of resistance and virulence elements are a potential threat to humans, animals and surrounding environment.
Collapse
Affiliation(s)
- Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | | | - Yu Yuan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Wenhao Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant-Panda, Ya'an, Sichuan, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
2
|
López-Islas JJ, Martínez-Gómez D, Ortiz-López WE, Reyes-Cruz T, López-Pérez AM, Eslava C, Méndez-Olvera ET. Escherichia coli Strains Isolated from American Bison ( Bison bison) Showed Uncommon Virulent Gene Patterns and Antimicrobial Multi-Resistance. Microorganisms 2024; 12:1367. [PMID: 39065135 PMCID: PMC11278953 DOI: 10.3390/microorganisms12071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
E. coli is considered one of the most important zoonotic pathogens worldwide. Highly virulent and antimicrobial-resistant strains of E. coli have been reported in recent years, making it essential to understand their ecological origins. In this study, we analyzed the characteristics of E. coli strains present in the natural population of American bison (Bison bison) in Mexico. We sampled 123 individuals and determined the presence of E. coli using standard bacteriological methods. The isolated strains were characterized using molecular techniques based on PCR. To evaluate the diversity of E. coli strains in this population, we analyzed 108 suggestive colonies from each fecal sample. From a total of 13,284 suggestive colonies, we isolated 33 E. coli strains that contained at least one virulence gene. The virotypes of these strains were highly varied, including strains with atypical patterns or combinations compared to classical pathotypes, such as the presence of escV, eae, bfpB, and ial genes in E. coli strain LMA-26-6-6, or stx2, eae, and ial genes in E. coli strain LMA-16-1-32. Genotype analysis of these strains revealed a previously undescribed phylogenetic group. Serotyping of all strains showed that serogroups O26 and O22 were the most abundant. Interestingly, strains belonging to these groups exhibited different patterns of virulence genes. Finally, the isolated E. coli strains demonstrated broad resistance to antimicrobials, including various beta-lactam antibiotics.
Collapse
Affiliation(s)
- Jonathan J. López-Islas
- Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico;
| | - Daniel Martínez-Gómez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico; (D.M.-G.); (W.E.O.-L.); (T.R.-C.)
| | - Wendy E. Ortiz-López
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico; (D.M.-G.); (W.E.O.-L.); (T.R.-C.)
| | - Tania Reyes-Cruz
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico; (D.M.-G.); (W.E.O.-L.); (T.R.-C.)
| | - Andrés M. López-Pérez
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico;
| | - Carlos Eslava
- Unidad Periférica Investigación Básica y Clínica de Enfermedades Infecciosas, Facultad de Medicina, UNAM—Hospital Infantil de México Federico Gómez, Cuidad de Mexico 06720, Mexico;
| | - Estela T. Méndez-Olvera
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico; (D.M.-G.); (W.E.O.-L.); (T.R.-C.)
| |
Collapse
|
3
|
Fernandes R, Abreu R, Serrano I, Such R, Garcia-Vila E, Quirós S, Cunha E, Tavares L, Oliveira M. Resistant Escherichia coli isolated from wild mammals from two rescue and rehabilitation centers in Costa Rica: characterization and public health relevance. Sci Rep 2024; 14:8039. [PMID: 38580725 PMCID: PMC10997758 DOI: 10.1038/s41598-024-57812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.
Collapse
Affiliation(s)
- Rita Fernandes
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Raquel Abreu
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Isa Serrano
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | | | | | - Sandy Quirós
- Alturas Wildlife Sanctuary, Puntarenas, Costa Rica
| | - Eva Cunha
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal.
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal.
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Mateus-Vargas RH, Arias-Pérez V, Sandoval-Hernández I, Hammerl JA, Barquero-Calvo E. American crocodiles ( Crocodylus acutus: Reptilia: Crocodilidae) visiting the facilities of a freshwater aquaculture of the Northern Pacific region, Costa Rica, carry tetracycline-resistant Escherichia coli. Front Vet Sci 2024; 11:1374677. [PMID: 38645643 PMCID: PMC11027564 DOI: 10.3389/fvets.2024.1374677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/23/2024] Open
Abstract
Apex predators are exposed to antimicrobial compounds and resistant microbes, which accumulate at different trophic levels of the related ecosystems. The study aimed to characterize the presence and the antimicrobial resistance patterns of fecal Escherichia coli isolated from cloacal swab samples obtained from wild-living American crocodiles (Crocodylus acutus) (n = 53). Sampling was conducted within the distinctive context of a freshwater-intensive aquaculture farm in Costa Rica, where incoming crocodiles are temporarily held in captivity before release. Phenotypic antimicrobial susceptibility profiles were determined in all isolates, while resistant isolates were subjected to whole-genome sequencing and bioinformatics analyses. In total, 24 samples contained tetracycline-resistant E. coli (45.3%). Isolates carried either tet(A), tet(B), or tet(C) genes. Furthermore, genes conferring resistance to ß-lactams, aminoglycosides, fosfomycin, sulfonamides, phenicol, quinolones, trimethoprim, and colistin were detected in single isolates, with seven of them carrying these genes on plasmids. Genome sequencing further revealed that sequence types, prevalence of antibiotic resistance carriage, and antibiotic resistance profiles differed between the individuals liberated within the next 24 h after their capture in the ponds and those liberated from enclosures after longer abodes. The overall presence of tetracycline-resistant E. coli, coupled with potential interactions with various anthropogenic factors before arriving at the facilities, hinders clear conclusions on the sources of antimicrobial resistance for the studied individuals. These aspects hold significant implications for both the aquaculture farm's biosecurity and the planning of environmental monitoring programs using such specimens. Considering human-crocodile conflicts from the One Health perspective, the occurrence of antimicrobial resistance underscores the importance of systematical surveillance of antibiotic resistance development in American crocodiles.
Collapse
Affiliation(s)
| | | | | | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
5
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
6
|
Garcês A, Pires I. European Wild Carnivores and Antibiotic Resistant Bacteria: A Review. Antibiotics (Basel) 2023; 12:1725. [PMID: 38136759 PMCID: PMC10740848 DOI: 10.3390/antibiotics12121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is a global concern that affects not only human health but also the health of wildlife and the environment. Wildlife can serve as reservoirs for antibiotic-resistant bacteria, and antibiotics in veterinary medicine and agriculture can contribute to the development of resistance in these populations. Several European carnivore species, such as wolves, foxes, otters, and bears, can be exposed to antibiotics by consuming contaminated food, water, or other resources in their habitats. These animals can also be indirectly exposed to antibiotics through interactions with domestic animals and human activities in their environment. Antibiotic resistance in wildlife can harm ecosystem health and also impact human health indirectly through various pathways, including zoonotic disease transmission. Moreover, the spread of resistant bacteria in wildlife can complicate conservation efforts, as it can threaten already endangered species. This review aims to describe the presence of antibiotic-resistant bacteria in wild carnivores in Europe.
Collapse
Affiliation(s)
- Andreia Garcês
- Exotic and Wildlife Service from the Veterinary Hospital University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 4500-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Center of Animal and Veterinary Science CECAV University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 4500-801 Vila Real, Portugal;
| |
Collapse
|
7
|
Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D, Trościańczyk A. A rich mosaic of resistance in extended-spectrum β-lactamase-producing Escherichia coli isolated from red foxes (Vulpes vulpes) in Poland as a potential effect of increasing synanthropization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151834. [PMID: 34808162 DOI: 10.1016/j.scitotenv.2021.151834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
In our research, we analyzed the resistance of cephalosporin-resistant E. coli strains to antimicrobial agents. The strains were collected during five years from wild animal species commonly inhabiting Poland. We have identified the type of β-lactamases produced and the multidrug-resistance profile. Most strains (73.8%) had genes encoding ESBL enzymes, mainly CTX-M-1 and TEM. Almost all AmpC-β-lactamase-producing isolates had the blaCMY-2 gene. Almost 70% of the strains tested showed a multi-drug resistance profile. The dominant phenotype was resistance to tetracycline (69.05%), and/or sulfamethoxazole (57.1%). We also found high resistance to quinolones: ciprofloxacin 35.7% and nalidixic acid 52.4%. The phenotypic resistance of the strains was in most cases confirmed by the presence of corresponding genes. Among strains, 26.2% were carriers of plasmid-mediated quinolone resistance genes (PMQR). MLST analysis revealed a large clonal variation of the strains, which was reflected in 28 different sequence types. More than half of the strains (54.7%) were classified into the following sequence complexes: 10, 23, 69, 101, 155, 156, 168, 354, 398, 446, and 648. Only one strain in the studied group was assigned to the ExPEC pathotype and represented sequence type 117. The results of our research have confirmed that isolates obtained from wild animals possess many resistance determinants and sequence types, which are also found in food-producing animals and humans. This reflects the doctrine of "One health", which clearly indicates that human health is inextricably linked with animal health as well as degree of environmental contamination. We conclude that the resistance and virulence profiles of strains isolated from wildlife animals may be a resultant of various sources encountered by animals, creating a rich and varied mosaic of genes, which is very often unpredictable and not reflected in the correlation between the sequence type and the gene profile of resistance or virulence observed in epidemic clones.
Collapse
Affiliation(s)
- Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| |
Collapse
|
8
|
Nowakiewicz A, Zięba P, Gnat S, Osińska M, Łagowski D, Kosior-Korzecka U, Puzio I, Król J. Analysis of the occurrence and molecular characteristics of drug-resistant strains of Enterococcus faecalis isolated from the gastrointestinal tract of insectivorous bat species in Poland: A possible essential impact on the spread of drug resistance? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116099. [PMID: 33272805 DOI: 10.1016/j.envpol.2020.116099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Bats are poorly understood as a reservoir of multidrug-resistant strains; therefore, the aim of this study was to determine molecular characterization of multidrug-resistant Enterococcus strains isolated from bat species from Poland. A multi-stage analysis based on targeted isolation of drug-resistant strains (selective media with tetracycline, chloramphenicol, gentamicin, streptomycin, and vancomycin), determination of the phenotypic profile of drug-susceptibility using the disc diffusion method, and amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) was used for the isolation and differentiation of strains. The applied strategy finally allowed identification of E. faecalis resistant to at least one antimicrobial in 47.2% of the single-animal group and in 46.9% of the pooled samples of bat's guano. Out of the 36 distinct isolates, 69% met the criteria of multi-drug resistance, with a dominant combination of resistance to tetracycline, erythromycin, and rifampicin. Simultaneously, 41.6% of the strains were high-level aminoglycoside resistant (HLAR). In most strains, phenotypic resistance was reflected in the presence of at least one gene encoding resistance to a given drug. Moreover, our research results show that some genes were detected simultaneously in the same strain statistically significantly more frequently. This may confirm that the spread of some genes (tetM and ermB or aph (3')-IIIa as well as gelE and aac (6')-Ie-aph (2″)-Ia or ant (6)-Ia) is associated with their common occurrence on the same mobile genetic element. To our knowledge, this is the first analysis of multidrug-resistance among E. faecalis isolated from bats. Our research demonstrates that the One Health concept is not associated exclusively with food-producing animals and humans, but other species of wildlife animals should be covered by monitoring programs as well. We confirmed for the first time that bats are an important reservoir of multi-resistant E. faecalis strains and could have a great impact on environmental resistance.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325, Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Urszula Kosior-Korzecka
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Pathophysiology, Akademicka 12, 20-033, Lublin, Poland
| | - Iwona Puzio
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Animal Physiology, Akademicka 12, 20-033, Lublin, Poland
| | - Jarosław Król
- Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Pathology, Division of Microbiology, C. K. Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
9
|
Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D. Wildlife omnivores and herbivores as a significant vehicle of multidrug-resistant and pathogenic Escherichia coli strains in environment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:712-717. [PMID: 32964668 DOI: 10.1111/1758-2229.12886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The phenomenon of resistance of Escherichia coli strains in free-living animals has been constantly expanding in recent years. However, the data are still fragmented and, due to the growing threat to public health, there is a constant need to search for and analyse new reservoirs and indicate their role and importance in the circulation of resistance genes in the environment. Therefore, the target group in this study were free-living non-predatory animals as reservoirs of drug-resistant and potentially virulent E. coli strains. We obtained 70 different isolates, including 71.4% of multidrug-resistant strains. In strains isolated from all species of animals, we determined high resistance to ampicillin (95.7%), tetracycline (64.3%), streptomycin (51.4%) and chloramphenicol (38.6%). Every third of the E. coli-positive individual was a carrier of more than one resistant clone. Moreover, 11.4% of isolates among the resistant strains had the ExPEC, ETEC, or EHEC pathotype. Our study confirmed that not only free-living predatory animals are reservoirs of resistance but also many synanthropic species of herbivores and omnivores contribute substantially to the spread of resistant and virulent E. coli strains.
Collapse
Affiliation(s)
- Marcelina Osińska
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, Lublin, 20-325, Poland
| | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| | - Dominik Łagowski
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|