1
|
Chen Y, Xiao J, Zhu X, Fan X, Peng M, Mu Y, Wang C, Xia L, Zhou M. Exploiting conjugated linoleic acid for health: a recent update. Food Funct 2025; 16:147-167. [PMID: 39639784 DOI: 10.1039/d4fo04911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Conjugated linoleic acid (CLA) is widely used as a dietary supplement due to its reported benefits in enhancing immunity, regulating inflammation, treating obesity, and preventing cancer. However, there is a lack of comprehensive studies on its mechanisms and dose-effect relationships. Moreover, there are insufficient in-depth studies on CLA's new functions, safety, side effects, and clinical utility. This review systematically examines the structure and sources of CLA, summarizes its role in improving human health, and critically reviews the potential mechanisms behind these benefits. It also analyzes the side effects of CLA and addresses issues related to dosing and oxidative decomposition in CLA research. Additionally, the potential of using CLA-producing probiotics to manage diseases is explored. This review can guide and promote further research on CLA's functions and support the development of CLA dietary supplements. It will accelerate the development of CLA nutritional and medical foods, contribute to the improvement of human health, and have important social meaning and economic value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
2
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
3
|
Huang M, Zhang X, Yan W, Liu J, Wang H. Metabolomics reveals potential plateau adaptability by regulating
inflammatory response and oxidative stress-related metabolism and energy
metabolism pathways in yak. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:97-109. [PMID: 35174345 PMCID: PMC8819316 DOI: 10.5187/jast.2021.e129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Species are facing strong selection pressures to adapt to inhospitable
high-altitude environments. Yaks are a valuable species and an iconic symbol of
the Qinghai-Tibet Plateau. Extensive studies of high-altitude adaptation have
been conducted, but few have focused on metabolism. In the present study, we
determined the differences in the serum metabolomics between yaks and the
closely related species of low-altitude yellow cattle and dairy cows. We
generated high-quality metabolite profiling data for 36 samples derived from the
three species, and a clear separation trend was obtained between yaks and the
other animals from principal component analysis. In addition, we identified a
total of 63 differentially expressed metabolites among the three species.
Functional analysis revealed that differentially expressed metabolites were
related to the innate immune activation, oxidative stress-related metabolism,
and energy metabolism in yaks, which indicates the important roles of
metabolites in high-altitude adaptation in yaks. The results provide new
insights into the mechanism of adaptation or acclimatization to high-altitude
environments in yaks and hypoxia-related diseases in humans.
Collapse
Affiliation(s)
- Meizhou Huang
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
- Academician (Expert) Workstation of
Sichuan Province, The Affiliated Hospital of Southwest Medical
University, Sichuan 646000, China
| | - Xin Zhang
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
| | - Wenjun Yan
- Agricultural and Rural Integrated Service
Center of Dachaigou Town, Tianzhu Tibetan Autonomous County,
Gansu 733202, China
| | - Jingjing Liu
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
- Corresponding author: Hui Wang, Department of
Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
Tel: +86-13919330832, E-mail:
| |
Collapse
|
4
|
Adkins Y, Soulika AM, Mackey B, Kelley DS. Docosahexaenoic acid (22:6n-3) Ameliorated the Onset and Severity of Experimental Autoimmune Encephalomyelitis in Mice. Lipids 2019; 54:13-23. [PMID: 30762234 DOI: 10.1002/lipd.12130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is a neurologic autoimmune disease, which is the leading cause of nontraumatic neurologic disability in young adults in United States and Europe. n-3 polyunsaturated fatty acids (PUFA) are reported to mitigate severity of this disease. Recent studies suggest that phospholipid (PL) form of dietary n-3 PUFA may lead to their higher tissue accretion than triacylglycerol (TAG) form. We compared efficacy of PL-docosahexaenoic acid (22:6n-3) (DHA) and TAG-DHA on onset and severity of experimental autoimmune encephalomyelitis (EAE) in a mouse model of MS. Female mice were fed low alpha-linolenic acid (18:3n-3) (ALA) diet (control) for 2 weeks and then fed either control, 0.3%, or 1.0% DHA (PL or TAG) for 4 weeks pre-EAE induction and 4 weeks post-EAE induction. The brain and spinal cord n-6:n-3 ratio was significantly lower in all mice fed DHA compared to control. EAE onset was delayed in mice fed both DHA forms and concentrations, except for 1% TAG-DHA. The inverse association between the EAE score and the brain DHA concentration was nonsignificant at the end of the study (p = 0.08). Daily EAE scores of mice fed different DHA diets did not differ from control, however, the score of all DHA groups combined during days 9-16 was lower (p = 0.028) compared to the control. During days 17-22, the EAE score trended lower in 0.3% TAG-DHA and during days 23-28, the EAE score trended lower in both PL-DHA groups than those in all other groups. These findings suggest that TAG-DHA may be more effective than PL-DHA in the early phases of EAE, and in the final outcome, PL-DHA may be more effective than TAG-DHA.
Collapse
Affiliation(s)
- Yuriko Adkins
- USDA, ARS, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Athena M Soulika
- Department of Dermatology, University of California Davis Medical Center and Shriners Hospital for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95816, USA
| | - Bruce Mackey
- USDA, ARS, Western Regional Research Center, 800 Buchanan St Albany, CA 94710, USA
| | - Darshan S Kelley
- USDA, ARS, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA.,Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
5
|
|
6
|
Adkins Y, Belda BJ, Pedersen TL, Fedor DM, Mackey BE, Newman JW, Kelley DS. Dietary Docosahexaenoic Acid and trans-10, cis-12-Conjugated Linoleic Acid Differentially Alter Oxylipin Profiles in Mouse Periuterine Adipose Tissue. Lipids 2017; 52:399-413. [DOI: 10.1007/s11745-017-4252-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/04/2017] [Indexed: 02/08/2023]
|
7
|
Mahesh M, Bharathi M, Reddy MRG, Kumar MS, Putcha UK, Vajreswari A, Jeyakumar SM. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats. Prev Nutr Food Sci 2016; 21:171-180. [PMID: 27752492 PMCID: PMC5063201 DOI: 10.3746/pnf.2016.21.3.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/27/2016] [Indexed: 12/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.
Collapse
Affiliation(s)
- Malleswarapu Mahesh
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India
| | - Munugala Bharathi
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India
| | - Mooli Raja Gopal Reddy
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India
| | - Manchiryala Sravan Kumar
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India
| | - Uday Kumar Putcha
- Pathology Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India
| | | | - Shanmugam M Jeyakumar
- Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad 500007, India
| |
Collapse
|
8
|
Aburasayn H, Al Batran R, Ussher JR. Targeting ceramide metabolism in obesity. Am J Physiol Endocrinol Metab 2016; 311:E423-35. [PMID: 27382035 DOI: 10.1152/ajpendo.00133.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Obesity is a major health concern that increases the risk for insulin resistance, type 2 diabetes (T2D), and cardiovascular disease. Thus, an enormous research effort has been invested into understanding how obesity-associated dyslipidemia and obesity-induced alterations in lipid metabolism increase the risk for these diseases. Accordingly, it has been proposed that the accumulation of lipid metabolites in organs such as the liver, skeletal muscle, and heart is critical to these obesity-induced pathologies. Ceramide is one such lipid metabolite that accumulates in tissues in response to obesity, and both pharmacological and genetic strategies that reduce tissue ceramide levels yield salutary actions on overall metabolic health. We will review herein why ceramide accumulates in tissues during obesity and how an increase in intracellular ceramide impacts cellular signaling and function as well as potential mechanisms by which reducing intracellular ceramide levels improves insulin resistance, T2D, atherosclerosis, and heart failure. Because a reduction in skeletal muscle ceramide levels is frequently associated with improvements in insulin sensitivity in humans, the beneficial findings reported for reducing ceramides in preclinical studies may have clinical application in humans. Therefore, modulating ceramide metabolism may be a novel, exciting target for preventing and/or treating obesity-related diseases.
Collapse
Affiliation(s)
- Hanin Aburasayn
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Kim JH, Kim Y, Kim YJ, Park Y. Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annu Rev Food Sci Technol 2016; 7:221-44. [DOI: 10.1146/annurev-food-041715-033028] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
10
|
Dietary docosahexaenoic acid reverses nonalcoholic steatohepatitis and fibrosis caused by conjugated linoleic acid supplementation in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Enhanced amelioration of high-fat diet-induced fatty liver by docosahexaenoic acid and lysine supplementations. BIOMED RESEARCH INTERNATIONAL 2014; 2014:310981. [PMID: 24967351 PMCID: PMC4055637 DOI: 10.1155/2014/310981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 01/21/2023]
Abstract
Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD-) induced nonalcoholic fatty liver disease (NAFLD) in mice and tested the effects of docosahexaenoic acid (DHA) and lysine during a four-week regular chow (RC)feeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1), was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.
Collapse
|
12
|
Schuster GU, Bratt JM, Jiang X, Pedersen TL, Grapov D, Adkins Y, Kelley DS, Newman JW, Kenyon NJ, Stephensen CB. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice. Am J Respir Cell Mol Biol 2014; 50:626-36. [PMID: 24134486 PMCID: PMC4068931 DOI: 10.1165/rcmb.2013-0136oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/07/2013] [Indexed: 12/30/2022] Open
Abstract
Although the effects of fish oil supplements on airway inflammation in asthma have been studied with varying results, the independent effects of the fish oil components, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), administered separately, are untested. Here, we investigated airway inflammation and hyperresponsiveness using a mouse ovalbumin exposure model of asthma assessing the effects of consuming EPA (1.5% wt/wt), DHA (1.5% wt/wt), EPA plus DHA (0.75% each), or a control diet with no added omega-3 polyunsaturated fatty acids. Consuming these diets for 6 weeks resulted in erythrocyte membrane EPA contents (molar %) of 9.0 (± 0.6), 3.2 (± 0.2), 6.8 (± 0.5), and 0.01 (± 0.0)%; DHA contents were 6.8 (± 0.1), 15.6 (± 0.5), 12.3 (± 0.3), and 3.8 (± 0.2)%, respectively. The DHA group had the highest bronchoalveolar lavage (BAL) fluid eosinophil and IL-6 levels (P < 0.05). Similar trends were seen for macrophages, IL-4, and IL-13, whereas TNF-α was lower in omega-3 polyunsaturated fatty acid groups than the control (P < 0.05). The DHA group also had the highest airway resistance, which differed significantly from the EPA plus DHA group (P < 0.05), which had the lowest. Oxylipins were measured in plasma and BAL fluid, with DHA and EPA suppressing arachidonic acid-derived oxylipin production. DHA-derived oxylipins from the cytochrome P450 and 15-lipoxygenase pathways correlated significantly with BAL eosinophil levels. The proinflammatory effects of DHA suggest that the adverse effects of individual fatty acid formulations should be thoroughly considered before any use as therapeutic agents in asthma.
Collapse
Affiliation(s)
- Gertrud U. Schuster
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Immunity and Disease Prevention Unit, Davis, California
- Nutrition Department, University of California, Davis, California
| | - Jennifer M. Bratt
- Division of Pulmonary and Critical Care Medicine, University of California, Davis, California; and
| | - Xiaowen Jiang
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Immunity and Disease Prevention Unit, Davis, California
| | - Theresa L. Pedersen
- USDA, ARS, Western Human Nutrition Research Center, Obesity and Metabolism Research Prevention, Davis, California
| | - Dmitry Grapov
- Nutrition Department, University of California, Davis, California
| | - Yuriko Adkins
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Immunity and Disease Prevention Unit, Davis, California
| | - Darshan S. Kelley
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Immunity and Disease Prevention Unit, Davis, California
- Nutrition Department, University of California, Davis, California
| | - John W. Newman
- Nutrition Department, University of California, Davis, California
- USDA, ARS, Western Human Nutrition Research Center, Obesity and Metabolism Research Prevention, Davis, California
| | - Nicholas J. Kenyon
- Division of Pulmonary and Critical Care Medicine, University of California, Davis, California; and
| | - Charles B. Stephensen
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Immunity and Disease Prevention Unit, Davis, California
- Nutrition Department, University of California, Davis, California
| |
Collapse
|
13
|
Pan MH, Lai CS, Tsai ML, Ho CT. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 2013; 58:147-71. [PMID: 24302567 DOI: 10.1002/mnfr.201300522] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a wide spectrum of liver disease that is not from excess alcohol consumption, but is often associated with obesity, type 2 diabetes, and metabolic syndrome. NAFLD pathogenesis is complicated and involves oxidative stress, lipotoxicity, mitochondrial damage, insulin resistance, inflammation, and excessive dietary fat intake, which increase hepatic lipid influx and de novo lipogenesis and impair insulin signaling, thus promoting hepatic triglyceride accumulation and ultimately NAFLD. Overproduction of proinflammatory adipokines from adipose tissue also affects hepatic metabolic function. Current NAFLD therapies are limited; thus, much attention has been focused on identification of potential dietary substances from fruits, vegetables, and edible plants to provide a new strategy for NAFLD treatment. Dietary natural compounds, such as carotenoids, omega-3-PUFAs, flavonoids, isothiocyanates, terpenoids, curcumin, and resveratrol, act through a variety of mechanisms to prevent and improve NAFLD. Here, we summarize and briefly discuss the currently known targets and signaling pathways as well as the role of dietary natural compounds that interfere with NAFLD pathogenesis.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
14
|
Bouzianas DG, Bouziana SD, Hatzitolios AI. Potential treatment of human nonalcoholic fatty liver disease with long-chain omega-3 polyunsaturated fatty acids. Nutr Rev 2013; 71:753-71. [PMID: 24148001 DOI: 10.1111/nure.12073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in the Western world. Its prevalence has increased with the growing obesity epidemic, yet no definitive treatment has been developed, and optimal management remains a clinical challenge. Long-chain omega-3 polyunsaturated fatty acids (PUFAs) have recently been proposed as a potential treatment for liver inflammation associated with fat accumulation. PubMed literature and the ClinicalTrials.gov database were reviewed for the effects of omega-3 PUFA treatment on NAFLD, from mechanisms to the results of preclinical studies, human studies, and unreported ongoing clinical trials, using terms such as NAFLD, nonalcoholic steatohepatitis, omega-3 fatty acids, and fish oil. Articles published over the last 3-4 years were emphasized, and relevancy was ensured by scanning their abstracts. Preliminary studies have confirmed an ameliorative effect, yet the translation of promising early data into therapeutic interventions will have to await the results of larger, properly conducted, ongoing clinical trials.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- First Propedeutic Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | | |
Collapse
|
15
|
Depner CM, Philbrick KA, Jump DB. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis. J Nutr 2013; 143:315-23. [PMID: 23303872 PMCID: PMC3713021 DOI: 10.3945/jn.112.171322] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) has increased in parallel with the incidence of obesity. While both NAFLD and NASH are characterized by hepatosteatosis, NASH is characterized by hepatic damage, inflammation, oxidative stress, and fibrosis. We previously reported that feeding Ldlr(-/-) mice a high-fat, high-cholesterol diet containing menhaden oil attenuated several markers of NASH, including hepatosteatosis, inflammation, and fibrosis. Herein, we test the hypothesis that DHA [22:6 (n-3)] is more effective than EPA [20:5 (n-3)] at preventing Western diet (WD)-induced NASH in Ldlr(-/-) mice. Mice were fed the WD supplemented with either olive oil (OO), EPA, DHA, or EPA + DHA for 16 wk. WD + OO feeding induced a severe NASH phenotype, characterized by robust hepatosteatosis, inflammation, oxidative stress, and fibrosis. Whereas none of the C20-22 (n-3) fatty acid treatments prevented WD-induced hepatosteatosis, all 3 (n-3) PUFA-containing diets significantly attenuated WD-induced inflammation, fibrosis, and hepatic damage. The capacity of dietary DHA to suppress hepatic markers of inflammation (Clec4F, F4/80, Trl4, Trl9, CD14, Myd88), fibrosis (Procol1α1, Tgfβ1), and oxidative stress (NADPH oxidase subunits Nox2, p22phox, p40phox, p47phox, p67phox) was significantly greater than dietary EPA. The effects of DHA on these markers paralleled DHA-mediated suppression of hepatic Fads1 mRNA abundance and hepatic arachidonic acid content. Because DHA suppression of NASH markers does not require a reduction in hepatosteatosis, dietary DHA may be useful in combating NASH in obese humans.
Collapse
Affiliation(s)
- Christopher M. Depner
- The Nutrition Program, School of Biological and Population Health Sciences, and,The Linus Pauling Institute, Oregon State University, Corvallis, OR
| | | | - Donald B. Jump
- The Nutrition Program, School of Biological and Population Health Sciences, and,The Linus Pauling Institute, Oregon State University, Corvallis, OR,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Fedor DM, Adkins Y, Newman JW, Mackey BE, Kelley DS. The Effect of Docosahexaenoic Acid ont10,c12-Conjugated Linoleic Acid-Induced Changes in Fatty Acid Composition of Mouse Liver, Adipose, and Muscle. Metab Syndr Relat Disord 2013; 11:63-70. [DOI: 10.1089/met.2012.0116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Dawn M. Fedor
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, Davis, California
| | - Yuriko Adkins
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, Davis, California
| | - John W. Newman
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, Davis, California
| | - Bruce E. Mackey
- Western Regional Research Center, ARS, USDA, Albany, California
| | - Darshan S. Kelley
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, Davis, California
| |
Collapse
|