1
|
Lencina FA, Bertona M, Stegmayer MA, Olivero CR, Frizzo LS, Zimmermann JA, Signorini ML, Soto LP, Zbrun MV. Prevalence of colistin-resistant Escherichia coli in foods and food-producing animals through the food chain: A worldwide systematic review and meta-analysis. Heliyon 2024; 10:e26579. [PMID: 38434325 PMCID: PMC10904249 DOI: 10.1016/j.heliyon.2024.e26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The purpose of this systematic review and meta-analysis was to summarize the available scientific evidence on the prevalence of colistin-resistant Escherichia coli strains isolated from foods and food-producing animals, the mobile colistin-resistant genes involved, and the impact of the associated variables. A systematic review was carried out in databases according to selection criteria and search strategies established a priori. Random-effect meta-analysis models were fitted to estimate the prevalence of colistin-resistant Escherichia coli and to identify the factors associated with the outcome. In general, 4.79% (95% CI: 3.98%-5.76%) of the food and food-producing animal samples harbored colistin-resistant Escherichia coli (total number of colistin-resistant Escherichia coli/total number of samples), while 5.70% (95% confidence interval: 4.97%-6.52%) of the E. coli strains isolated from food and food-producing animal samples harbored colistin resistance (total number of colistin-resistant Escherichia coli/total number of Escherichia coli isolated samples). The prevalence of colistin-resistant Escherichia coli increased over time (P < 0.001). On the other hand, 65.30% (95% confidence interval: 57.77%-72.14%) of colistin resistance was mediated by the mobile colistin resistance-1 gene. The mobile colistin resistance-1 gene prevalence did not show increases over time (P = 0.640). According to the findings, other allelic variants (mobile colistin resistance 2-10 genes) seem to have less impact on prevalence. A higher prevalence of colistin resistance was estimated in developing countries (P < 0.001), especially in samples (feces and intestinal content, meat, and viscera) derived from poultry and pigs (P < 0.001). The mobile colistin resistance-1 gene showed a global distribution with a high prevalence in most of the regions analyzed (>50%). The prevalence of colistin-resistant Escherichia coli and the mobile colistin resistance-1 gene has a strong impact on the entire food chain. The high prevalence estimated in the retail market represents a potential risk for consumers' health. There is an urgent need to implement based-evidence risk management measures under the "One Health" approach to guarantee public health, food safety, and a sustainable future.
Collapse
Affiliation(s)
- Florencia Aylen Lencina
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Matías Bertona
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - María Angeles Stegmayer
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Carolina Raquel Olivero
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - Jorge Alberto Zimmermann
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Marcelo Lisandro Signorini
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - María Virginia Zbrun
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| |
Collapse
|
2
|
Ahmed HA, Elsohaby I, Elamin AM, El-Ghafar AEA, Elsaid GA, Elbarbary M, Mohsen RA, El Feky TM, El Bayomi RM. Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiol 2023; 23:212. [PMID: 37550643 PMCID: PMC10405496 DOI: 10.1186/s12866-023-02948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The spread of extended-spectrum β-lactamases (ESBL) producing E. coli from food animals and the environment to humans has become a significant public health concern. The objectives of this study were to determine the occurrence, pathotypes, virulotypes, genotypes, and antimicrobial resistance patterns of ESBL-producing E. coli in retail meat samples and workers in retail meat shops in Egypt and to evaluate the bactericidal efficacy of silver nanoparticles (AgNPs-H2O2) against multidrug resistant (MDR) ESBL-producing E. coli. RESULTS A total of 250 retail meat samples and 100 human worker samples (hand swabs and stool) were examined for the presence of ESBL- producing E. coli. Duck meat and workers' hand swabs were the highest proportion of ESBL- producing E. coli isolates (81.1%), followed by camel meat (61.5%). Pathotyping revealed that the isolates belonged to groups A and B1. Virulotyping showed that the most prevalent virulence gene was Shiga toxin 2 (stx2) associated gene (36.9%), while none of the isolates harbored stx1 gene. Genotyping of the identified isolates from human and meat sources by REP-PCR showed 100% similarity within the same cluster between human and meat isolates. All isolates were classified as MDR with an average multiple antibiotic resistance (MAR) index of 0.7. AgNPs-H2O2 at concentrations of 0.625, 1.25, 2.5 and 5 μg/mL showed complete bacterial growth inhibition. CONCLUSIONS Virulent MDR ESBL-producing E. coli were identified in retail meat products in Egypt, posing significant public health threats. Regular monitoring of ESBL-producing E. coli frequency and antimicrobial resistance profile in retail meat products is crucial to enhance their safety. AgNPs-H2O2 is a promising alternative for treating MDR ESBL-producing E. coli infections and reducing antimicrobial resistance risks.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt.
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| | - Amina M Elamin
- Department of Food Hygiene, Zagazig Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig City, Egypt
| | - Abeer E Abd El-Ghafar
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Gamilat A Elsaid
- Department of Food Hygiene, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Mervat Elbarbary
- Department of Food Hygiene, Zagazig Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig City, Egypt
| | - Rasha A Mohsen
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Tamer M El Feky
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Rasha M El Bayomi
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| |
Collapse
|
3
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
4
|
Tok S, Guzel M, Soyer Y. Emerging Increase in Colistin Resistance Rates in Escherichia coli and Salmonella enterica from Türkiye. Curr Microbiol 2023; 80:222. [PMID: 37221339 DOI: 10.1007/s00284-023-03323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Foodborne infections caused by drug-resistant Salmonella spp. are a global health concern. Moreover, commensal Escherichia coli is considered risky due to the presence of antimicrobial resistance genes. Colistin is considered a last-resort antibiotic against Gram-negative bacterial infections. Colistin resistance can be transferred both vertically, and horizontally via conjugation between bacterial species. Plasmid-mediated resistance has been associated with mcr-1 to mcr-10 genes. In this study, we collected food samples (n = 238), and isolated E. coli (n = 36) and Salmonella (n = 16), representing recent isolates. We included previously collected Salmonella (n = 197) and E. coli (n = 56) from various sources from 2010 to 2015 in Türkiye as representing historical isolates to investigate colistin-resistance over time. In all isolates, colistin resistance was screened phenotypically by minimum inhibitory concentration (MIC), and then in resistant isolates, mcr-1 to mcr-5 genes were further screened. In addition, the antibiotic resistance of recent isolates was determined, and antibiotic resistance genes were investigated. We found that in total 20 Salmonella isolates (9.38%) and 23 of the E. coli isolates (25%) showed phenotypic colistin resistance. Interestingly, the majority of colistin-resistant isolates (N:32) had resistance levels above 128 mg/L. Furthermore 75% of commensal E. coli isolates recently isolated were resistant at least 3 antibiotics. Overall, we found that the colistin resistance has been increased from 8.12 to 25% in Salmonella isolates, and 7.14% to 52.8% in E. coli isolates over time. However, none of these resistant isolates carried mcr genes, most likely indicating emerging chromosomal colistin resistance.
Collapse
Affiliation(s)
- Seray Tok
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Çorum, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Yeşim Soyer
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
5
|
Talat A, Miranda C, Poeta P, Khan AU. Farm to table: colistin resistance hitchhiking through food. Arch Microbiol 2023; 205:167. [PMID: 37014461 DOI: 10.1007/s00203-023-03476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Colistin is a high priority, last-resort antibiotic recklessly used in livestock and poultry farms. It is used as an antibiotic for treating multi-drug resistant Gram-negative bacterial infections as well as a growth promoter in poultry and animal farms. The sub-therapeutic doses of colistin exert a selection pressure on bacteria leading to the emergence of colistin resistance in the environment. Colistin resistance gene, mcr are mostly plasmid-mediated, amplifying the horizontal gene transfer. Food products such as chicken, meat, pork etc. disseminate colistin resistance to humans through zoonotic transfer. The antimicrobial residues used in livestock and poultry often leaches to soil and water through faeces. This review highlights the recent status of colistin use in food-producing animals, its association with colistin resistance adversely affecting public health. The underlying mechanism of colistin resistance has been explored. The prohibition of over-the-counter colistin sales and as growth promoters for animals and broilers has exhibited effective stewardship of colistin resistance in several countries.
Collapse
Affiliation(s)
- Absar Talat
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Toxicology Research Unit (TOXRUN), IUCS, CESPU, CRL, Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD)UTAD, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Asad U Khan
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
7
|
Tang B, Chang J, Luo Y, Jiang H, Liu C, Xiao X, Ji X, Yang H. Prevalence and characteristics of the mcr-1 gene in retail meat samples in Zhejiang Province, China. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:610-619. [PMID: 35362896 DOI: 10.1007/s12275-022-1597-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 01/03/2023]
Abstract
Considering the serious threat to food safety and public health posed by pathogens with colistin resistance, colistin was banned as a growth promoter in 2017 in China. In recent years, the resistance rate of Escherichia coli isolated from animal intestines or feces to colistin has decreased. However, the prevalence and characteristics of the mcr-1 gene in retail meat have not been well explored. Herein, 106 mcr-1-negative and 16 mcr-1-positive E. coli isolates were randomly recovered from 120 retail meat samples and screened using colistin. The 106 E. coli isolates showed maximum resistance to sulfafurazole (73.58%) and tetracycline (62.26%) but susceptibility to colistin (0.00%). All 16 mcr-1-positive E. coli isolates showed resistance to colistin, were extended spectrum beta-lactamase (ESBL)-positive and exhibited complex multidrug resistance (MDR). For these 16 isolates, 17 plasmid replicons and 42 antibiotic resistance genes were identified, and at least 7 antibiotic resistance genes were found in each isolate. Acquired disinfectant resistance genes were identified in 75.00% (12/16) of the isolates. Furthermore, comparative genomic and phylogenetic analysis results indicated that these 16 mcr-1-positive E. coli isolates and the most prevalent mcr-1-harboring IncI2 plasmid in this study were closely related to other previously reported mcr-1-positive E. coli isolates and the IncI2 plasmid, respectively, showing their wide distribution. Taken together, our findings showed that retail meat products were a crucial reservoir of mcr-1 during the colistin ban period and should be continuously monitored.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China.
| | - Jiang Chang
- School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, P. R. China
| | - Yi Luo
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, P. R. China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China.
| |
Collapse
|
8
|
Conjugative transfer of mcr-1-bearing plasmid from Salmonella to Escherichia coli in vitro on chicken meat and in mouse gut. Food Res Int 2022; 157:111263. [DOI: 10.1016/j.foodres.2022.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
|
9
|
Köck R, Herr C, Kreienbrock L, Schwarz S, Tenhagen BA, Walther B. Multiresistant Gram-Negative Pathogens—A Zoonotic Problem. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:579-589. [PMID: 33814041 DOI: 10.3238/arztebl.m2021.0184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/25/2020] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Extended-spectrum-β-lactamase-producing, carbapenemase-producing, and colistin-resistant Enterobacteriaceae (ESBL-E, CPE, and Col-E) are multiresistant pathogens that are increasingly being encountered in both human and veterinary medicine. In this review, we discuss the frequency, sources, and significance of the zoonotic transmission of these pathogens between animals and human beings. METHODS This review is based on pertinent publications retrieved by a selective literature search. Findings for Germany are presented in the global context. RESULTS ESBL-E are common in Germany in both animals and human beings, with a 6-10% colonization rate in the general human population. A major source of ESBL-E is human-tohuman transmission, partly through travel. Some colonizations are of zoonotic origin (i.e., brought about by contact with animals or animal-derived food products); in the Netherlands, more than 20% of cases are thought to be of this type. CPE infections, on the other hand, are rare in Germany in both animals and human beings. Their main source in human beings is nosocomial transmission. Col-E, which bear mcr resistance genes, have been described in Germany mainly in food-producing animals and their meat. No representative data are available on Col-E in human beings in Germany; in Europe, the prevalence of colonization is less than 2%, with long-distance travel as a risk factor. The relevance of animals as a source of Col-E for human beings is not yet entirely clear. CONCLUSION Livestock farming and animal contact affect human colonization with the multiresistant Gram-negative pathogens CPE, ESBL-E and Col-E to differing extents. Improved prevention will require the joint efforts of human and veterinary medicine.
Collapse
|