1
|
Albulushi A, Al-Asmi S, Al-Abri M, Al-Farhan H. Elevated Lp(a) and its association with cardiac fibrosis in group II pulmonary hypertension patients. Future Cardiol 2025:1-8. [PMID: 39895237 DOI: 10.1080/14796678.2025.2460909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Group II Pulmonary Hypertension (PH) secondary to Heart Failure with preserved Ejection Fraction (HFpEF) is associated with significant morbidity and mortality. Lipoprotein(a) [Lp(a)] is a novel biomarker implicated in cardiovascular pathology, yet its role in myocardial fibrosis within this population remains underexplored. This study investigates the association between elevated Lp(a) levels and cardiac fibrosis to improve understanding of its prognostic and diagnostic utility. METHODS This retrospective cohort study included 100 patients with Group II PH secondary to HFpEF. Serum Lp(a) levels were quantified using enzymatic assays, and myocardial fibrosis was assessed using Cardiac Magnetic Resonance Imaging (CMR) techniques, including T1 mapping and late gadolinium enhancement (LGE). Statistical models adjusted for confounding factors. RESULTS Elevated Lp(a) levels were significantly associated with increased myocardial extracellular volume (31% vs. 27%, p < 0.01), prolonged native T1 times, and increased odds of myocardial scar formation. Structural cardiac changes correlated with Lp(a) concentrations. CONCLUSION Elevated Lp(a) is a key marker of myocardial fibrosis and structural remodeling in Group II PH secondary to HFpEF. Routine Lp(a) measurement may enhance risk stratification and inform therapeutic strategies.
Collapse
Affiliation(s)
- Arif Albulushi
- Advanced Heart Failure & Transplant Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman
- Department of Adult Cardiology, National Heart Center, Royal Hospital, Muscat, Oman
| | - Shabib Al-Asmi
- Department of Adult Cardiology, National Heart Center, Royal Hospital, Muscat, Oman
- Department of General Cardiology, Hamad Medical Corporation, Doha, Qatar
| | - Moosa Al-Abri
- Department of Medicine, Armed Forces Hospital, Muscat, Oman
| | - Hatem Al-Farhan
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
2
|
Li Y, Kronenberg F, Coassin S, Vardarajan B, Reyes-Soffer G. Ancestry specific distribution of LPA Kringle IV-Type-2 genetic variants highlight associations to apo(a) copy number, glucose, and hypertension. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310176. [PMID: 39040175 PMCID: PMC11261928 DOI: 10.1101/2024.07.09.24310176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background High Lp(a) levels contribute to atherosclerotic cardiovascular disease and are tightly regulated by the LPA gene . Lp(a) levels have an inverse correlation with LPA Kringle IV Type-2 (KIV-2) copy number (CN). Black (B) and Hispanic (H) individuals exhibit higher levels of Lp(a), and rates of CVD compared to non-Hispanic Whites (NHW). Therefore, we investigated genetic variations in the LPA KIV-2 region across three ancestries and their associations with metabolic risk factors. Methods Using published pipelines, we analyzed a multi-ethnic whole exome dataset comprising 3,817 participants from the Washington Heights and Inwood Columbia Aging Project (WHICAP): 886 [NHW (23%), 1,811 Caribbean (C) H (47%), and 1,120 B individuals (29%). Rare and common variants (alternative allele carrier frequency, CF < 0.01 or > 0.99 and 0.01 < CF < 0.99, respectively) were identified and KIV-2 CN estimated. The associations of variants and CN with history of heart disease, hypertension (HTN), stroke, lipid levels and clinical diagnosis of Alzheimer's disease (AD) was assessed. A small pilot provided in-silico validation of study findings. Results We report 1421 variants in the LPA KIV-2 repeat region, comprising 267 exonic and 1154 intronic variants. 61.4% of the exonic variants have not been previously described. Three novel exonic variants significantly increase the risk of HTN across all ethnic groups: 4785-C/A (frequency = 78%, odds ratio [OR] = 1.45, p = 0.032), 727-T/C (frequency = 96%, OR = 2.11, p = 0.032), and 723-A/G (frequency = 96%, OR = 1.97, p = 0.038). Additionally, six intronic variants showed associations with HTN: 166-G/A, 387-G/C, 402-G/A, 4527-A/T, 4541-G/A, and 4653-A/T. One intronic variant, 412-C/T, was associated with decreased blood glucose levels (frequency = 72%, β = -14.52, p = 0.02).Three of the associations were not affected after adjusting for LPA KIV-2 CN: 412-C/T (β = -14.2, p = 0.03), 166-G/A (OR = 1.41, p = 0.05), and 387-G/C (OR = 1.40, p = 0.05). KIV CN itself was significantly associated with 314 variants and was negatively correlated with plasma total cholesterol levels. Conclusions In three ancestry groups, we identify novel rare and common LPA KIV-2 region variants. We report new associations of variants with HTN and Glucose levels. These results underscore the genetic complexity of the LPA KIV-2 region in influencing cardiovascular and metabolic health, suggesting potential genetic regulation of pathways that can be studied for research and therapeutic interventions.
Collapse
Affiliation(s)
- Yihao Li
- Gertrude H. Sergievsky Center, Dept of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168 Street, PH19-306, New York, N.Y.10032
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, P&S 10-501,New York, NY, USA
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Badri Vardarajan
- Gertrude H. Sergievsky Center, Dept of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168 Street, PH19-306, New York, N.Y.10032
| | - Gissette Reyes-Soffer
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, P&S 10-501,New York, NY, USA
| |
Collapse
|
3
|
Volgman AS, Koschinsky ML, Mehta A, Rosenson RS. Genetics and Pathophysiological Mechanisms of Lipoprotein(a)-Associated Cardiovascular Risk. J Am Heart Assoc 2024; 13:e033654. [PMID: 38879448 PMCID: PMC11255763 DOI: 10.1161/jaha.123.033654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Elevated lipoprotein(a) is a genetically transmitted codominant trait that is an independent risk driver for cardiovascular disease. Lipoprotein(a) concentration is heavily influenced by genetic factors, including LPA kringle IV-2 domain size, single-nucleotide polymorphisms, and interleukin-1 genotypes. Apolipoprotein(a) is encoded by the LPA gene and contains 10 subtypes with a variable number of copies of kringle -2, resulting in >40 different apolipoprotein(a) isoform sizes. Genetic loci beyond LPA, such as APOE and APOH, have been shown to impact lipoprotein(a) levels. Lipoprotein(a) concentrations are generally 5% to 10% higher in women than men, and there is up to a 3-fold difference in median lipoprotein(a) concentrations between racial and ethnic populations. Nongenetic factors, including menopause, diet, and renal function, may also impact lipoprotein(a) concentration. Lipoprotein(a) levels are also influenced by inflammation since the LPA promoter contains an interleukin-6 response element; interleukin-6 released during the inflammatory response results in transient increases in plasma lipoprotein(a) levels. Screening can identify elevated lipoprotein(a) levels and facilitate intensive risk factor management. Several investigational, RNA-targeted agents have shown promising lipoprotein(a)-lowering effects in clinical studies, and large-scale lipoprotein(a) testing will be fundamental to identifying eligible patients should these agents become available. Lipoprotein(a) testing requires routine, nonfasting blood draws, making it convenient for patients. Herein, we discuss the genetic determinants of lipoprotein(a) levels, explore the pathophysiological mechanisms underlying the association between lipoprotein(a) and cardiovascular disease, and provide practical guidance for lipoprotein(a) testing.
Collapse
Affiliation(s)
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine and DentistryWestern UniversityLondonONCanada
| | | | - Robert S. Rosenson
- Metabolism and Lipids Program, Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
4
|
Fogacci F, Di Micoli V, Avagimyan A, Giovannini M, Imbalzano E, Cicero AFG. Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods. Int J Mol Sci 2023; 24:13886. [PMID: 37762189 PMCID: PMC10531419 DOI: 10.3390/ijms241813886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Apolipoprotein(a) (apo(a)) is the protein component that defines lipoprotein(a) (Lp(a)) particles and is encoded by the LPA gene. The apo(a) is extremely heterogeneous in size due to the copy number variations in the kringle-IV type 2 (KIV2) domains. In this review, we aim to discuss the role of genetics in establishing Lp(a) as a risk factor for coronary heart disease (CHD) by examining a series of molecular biology techniques aimed at identifying the best strategy for a possible application in clinical research and practice, according to the current gold standard.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Ashot Avagimyan
- Pathological Anatomy Department, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40100 Bologna, Italy
| |
Collapse
|
5
|
Vinci P, Di Girolamo FG, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Altamura N, Pirulli A, Zaccari M, Biasinutto C, Roni C, Fiotti N, Schincariol P, Mangogna A, Biolo G. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6721. [PMID: 37754581 PMCID: PMC10531345 DOI: 10.3390/ijerph20186721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Nicola Altamura
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Alessia Pirulli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Michele Zaccari
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Chiara Roni
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| |
Collapse
|
6
|
Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes. Nat Commun 2022; 13:5332. [PMID: 36088354 PMCID: PMC9464252 DOI: 10.1038/s41467-022-32864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Here we present an exome-wide rare genetic variant association study for 30 blood biomarkers in 191,971 individuals in the UK Biobank. We compare gene-based association tests for separate functional variant categories to increase interpretability and identify 193 significant gene-biomarker associations. Genes associated with biomarkers were ~ 4.5-fold enriched for conferring Mendelian disorders. In addition to performing weighted gene-based variant collapsing tests, we design and apply variant-category-specific kernel-based tests that integrate quantitative functional variant effect predictions for missense variants, splicing and the binding of RNA-binding proteins. For these tests, we present a computationally efficient combination of the likelihood-ratio and score tests that found 36% more associations than the score test alone while also controlling the type-1 error. Kernel-based tests identified 13% more associations than their gene-based collapsing counterparts and had advantages in the presence of gain of function missense variants. We introduce local collapsing by amino acid position for missense variants and use it to interpret associations and identify potential novel gain of function variants in PIEZO1. Our results show the benefits of investigating different functional mechanisms when performing rare-variant association tests, and demonstrate pervasive rare-variant contribution to biomarker variability.
Collapse
|
7
|
Mehta A, Jain V, Saeed A, Saseen JJ, Gulati M, Ballantyne CM, Virani SS. Lipoprotein(a) and ethnicities. Atherosclerosis 2022; 349:42-52. [DOI: 10.1016/j.atherosclerosis.2022.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/13/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
|
8
|
Shetty S, Roby D, Bhandary R, Kulkarni V, Roby C. Association between LPA rs6415084 and rs6919346 variants and serum lipoprotein(a) levels amongst apparently healthy individuals. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Dong H, Cong H, Wang J, Jiang Y, Liu C, Zhang Y, Zhu Y, Wang Q. Correlations between lipoprotein(a) gene polymorphisms and calcific aortic valve disease and coronary heart disease in Han Chinese. J Int Med Res 2021; 48:300060520965353. [PMID: 33100089 PMCID: PMC7645393 DOI: 10.1177/0300060520965353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the relationship between lipoprotein(a) gene (LPA) polymorphisms and calcific aortic valve disease (CAVD) and coronary heart disease (CHD) in Han Chinese. Methods A total of 148 patients were recruited (n = 71 with CAVD and n = 77 with CHD) based on a diagnosis achieved using color Doppler echocardiography, coronary angiography, or computed tomography angiography. Seventy-one control individuals without CAVD or CHD were also recruited. Biomarkers including levels of lipoprotein(a) [Lp(a)], low-density lipoprotein and high-density lipoprotein cholesterol, apolipoprotein A1, and apolipoprotein B were tested. LPA polymorphisms rs10455872, rs6415084, rs3798221, and rs7770628 were analyzed using SNaPshot SNP. Results Lp(a) levels were significantly higher in CAVD and CHD groups compared with controls. There was no significant difference in the allelic frequency distribution of rs3798221, rs7770628, or rs6415084 between CHD, CAVD, and control groups. Linear regression showed that rs3798221, rs7770628, and rs6415084 were associated with increased Lp(a) concentrations. Two CAVD patients among the 219 participants carried AG minor alleles at rs10455872, while the remainder carried AA minor alleles. Conclusion rs3798221, rs6415084, and rs7770628 polymorphisms within LPA are associated with higher Lp(a) plasma levels, which correlate with increased CAVD and CHD risks.
Collapse
Affiliation(s)
- Hongzhi Dong
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Hongliang Cong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Jing Wang
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Yiyao Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, China.,Department of Cardiovascular Surgery, The First Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Chao Liu
- Institution of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Yingyi Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Yanbo Zhu
- Department of Ultrasound, Tianjin Chest Hospital, Tianjin, China
| | - Qingtong Wang
- Department of Clinical Laboratory, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
10
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
Stefanutti C, Pisciotta L, Favari E, Di Giacomo S, Vacondio F, Zenti MG, Morozzi C, Berretti D, Mesce D, Vitale M, Pasta A, Ronca A, Garuti A, Manfredini M, Anglés-Cano E, Marcovina SM, Watts GF. Lipoprotein(a) concentration, genetic variants, apo(a) isoform size, and cellular cholesterol efflux in patients with elevated Lp(a) and coronary heart disease submitted or not to lipoprotein apheresis: An Italian case-control multicenter study on Lp(a). J Clin Lipidol 2020; 14:487-497.e1. [PMID: 32718857 DOI: 10.1016/j.jacl.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) risk is greater with higher plasma lipoprotein(a)[Lp(a)] concentrations or smaller apoisoform size and putatively with increased cellular cholesterol loading capacity (CLC). The relationship between Lp(a) and CLC is not known. Information on Lp(a) polymorphisms in Italian patients is lacking. OBJECTIVE The objective of this study was to determine relationships between Lp(a) and CLC, the impact of lipoprotein apheresis (LA), and describe the genetic profile of Lp(a). METHODS We conducted a multicenter, observational study in Italian patients with hyperLp(a) and premature CAD with (n = 18)/without (n = 16) LA in which blood samples were analyzed for Lp(a) parameter and CLC. Genetic profiling of LPA was conducted in patient receiving LA. RESULTS Mean macrophage CLC of the pre-LA serum was significantly higher than that of normolipidemic controls (19.7 ± 0.9 μg/mg vs 16.01 ± 0.98 μg/mg of protein, respectively). After LA, serum macrophage CLC was markedly lower relative to preapheresis (16.1 ± 0.8 μg/mg protein; P = .003) and comparable with CLC of the normolipidemic serum. LA did not significantly affect average apo(a) isoform size distribution. No anthropometric or lipid parameters studied were related to serum CLC, but there was a relationship between CLC and the Lp(a) plasma concentration (P = .035). DNA analysis revealed a range of common genetic variants. Two rare, new variants were identified: LPA exon 21, c.3269C>G, p.Pro1090Arg, and rs41259144 p.Arg990Gln, c.2969G>A CONCLUSIONS: LA reduces serum Lp(a) and also reduces macrophage CLC. Novel genetic variants of the LPA gene were identified, and geographic variations were noted. The complexity of these polymorphisms means that genetic assessment is not a predictor of CAD risk in hyperLp(a).
Collapse
Affiliation(s)
- Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy.
| | - Livia Pisciotta
- Department of Internal Medicine - Polyclinic Hospital San Martino, University of Genoa, Genoa, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Serafina Di Giacomo
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | | | - Maria Grazia Zenti
- Endocrinology and Metabolic Diseases, Civile Maggiore Hospital of Verona, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Claudia Morozzi
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | | | - Dario Mesce
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | - Marco Vitale
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital - 'Sapienza' University of Rome, Rome, Italy
| | - Andrea Pasta
- Department of Internal Medicine, University of Genoa, Italy
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy; Endocrinology and Metabolic Diseases, Civile Maggiore Hospital of Verona, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Anna Garuti
- Department of Internal Medicine, University of Genoa, Italy
| | | | - Eduardo Anglés-Cano
- Inserm UMR_S1140 "Innovative Therapies in Haemostasis" Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; French Institute of Health and Medical Research (Inserm), France
| | - Santica Marija Marcovina
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle, WA, USA
| | - Gerald Francis Watts
- School of Medicine, Faculty of Health and Medical Sciences - Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
12
|
Laguna P, Robles NR, Lopez Gomez J, Barroso S, Collado G. Lack of Correlation of Carotid Intima-Media Index and Peripheral Artery Disease. High Blood Press Cardiovasc Prev 2018; 25:379-383. [PMID: 30251108 DOI: 10.1007/s40292-018-0282-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Increased carotid intima-media thickness (IMT) measurement is usually seen as a surrogate marker of peripheral artery disease (PAD) but there is scarce cumulated evidence to support this view. AIM To evaluate prevalence of increased IMT among patients with symptomatic PAD as well as the frequency of some cardiovascular risk factors in these patients. METHODS They were recruited 230 patients with diagnosis of medium peripheral artery disease in the Vascular Surgery Service outpatient's office. Serum cystatin C, homocysteine, and lipoprotein (a) were measured. GFR was estimated using the CKD-EPI equation and the Larsson one from cystatin C. RESULTS The global prevalence of increased IMT was 16.5% (n = 38, 95% CI 12.3-21.9). In all the frequency of hyperlipoproteinemia (a) was 34.2% (95% CI 28.4-40.5%). The global prevalence of hyperhomocysteinemia was 61.5% (95% CI 54.6-68.1%) and the proportion of patients with high cystatin C levels was 38.5% (95% CI 32.1-42.5). The prevalence of stage III chronic kidney disease or higher by CKD-EPI formula was much lesser (13.6%, 95% CI 9.7-18.7) as was the frequency obtained by the Larsson equation (28.7%, 95% CI 23.2-34.9). No differences were found between groups. CONCLUSIONS Increased IMT is not common among PAD patients. Hyperlipoproteinemia (a) and hyperhomocysteinemia are very frequent in these patients. High serum cystatin levels are also very prevalent but reduced GFR is not so frequent. There were no differences in the prevalence of the studied cardiovascular risk factors between those patients with increased IMT and those ones with normal IMT.
Collapse
Affiliation(s)
- Paloma Laguna
- Servicio de Cirugía Vascular, Unidad de Hipertensión Arterial, Hospital Infanta Cristina, Carretera de Portugal s/n., 06070, Badajoz, Spain
| | - Nicolás Roberto Robles
- Unidad de Hipertensión Arterial, Hospital Infanta Cristina, Carretera de Portugal s/n., 06070, Badajoz, Spain.
- Cátedra de Riesgo Cardiovascular, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.
| | - Juan Lopez Gomez
- Servicio de Bioquímica Clínica, Hospital Infanta Cristina, Badajoz, Spain
| | - Sergio Barroso
- Unidad de Hipertensión Arterial, Hospital Infanta Cristina, Carretera de Portugal s/n., 06070, Badajoz, Spain
| | - Gabriel Collado
- Servicio de Cirugía Vascular, Unidad de Hipertensión Arterial, Hospital Infanta Cristina, Carretera de Portugal s/n., 06070, Badajoz, Spain
| |
Collapse
|
13
|
Bigazzi F, Sbrana F, Berretti D, Maria Grazia Z, Zambon S, Fabris A, Fonda M, Vigna GB, D'Alessandri G, Passalacqua S, Dal Pino B, Pianelli M, Luciani R, Ripoli A, Rafanelli D, Manzato E, Cattin L, Sampietro T. Reduced incidence of cardiovascular events in hyper-Lp(a) patients on lipoprotein apheresis. The G.I.L.A. (Gruppo Interdisciplinare Aferesi Lipoproteica) pilot study. Transfus Apher Sci 2018; 57:661-664. [PMID: 30087087 DOI: 10.1016/j.transci.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lipoprotein apheresis (LA) is the elective therapy for homozygous and other forms of Familial Hypercholesterolemia, Familial Combined Hypercholesterolemia, resistant/intolerant to lipid lowering drugs, and hyper-lipoproteinemia(a). Lipoprotein(a) [Lp(a)] has been classified as the most prevalent genetic risk factor for coronary artery disease and aortic valve stenosis. AIM Our multicenter retrospective study has the aim to analyze the incidence of adverse cardiovascular events (ACVE) before and during the LA treatment, in subjects with elevated level of Lp(a) (>60 mg/dL) [hyper-Lp(a)] and chronic ischemic heart disease. METHODS We collected data of 23 patients (mean age 63 ± 9 years, male 77%; from hospital of Pisa 11/23, Pistoia 7/23, Verona 2/23, Padova 2/23 and Ferrara 1/23), with hyper-Lp(a), pre-apheresis LDL-cholesterol <100 mg/dL, cardiovascular disease, on maximally tolerated lipid lowering therapy and LA treatment (median 7 years, interquartile range 3-9 years). The LA treatment was performed by heparin-induced LDL precipitation apheresis (16/23), dextran-sulphate (4/23), cascade filtration (2/23) and immunoadsorption (1/23). The time lapse between first cardiovascular event and beginning of apheresis was 6 years (interquartile range 1-12 years). RESULTS The recorded ACVE, before and after the LA treatment inception, were 40 and 10 respectively (p < 0.05), notably, the AVCE rates/year were 0.43 and 0.11 respectively (p < 0.05) with a 74% reduction of event occurrence. CONCLUSIONS Our data confirm long-term efficacy and positive impact of LA on morbidity in patients with hyper-Lp(a) and chronic ischemic heart disease on maximally tolerated lipid lowering therapy.
Collapse
Affiliation(s)
- Federico Bigazzi
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy
| | - Francesco Sbrana
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy
| | | | - Zenti Maria Grazia
- U.O. Endocrinologia, Diabetologia e Malattie del Metabolismo, Università degli studi di Verona, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale Stefani, 1 -37126 Verona, Italy
| | - Sabina Zambon
- Centro Dislipidemie e Aterosclerosi U.O. Clinica Medica 1, Azienda Ospedaliera Università degli Studi di Padova, Via Giustiniani, 2 - 35128, Padova, Italy
| | - Antonia Fabris
- U.O. Nefrologia e Dialisi, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale Stefani, 1 -37126 Verona, Italy
| | - Maurizio Fonda
- Centro per lo Studio delle Malattie Dismetaboliche e dell'Arteriosclerosi, Ospedale di Gattinara - U.O. di Clinica Medica, Dipartimento di Scienze Cliniche, Morfologiche e Tecnologiche, Strada di Fiume, 447 - 34149, Trieste, Italy
| | - Giovanni B Vigna
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Stefano Passalacqua
- U.O.C. di Nefrologia e Dialisi, Fondazione Policlinico Universitario A. Gemelli, Via Giuseppe Moscati, 35 - 00168 Roma, Italy
| | - Beatrice Dal Pino
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy
| | - Mascia Pianelli
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy
| | - Roberta Luciani
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy
| | - Andrea Ripoli
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy
| | | | - Enzo Manzato
- Centro Dislipidemie e Aterosclerosi U.O. Clinica Medica 1, Azienda Ospedaliera Università degli Studi di Padova, Via Giustiniani, 2 - 35128, Padova, Italy
| | - Luigi Cattin
- Centro per lo Studio delle Malattie Dismetaboliche e dell'Arteriosclerosi, Ospedale di Gattinara - U.O. di Clinica Medica, Dipartimento di Scienze Cliniche, Morfologiche e Tecnologiche, Strada di Fiume, 447 - 34149, Trieste, Italy
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124 Pisa, Italy.
| |
Collapse
|
14
|
Enkhmaa B, Anuurad E, Zhang W, Li CS, Kaplan R, Lazar J, Merenstein D, Karim R, Aouizerat B, Cohen M, Butler K, Pahwa S, Ofotokun I, Adimora AA, Golub E, Berglund L. Effect of antiretroviral therapy on allele-associated Lp(a) level in women with HIV in the Women's Interagency HIV Study. J Lipid Res 2018; 59:1967-1976. [PMID: 30012717 DOI: 10.1194/jlr.p084517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/08/2018] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated an association between lipoprotein (a) [Lp(a)] levels and atherosclerosis in human immunodeficiency virus (HIV)-seropositive women. The effects of antiretroviral therapy (ART) on Lp(a) levels in relation to apo(a) size polymorphism remain unclear. ART effects on allele-specific apo(a) level (ASL), an Lp(a) level associated with individual apo(a) alleles within each allele-pair, were determined in 126 HIV-seropositive women. ART effects were tested by a mixed-effects model across pre-ART and post-ART first and third visits. Data from 120 HIV-seronegative women were used. The mean age was 38 years; most were African-American (∼70%). Pre-ART ASLs associated with the larger (4.6 mg/dl vs. 8.0 mg/dl, P = 0.024) or smaller (13 mg/dl vs. 19 mg/dl, P = 0.041) apo(a) sizes were lower in the HIV-seropositive versus HIV-seronegative group, as was the prevalence of a high Lp(a) level (P = 0.013). Post-ART ASL and prevalence of high Lp(a) or apo(a) sizes and frequency of small size apo(a) (22 kringles) did not differ between the two groups. ART increased Lp(a) level (from 18 to 24 mg/dl, P < 0.0001) and both ASLs (P < 0.001). In conclusion, regardless of genetic control, Lp(a) can be modulated by HIV and its treatment. ART initiation abrogates HIV-induced suppression of Lp(a) levels and ASLs, contributing to promote CVD risk in HIV-seropositive individuals.
Collapse
Affiliation(s)
- Byambaa Enkhmaa
- Departments of Internal Medicine University of California, Davis, Davis, CA 95616
| | - Erdembileg Anuurad
- Departments of Internal Medicine University of California, Davis, Davis, CA 95616
| | - Wei Zhang
- Departments of Internal Medicine University of California, Davis, Davis, CA 95616
| | - Chin-Shang Li
- Public Health Sciences, University of California, Davis, Davis, CA 95616
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jason Lazar
- Department of Cardiovascular Disease, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20007
| | - Roksana Karim
- Department Preventive Medicine, University of Southern California, Los Angeles, Los Angeles, CA 90007
| | - Brad Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY 10003
| | - Mardge Cohen
- Department of Medicine, Rush University and Stroger Hospital, Cook County Bureau of Health Services, Chicago, IL 60612
| | - Kenneth Butler
- Division of Geriatric Medicine/Gerontology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Savita Pahwa
- Miami Center for AIDS Research, University of Miami, Miami, FL 33136
| | - Igho Ofotokun
- Department of Medicine, Infectious Diseases, Emory School of Medicine, Atlanta, GA 30307
| | - Adaora A Adimora
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC 27599
| | - Elizabeth Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Lars Berglund
- Departments of Internal Medicine University of California, Davis, Davis, CA 95616
| |
Collapse
|
15
|
Reyes-Soffer G, Ginsberg HN, Ramakrishnan R. The metabolism of lipoprotein (a): an ever-evolving story. J Lipid Res 2017; 58:1756-1764. [PMID: 28720561 DOI: 10.1194/jlr.r077693] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Lipoprotein (a) [Lp(a)] is characterized by apolipoprotein (a) [apo(a)] covalently bound to apolipoprotein B 100. It was described in human plasma by Berg et al. in 1963 and the gene encoding apo(a) (LPA) was cloned in 1987 by Lawn and colleagues. Epidemiologic and genetic studies demonstrate that increases in Lp(a) plasma levels increase the risk of atherosclerotic cardiovascular disease. Novel Lp(a) lowering treatments highlight the need to understand the regulation of plasma levels of this atherogenic lipoprotein. Despite years of research, significant uncertainty remains about the assembly, secretion, and clearance of Lp(a). Specifically, there is ongoing controversy about where apo(a) and apoB-100 bind to form Lp(a); which apoB-100 lipoproteins bind to apo(a) to create Lp(a); whether binding of apo(a) is reversible, allowing apo(a) to bind to more than one apoB-100 lipoprotein during its lifespan in the circulation; and how Lp(a) or apo(a) leave the circulation. In this review, we highlight past and recent data from stable isotope studies of Lp(a) metabolism, highlighting the critical metabolic uncertainties that exist. We present kinetic models to describe results of published studies using stable isotopes and suggest what future studies are required to improve our understanding of Lp(a) metabolism.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Departments of Medicine Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Henry N Ginsberg
- Departments of Medicine Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
16
|
Landeka I, Jurčević, Dora M, Guberović I, Petras M, Rimac S, Brnčić, Đikić D. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection Against Oxidative Stress and Hyperlipidaemia. Food Technol Biotechnol 2017; 55:109-116. [PMID: 28559739 PMCID: PMC5434373 DOI: 10.17113/ftb.55.01.17.4894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/13/2016] [Indexed: 11/12/2022] Open
Abstract
The study examines the potential of wine industry by-product, the lees, as a rich mixture of natural polyphenols, and its physiological potential to reduce postprandial metabolic and oxidative stress caused by a cholesterol-rich diet in in vivo model. Chemical analysis of wine lees showed that their total solid content was 94.2%. Wine lees contained total phenols, total nonflavonoids and total flavonoids expressed in mg of gallic acid equivalents per 100 g of dry mass: 2316.6±37.9, 1332.5±51.1 and 984.1±28.2, respectively. The content of total anthocyanins expressed in mg of cyanidin-3-glucoside equivalents per 100 g of dry mass was 383.1±21.6. Antioxidant capacity of wine lees determined by the DPPH and FRAP methods and expressed in mM of Trolox equivalents per 100 g was 259.8±1.8 and 45.7±1.05, respectively. The experiment lasted 60 days using C57BL/6 mice divided in four groups: group 1 was fed normal diet and used as control, group 2 was fed normal diet with added wine lees, group 3 was fed high-cholesterol diet (HCD), i.e. normal diet with the addition of sunflower oil, and group 4 was fed HCD with wine lees. HCD increased serum total cholesterol (TC) by 2.3-fold, triacylglycerol (TAG) by 1.5-fold, low-density lipoprotein (LDL) by 3.5-fold and liver malondialdehyde (MDA) by 50%, and reduced liver superoxide dismutase (SOD) by 50%, catalase (CAT) by 30% and glutathione (GSH) by 17.5% compared to control. Conversely, treatment with HCD and wine lees reduced TC and LDL up to 1.4 times more than with HCD only, with depletion of lipid peroxidation (MDA) and restoration of SOD and CAT activities in liver, approximating values of the control. HDL levels were unaffected in any group. Serum transaminase activity showed no hepatotoxic properties in the treatment with lees alone. In the proposed model, wine lees as a rich polyphenol source could be a basis for functional food products without alcohol.
Collapse
Affiliation(s)
- Irena Landeka
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Jurčević
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
| | - Mirna Dora
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
| | - Iva Guberović
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
| | - Marija Petras
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
| | - Suzana Rimac
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Brnčić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6,
HR-10000 Zagreb, Croatia
| | - Domagoj Đikić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
17
|
Franchini M, Capuzzo E, Liumbruno GM. Lipoprotein apheresis for the treatment of elevated circulating levels of lipoprotein(a): a critical literature review. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:413-8. [PMID: 26710351 PMCID: PMC5016300 DOI: 10.2450/2015.0163-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
Abstract
Lipoprotein(a), which consists of a low-density lipoprotein (LDL) particle linked to an apolipoprotein(a) moiety, is currently considered an independent risk factor for cardiovascular disease due to its atherogenic (LDL-like) and prothrombotic (plasminogen-like) properties. The aim of this review is to provide an overview of the current and newer therapies for lowering increased lipoprotein(a) levels, focusing on lipoprotein apheresis. After a systematic literature search, we identified ten studies which, overall, documented that lipoprotein apheresis is effective in reducing increased lipoprotein(a) levels and cardiovascular events.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Haematology and Transfusion Medicine, “Carlo Poma” Hospital, Mantua, Italy
| | - Enrico Capuzzo
- Department of Haematology and Transfusion Medicine, “Carlo Poma” Hospital, Mantua, Italy
| | | |
Collapse
|
18
|
Kotani K, Serban MC, Penson P, Lippi G, Banach M. Evidence-based assessment of lipoprotein(a) as a risk biomarker for cardiovascular diseases - Some answers and still many questions. Crit Rev Clin Lab Sci 2016; 53:370-8. [PMID: 27173621 DOI: 10.1080/10408363.2016.1188055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present article is aimed at outlining the current state of knowledge regarding the clinical value of lipoprotein(a) (Lp(a)) as a marker of cardiovascular disease (CVD) risk by summarizing the results of recent clinical studies, meta-analyses and systematic reviews. The literature supports the predictive value of Lp(a) on CVD outcomes, although the effect size is modest. Lp(a) would also appear to have an effect on cerebrovascular outcomes, however the effect appears even smaller than that for CVD outcomes. Consideration of apolipoprotein(a) (apo(a)) isoforms and LPA genetics in relation to the simple assessment of Lp(a) concentration may enhance clinical practice in vascular medicine. We also describe recent advances in Lp(a) research (including therapies) and highlight areas where further research is needed such as the measurement of Lp(a) and its involvement in additional pathophysiological processes.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- a Division of Community and Family MedicinevJichi Medical University , Shimotsuke-City , Japan .,b Department of Clinical Laboratory Medicine , Jichi Medical University , Shimotsuke-City , Japan
| | - Maria-Corina Serban
- c Department of Epidemiology , University of Alabama at Birmingham , Birmingham , AL , USA .,d Department of Functional Sciences , Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara , Romania
| | - Peter Penson
- e Section of Clinical Biochemistry , School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool , UK
| | - Giuseppe Lippi
- f Section of Clinical Biochemistry , University of Verona , Verona , Italy , and
| | - Maciej Banach
- g Department of Hypertension , Chair of Nephrology and Hypertension, Medical University of Lodz , Lodz , Poland
| |
Collapse
|
19
|
Song ZK, Cao HY, Wu HD, Zhou LT, Qin L. A Case-Control Study of the Relationship Between SLC22A3-LPAL2-LPA Gene Cluster Polymorphism and Coronary Artery Disease in the Han Chinese Population. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e35387. [PMID: 27621937 PMCID: PMC5010879 DOI: 10.5812/ircmj.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/28/2016] [Accepted: 05/20/2016] [Indexed: 11/18/2022]
Abstract
Background Mutations in the solute carrier family 22 member 3 (SLC22A3), lipoprotein (a)-like 2 (LPAL2), and the lipoprotein (a) (LPA) gene cluster, which encodes apolipoprotein (a) [apo (a)] of the lipoprotein (a) [Lp (a)] lipoprotein particle, have been suggested to contribute to the risk of coronary artery disease (CAD), but the precise variants of this gene cluster have not yet been identified in Chinese populations. Objectives We sought to investigate the association between SLC22A3-LPAL2-LPA gene cluster polymorphisms and the risk of CAD in the Han Chinese population. Patients and Methods We recruited 551 CAD patients and 544 healthy controls for this case-control study. Four SNPs (rs9346816, rs2221750, rs3127596, and rs9364559) were genotyped in real time using the MassARRAY system (Sequenom; USA) in the SLC22A3-LPAL2-LPA gene cluster. All subjects were Chinese and of Han descent, and were recruited from the First Hospital of Jilin University based on convenience sampling from June 2009 to September 2012. Results The frequency of the minor allele G (34.8%) in rs9364559 was significantly higher in the CAD patients than in the healthy controls (29.4%) (P = 0.006). There was genotypic association between rs9364559 and CAD (P = 0.022), and these results still remained significant after adjustment for the conventional CAD risk factors through forward logistic regression analysis (P = 0.020, P = 0.019). Haplotype analyses from different blocks indicated that 11 haplotypes were associated with the risk of CAD. Seven haplotypes were associated with a reduced risk of CAD, whereas four haplotypes were associated with an increased risk of CAD. Conclusions Rs9364559 in the LPA gene may contribute to the risk of CAD in the Han Chinese population; haplotypes which contain rs9346816-G were all associated with an increased risk of CAD in this study.
Collapse
Affiliation(s)
- Zi-Kai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Yan Cao
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hai-Di Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Li-Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ling Qin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- Corresponding Author: Ling Qin, Department of Cardiology, The First Hospital of Jilin University, Changchun, China. Tel: +86-15843073203; Fax: +86-043184841049, E-mail:
| |
Collapse
|
20
|
Kotani K, Sahebkar A, Serban C, Andrica F, Toth PP, Jones SR, Kostner K, Blaha MJ, Martin S, Rysz J, Glasser S, Ray KK, Watts GF, Mikhailidis DP, Banach M. Tibolone decreases Lipoprotein(a) levels in postmenopausal women: A systematic review and meta-analysis of 12 studies with 1009 patients. Atherosclerosis 2015; 242:87-96. [DOI: 10.1016/j.atherosclerosis.2015.06.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
|
21
|
Puzzling role of genetic risk factors in human longevity: "risk alleles" as pro-longevity variants. Biogerontology 2015; 17:109-27. [PMID: 26306600 PMCID: PMC4724477 DOI: 10.1007/s10522-015-9600-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
Complex diseases are major contributors to human mortality in old age. Paradoxically, many genetic variants that have been associated with increased risks of such diseases are found in genomes of long-lived people, and do not seem to compromise longevity. Here we argue that trade-off-like and conditional effects of genes can play central role in this phenomenon and in determining longevity. Such effects may occur as result of: (i) antagonistic influence of gene on the development of different health disorders; (ii) change in the effect of gene on vulnerability to death with age (especially, from “bad” to “good”); (iii) gene–gene interaction; and (iv) gene–environment interaction, among other factors. A review of current knowledge provides many examples of genetic factors that may increase the risk of one disease but reduce chances of developing another serious health condition, or improve survival from it. Factors that may increase risk of a major disease but attenuate manifestation of physical senescence are also discussed. Overall, available evidence suggests that the influence of a genetic variant on longevity may be negative, neutral or positive, depending on a delicate balance of the detrimental and beneficial effects of such variant on multiple health and aging related traits. This balance may change with age, internal and external environments, and depend on genetic surrounding. We conclude that trade-off-like and conditional genetic effects are very common and may result in situations when a disease “risk allele” can also be a pro-longevity variant, depending on context. We emphasize importance of considering such effects in both aging research and disease prevention.
Collapse
|
22
|
|
23
|
García-Gómez C, Bianchi M, de la Fuente D, Badimon L, Padró T, Corbella E, Pintó X. Inflammation, lipid metabolism and cardiovascular risk in rheumatoid arthritis: A qualitative relationship? World J Orthop 2014; 5:304-311. [PMID: 25035833 PMCID: PMC4095023 DOI: 10.5312/wjo.v5.i3.304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023] Open
Abstract
Life expectancy in patients with rheumatoid arthritis (RA) is reduced compared to the general population owing to an increase in cardiovascular diseases (CVD) not fully explained by traditional cardiovascular risk factors. In recent years, interest has been focused on the alterations in lipid metabolism in relation to chronic inflammation as one of the possible mechanisms involved in the pathogenesis of atherosclerosis of RA patients. Research regarding this issue has revealed quantitative alterations in lipoproteins during the acute-phase reaction, and has also demonstrated structural alterations in these lipoproteins which affect their functional abilities. Although many alterations in lipid metabolism have been described in this regard, these structural changes associated with inflammation are particularly important in high-density lipoproteins as they affect their cardioprotective functions. In this respect, excessive oxidation in low-density lipoprotein (LDL) and increased lipoprotein(a) with a predominance of smaller apolipoprotein(a) isoforms has also been reported. This article will discuss proinflammatory high-density lipoproteins (piHDL), oxidized LDL and lipoprotein(a). Elevated concentrations of these lipoproteins with marked pro-atherogenic properties have been observed in RA patients, which could help to explain the increased cardiovascular risk of these patients.
Collapse
|
24
|
Månsson M, Kalies I, Bergström G, Schmidt C, Legnehed A, Hultén LM, Amrot-Fors L, Gustafsson D, Knecht W. Lp(a) is not associated with diabetes but affects fibrinolysis and clot structure ex vivo. Sci Rep 2014; 4:5318. [PMID: 24937703 PMCID: PMC4060502 DOI: 10.1038/srep05318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/21/2014] [Indexed: 01/17/2023] Open
Abstract
Lipoprotein (a) [Lp(a)] is a low density lipoprotein (LDL) with one apolipoprotein (a) molecule bound to the apolipoprotein B-100 of LDL. Lp(a) is an independent risk factor for cardiovascular disease (CVD). However, the relationship of Lp(a) to diabetes and metabolic syndrome, both known for increased CVD risk, is controversial. In a population based study on type two diabetes mellitus (T2DM) development in women, Lp(a) plasma levels showed the well known skewed distribution without any relation to diabetes or impaired glucose tolerance. A modified clot lysis assay on a subset of 274 subjects showed significantly increased clot lysis times in T2DM subjects, despite inhibition of PAI-1 and TAFI. Lp(a) plasma levels significantly increased the maximal peak height of the clot lysis curve, indicating a change in clot structure. In this study Lp(a) is not related to the development of T2DM but may affect clot structure ex vivo without a prolongation of the clot lysis time.
Collapse
Affiliation(s)
| | - Inge Kalies
- AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden
| | - Göran Bergström
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, University of Gothenburg, S-41345 Göteborg, Sweden
| | - Caroline Schmidt
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, University of Gothenburg, S-41345 Göteborg, Sweden
| | | | - Lillemor Mattsson Hultén
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, University of Gothenburg, S-41345 Göteborg, Sweden
| | | | | | | |
Collapse
|
25
|
Boffa MB, Koschinsky ML. Update on lipoprotein(a) as a cardiovascular risk factor and mediator. Curr Atheroscler Rep 2014; 15:360. [PMID: 23990263 DOI: 10.1007/s11883-013-0360-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent genetic studies have put the spotlight back onto lipoprotein(a) [Lp(a)] as a causal risk factor for coronary heart disease. However, there remain significant gaps in our knowledge with respect to how the Lp(a) particle is assembled, the route of its catabolism, and the mechanism(s) of Lp(a) pathogenicity. It has long been speculated that the effects of Lp(a) in the vasculature can be attributed to both its low-density lipoprotein moiety and the unique apolipoprotein(a) component, which is strikingly similar to the kringle-containing fibrinolytic zymogen plasminogen. However, the ability of Lp(a) to modulate either purely thrombotic or purely atherothrombotic processes in vivo remains unclear. The presence of oxidized phospholipid on Lp(a) may underlie many of the proatherosclerotic effects of Lp(a) that have been identified both in cell models and in animal models, and provides a possible avenue for identifying therapeutics aimed at mitigating the effects of Lp(a) in the vasculature. However, the beneficial effects of targeted Lp(a) therapeutics, designed to either lower Lp(a) concentrations or interfere with its effects, on cardiovascular outcomes remains to be determined.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Chemistry & Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada.
| | | |
Collapse
|
26
|
Kristensen LP, Larsen MR, Mickley H, Saaby L, Diederichsen AC, Lambrechtsen J, Rasmussen LM, Overgaard M. Plasma proteome profiling of atherosclerotic disease manifestations reveals elevated levels of the cytoskeletal protein vinculin. J Proteomics 2014; 101:141-53. [DOI: 10.1016/j.jprot.2013.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 11/16/2022]
|
27
|
The association between the LPA gene polymorphism and coronary artery disease in Chinese Han population. BIOMED RESEARCH INTERNATIONAL 2014; 2014:370670. [PMID: 24790998 PMCID: PMC3984839 DOI: 10.1155/2014/370670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/26/2014] [Indexed: 01/13/2023]
Abstract
Lp(a) has been well known as an independent risk factor for coronary artery disease (CAD). The LPA gene, as it encodes apo(a) of the Lp(a) lipoprotein particle, was associated with increased risk of CAD. The purpose of this study was to analyze the relationship between the polymorphisms of LPA gene and CAD in Chinese Han population. Five SNPs (rs1367211, rs3127596, rs6415085, rs9347438, and rs9364559) in the LPA gene were genotyped using Sequenom MassARRAY time-of-flight mass spectrometer (TOF) in 560 CAD patients as case group and 531 non-CAD subjects as control group. The numbers of these two groups were from Chinese Han ancestry. The results showed that allele (P = 0.046) and genotype (P = 0.026) of rs9364559 in the LPA gene was associated with CAD. The frequency of rs9364559 minor allele (G) in case group was obviously higher than that in control group. Results of haplotype analysis showed that 4 haplotypes which contained rs9364559-G were associated with increased risk of CAD in this population. This study explored rs9364559 in the LPA gene may be associated with the pathogenesis of CAD; and the risk of CAD might be higher in the population carrying 4 haplotypes of different blocks in the LPA gene.
Collapse
|
28
|
Živković M, Stanković A, Djurić T, Končar I, Kolaković A, Djurdjević V, Davidović L, Alavantić D. Effects of glutathione S-transferase T1 and M1 deletions on advanced carotid atherosclerosis, oxidative, lipid and inflammatory parameters. Mol Biol Rep 2014; 41:1157-64. [DOI: 10.1007/s11033-013-2962-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 12/21/2013] [Indexed: 12/13/2022]
|
29
|
Droste DW, Iliescu C, Vaillant M, Gantenbein M, De Bremaeker N, Lieunard C, Velez T, Meyer M, Guth T, Kuemmerle A, Gilson G, Chioti A. A daily glass of red wine associated with lifestyle changes independently improves blood lipids in patients with carotid arteriosclerosis: results from a randomized controlled trial. Nutr J 2013; 12:147. [PMID: 24228901 PMCID: PMC3833853 DOI: 10.1186/1475-2891-12-147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Physical exercise and a Mediterranean diet improve serum lipid profile. The present work studied whether red wine has an effect on top of a lipid-lowering lifestyle in patients with carotid atherosclerosis. METHODS A prospective randomised unblinded trial was performed from 2009 to 2011 in 108 patients with carotid atherosclerosis, 65% of whom were already on statin therapy with a low mean LDL of 104.9 mg/dl. Half of them were advised to follow a modified Mediterranean diet and to perform moderate physical exercise during 30 min/day (lifestyle changes) for 20 weeks. Within these two groups half of the patients were randomised either to avoid any alcohol or to drink 100 ml of red wine (women) or 200 ml of red wine (men) daily. RESULTS LDL was significantly lowered by 7% in the lifestyle-changes group compared to the no-lifestyle-changes group (p = 0.0296) after 20 weeks. Lifestyle changes lowered the LDL/HDL ratio after 20 weeks by 8% (p = 0.0242) and red wine independently by 13% (p = 0.0049). The effect on LDL/HDL ratio after 20 weeks was, however, more pronounced in the non-LC group. Total cholesterol (-6%; p = 0.0238) and triglycerides (-13%; p = 0.0361) were lowered significantly by lifestyle changes after 20 weeks compared to the no-lifestyle-changes group. Lipoprotein (a) was not significantly affected by any intervention. The given results are per ITT analysis. CONCLUSIONS Lifestyle changes including a modified Mediterranean diet and physical exercise as well as a glass of red wine daily improve independently the LDL/HDL ratio in patients with carotid arteriosclerosis even though the vast majority of them was already on statin therapy.
Collapse
Affiliation(s)
- Dirk W Droste
- Department of Neurology, Centre Hospitalier de Luxembourg (CHL), 4 rue Barblé, L-1210, Luxembourg, Luxemburg
| | - Catalina Iliescu
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Michel Vaillant
- Centre de Recherche Public-Santé (CRP-Santé), Methodology and Statistical Competence Centre (CCMS), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Manon Gantenbein
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Nancy De Bremaeker
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Charlotte Lieunard
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Telma Velez
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Michèle Meyer
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Tessy Guth
- Centre de Recherche Public-Santé (CRP-Santé), Methodology and Statistical Competence Centre (CCMS), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Andrea Kuemmerle
- Centre de Recherche Public-Santé (CRP-Santé), Centre of Health Studies, 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| | - Georges Gilson
- Department of Clinical Biology, Centre Hospitalier de Luxembourg (CHL), 4 rue Barblé, L-1210 Luxemburg, Luxembourg
| | - Anna Chioti
- Centre de Recherche Public-Santé (CRP-Santé), Clinical and Epidemiological Investigation Centre (CIEC), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxemburg
| |
Collapse
|
30
|
|