1
|
Luo YY, Ruan CS, Zhao FZ, Yang M, Cui W, Cheng X, Luo XH, Zhang XX, Zhang C. ZBED3 exacerbates hyperglycemia by promoting hepatic gluconeogenesis through CREB signaling. Metabolism 2024; 162:156049. [PMID: 39454821 DOI: 10.1016/j.metabol.2024.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Elevated hepatic glucose production (HGP) is a prominent manifestation of impaired hepatic glucose metabolism in individuals with diabetes. Increased hepatic gluconeogenesis plays a pivotal role in the dysregulation of hepatic glucose metabolism and contributes significantly to fasting hyperglycemia in diabetes. Previous studies have identified zinc-finger BED domain-containing 3 (ZBED3) as a risk gene for type 2 diabetes (T2DM), and its single nucleotide polymorphism (SNPs) is closely associated with the fasting blood glucose level, suggesting a potential correlation between ZBED3 and the onset of diabetes. This study primarily explores the effect of ZBED3 on hepatic gluconeogenesis and analyzes the relevant signaling pathways that regulate hepatic gluconeogenesis. METHODS The expression level of ZBED3 was assessed in the liver of insulin-resistant (IR)-related disease. RNA-seq and bioinformatics analyses were employed to examine the ZBED3-related pathway that modulated HGP. To investigate the role of ZBED3 in hepatic gluconeogenesis, the expression of ZBED3 was manipulated by upregulation or silencing using adeno-associated virus (AAV) in mouse primary hepatocytes (MPHs) and HHL-5 cells. In vivo, hepatocyte-specific ZBED3 knockout mice were generated. Moreover, AAV8 was employed to achieve hepatocyte-specific overexpression and knockdown of ZBED3 in C57BL/6 and db/db mice. Immunoprecipitation and mass spectrometry (IP-MS) analyses were employed to identify proteins that interacted with ZBED3. Co-immunoprecipitation (co-IP), glutathione S-transferase (GST) - pulldown, and dual-luciferase reporter assays were conducted to further elucidate the underlying mechanism of ZBED3 in regulating hepatic gluconeogenesis. RESULTS The expression of ZBED3 in the liver of IR-related disease models was found to be increased. Under the stimulation of glucagon, ZBED3 promoted the expression of hepatic gluconeogenesis-related genes PGC1A, PCK1, G6PC, thereby increasing HGP. Consistently, the rate of hepatic gluconeogenesis was found to be elevated in mice with hepatocyte-specific overexpression of ZBED3 and decreased in those with ZBED3 knockout. Additionally, the knockdown of ZBED3 in the liver of db/db mice resulted in a reduction in hepatic gluconeogenesis. Moreover, the study revealed that ZBED3 facilitated the nuclear translocation of protein arginine methyltransferases 5 (PRMT5) to influence the regulation of PRMT5-mediated symmetrical dimethylation of arginine (s-DMA) of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), which in turn affects the phosphorylation of CREB and ultimately promotes HGP. CONCLUSIONS This study indicates that ZBED3 promotes hepatic gluconeogenesis and serves as a critical regulator of the progression of diabetes.
Collapse
Affiliation(s)
- Yuan-Yuan Luo
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chang-Shun Ruan
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Fu-Zhen Zhao
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; School of Medicine, Chongqing University, Chongqing, China
| | - Min Yang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xi Cheng
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiao-He Luo
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China.
| | - Xian-Xiang Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Cheng Zhang
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China; School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Wu Y, Yang M, Wu SB, Luo PQ, Zhang C, Ruan CS, Cui W, Zhao QR, Chen LX, Meng JJ, Song Q, Zhang WJ, Pei QQ, Li F, Zeng T, Du HX, Xu LX, Zhang W, Zhang XX, Luo XH. Zinc finger BED-type containing 3 promotes hepatic steatosis by interacting with polypyrimidine tract-binding protein 1. Diabetologia 2024; 67:2346-2366. [PMID: 39037604 DOI: 10.1007/s00125-024-06224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shao-Bo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Pei-Qi Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Cheng Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chang-Shun Ruan
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiu-Rong Zhao
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lin-Xin Chen
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Juan-Juan Meng
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Song
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wen-Jin Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qin-Qin Pei
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hong-Xin Du
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Li-Xin Xu
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Xian-Xiang Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Xiao-He Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
3
|
Xiang T, Zhang S, Li Q, Li L, Liu H, Chen C, Yang G, Yang M. GPHB5 Is a Biomarker in Women With Metabolic Syndrome: Results From Cross-Sectional and Intervention Studies. Front Endocrinol (Lausanne) 2022; 13:893142. [PMID: 35757403 PMCID: PMC9218212 DOI: 10.3389/fendo.2022.893142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Animal studies have found that GPHB5 has a similar effect on system metabolism as TSH. However, the relationship between GPHB5 and metabolic diseases remains unknown. This study investigates the relationship between GPHB5 and MetS in young women. METHODS Bioinformatics analysis was undertaken to explore the relationship between GPHB5 and metabolic-related genes and signaling pathways. EHC and OGTT were performed on all individuals. Lipid-infusion, physical activity, and cold-exposure tests were performed on healthy individuals. Serum GPHB5 concentrations were measured by an ELISA kit. RESULTS PPI network showed that 11 genes interacted with GPHB5, in which POMC and KISS1R were involved in glucose and lipid metabolism. GO analysis showed 56 pathways for BP and 16 pathways for MF, in which OPRM1 and MCR families were related to energy metabolism. KEGG analysis found that GPHB5 is associated with lipolysis and neuroactive ligand-receptor interaction pathways. The levels of circulating GPHB5 were significantly increased, while serum adiponectin levels were lower in MetS women compared with healthy women. Obese/overweight individuals had lower adiponectin levels and higher GPHB5 levels. Circulating GPHB5 levels were positively correlated with BMI, WHR, blood pressure, FBG, 2 h-BG, HbA1c, FIns, 2h-Ins, LDL-C, FFA, HOMA-IR, and AUCg, etc. but negatively correlated with HDL-C, adiponectin, and M-values. Serum GPHB5 levels did not change significantly during the OGTT, EHC, and lipid infusion. Physical activity and cold-exposure tests did not lead to changes in GPHB5 levels. GLP-1RA treatment resulted in a significant decrease in serum GPHB5 levels. CONCLUSIONS GPHB5 may be a biomarker for MetS.
Collapse
Affiliation(s)
- Ting Xiang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siliang Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qinge Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chen Chen
- Endocrinology, School of Biomedical Science (SBMS), Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Gangyi Yang, ; Mengliu Yang,
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Gangyi Yang, ; Mengliu Yang,
| |
Collapse
|
4
|
Sabiha B, Bhatti A, Fan KH, John P, Aslam MM, Ali J, Feingold E, Demirci FY, Kamboh MI. Assessment of genetic risk of type 2 diabetes among Pakistanis based on GWAS-implicated loci. Gene 2021; 783:145563. [PMID: 33705809 DOI: 10.1016/j.gene.2021.145563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple type 2 diabetes (T2D) loci, mostly among populations of European descent. There is a high prevalence of T2D among Pakistanis. Both genetic and environmental factors may be responsible for this high prevalence. In order to understand the shared genetic basis of T2D among Pakistanis and Europeans, we examined 77 genome-wide significant variants previously implicated among European populations. We genotyped 77 single-nucleotide polymorphisms (SNPs) by iPLEX® Gold or TaqMan® assays in a case-control sample of 1,683 individuals. Association analysis was performed using logistic regression. A total of 16 SNPs (TCF7L2/rs7903146, GLIS3/rs7041847, CHCHD9/rs13292136, PLEKHA1/rs2292626, FTO/rs9936385, CDKAL1/rs7756992, KCNJ11/rs5215, LOC105372155/rs12970134, KCNQ1/rs163182, CTRB1/rs7202877, ST6GAL1/rs16861329, ADAMTS9-AS2/rs6795735, LOC105370275/rs1359790, C5orf67/rs459193, ZBED3-AS1/rs6878122 and UBE2E2/rs7612463) showed statistically significant associations after controlling for the false discovery rate. While KCNQ1/rs163182 and ZBED3-AS1/rs6878122 showed opposite allelic effects, the remaining significant SNPs had the same allelic effects as reported previously. Our data indicate that a selected number of T2D loci previously identified among populations of European descent also affect the risk of T2D in the Pakistani population.
Collapse
Affiliation(s)
- Bibi Sabiha
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Kang-Hsien Fan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Peter John
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Muaaz Aslam
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Johar Ali
- Center for Genome Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
5
|
Tan X, Hu W, Yang S, Dai H, Xu S, Yang G, Li L, Tang S, Wang Y. Association of metabolic syndrome components with circulating levels of cytokine clusters in young women. Endocr Connect 2021; 10:66-75. [PMID: 33289689 PMCID: PMC7923046 DOI: 10.1530/ec-20-0569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the relationship between circulating zinc α 2-glycoprotein (ZAG), irisin, betatrophin and adiponectin concentrations and metabolic syndrome (MetS) components and to analyze the effects of blood glucose and insulin on these cytokine concentrations in vivo. METHODS A total of 196 young women, including 78 healthy women and 118 women with MetS components, were recruited for this cross-sectional study. An oral glucose tolerance test and euglycemic-hyperinsulinemic clamp (EHC) were performed in healthy subjects and women with MetS components. An ELISA kit was used to measure serum ZAG, irisin, betatrophin, and adiponectin levels, and their relationship with the MetS components was analyzed. RESULTS In women with MetS components, circulating irisin and betatrophin levels were significantly higher than those in the healthy women ((207 (150-248) vs 178 (147-228); P < 0.05) for irisin; (0.51 (0.38-0.63) vs 0.38 (0.23-0.52); P < 0.001) for betatrophin), but circulating ZAG and adiponectin levels were significantly lower (39.8 (26.4-50.4) vs (46.7 (40.6-63.0); P < 0.001) for ZAG; (36.5 (22.0-47.6) vs 41.2 (35.7-54.7); P < 0.01) for adiponectin). FBG, WC, and triglyceride were significantly correlated with the circulating levels of these four cytokines (P < 0.001 or <0.05). All four cytokines were associated with MetS and its components. In response to increasing insulin levels, circulating ZAG concentrations were markedly increased in both healthy subjects and women with MetS components during the EHC. However, serum irisin, betatrophin, and adiponectin levels in both healthy subjects and women with MetS components were significantly reduced compared with baseline. CONCLUSION Serum ZAG, irisin, betatrophin and adiponectin were associated with MetS and might be biomarkers for screening MetS components.
Collapse
Affiliation(s)
- Xingrong Tan
- Department of Endocrinology, 9th People’s Hospital of Chongqing, Beibei City, Chongqong, China
| | - Wenjing Hu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases, Chongqing, China
| | - Shan Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Han Dai
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shangcheng Xu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Department of Endocrinology, 9th People’s Hospital of Chongqing, Beibei City, Chongqong, China
| | - Shiguo Tang
- Department of Endocrinology, 9th People’s Hospital of Chongqing, Beibei City, Chongqong, China
| | - Yi Wang
- Department of Endocrinology, 9th People’s Hospital of Chongqing, Beibei City, Chongqong, China
- Correspondence should be addressed to Y Wang:
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Common genetic variants that associate with type 2 diabetes risk are markedly enriched in pancreatic islet transcriptional enhancers. This review discusses current advances in the annotation of islet enhancer variants and their target genes. RECENT FINDINGS Recent methodological advances now allow genetic and functional mapping of diabetes causal variants at unprecedented resolution. Mapping of enhancer-promoter interactions in human islets has provided a unique appreciation of the complexity of islet gene regulatory processes and enabled direct association of noncoding diabetes risk variants to their target genes. The recently improved human islet enhancer annotations constitute a framework for the interpretation of diabetes genetic signals in the context of pancreatic islet gene regulation. In the future, integration of existing and yet to come regulatory maps with genetic fine-mapping efforts and in-depth functional characterization will foster the discovery of novel diabetes molecular risk mechanisms.
Collapse
Affiliation(s)
- Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, ICTEM 5th floor, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
AbuZayed R, Bulatova N, Kasabri V, Suyagh M, Halaseh L, AlAlawi S. Correlates of zinc finger BED domain-containing protein 3 and ghrelin in metabolic syndrome patients with and without prediabetes. Horm Mol Biol Clin Investig 2019; 37:/j/hmbci.ahead-of-print/hmbci-2018-0052/hmbci-2018-0052.xml. [DOI: 10.1515/hmbci-2018-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022]
Abstract
Abstract
Background
Ghrelin and zinc finger BED domain-containing protein 3 (ZBED3) are distinctively cross linked with prediabetes (preDM) and metabolic syndrome (MetS).
Materials and methods
In a cross-sectional design with 29 normoglycemic MetS and 30 newly diagnosed drug naïve preDM/MetS patients vs. 29 lean and normoglycemic controls; ghrelin and ZBED3 were evaluated using colorimetric enzymatic assays.
Results
While ZBED3 mean circulating levels (ng/mL) in both MetS groups (normoglycemic and preDM) invariably lacked discrepancy vs. controls; Appreciably ghrelin levels (ng/mL) in preDM/MetS (but not normoglycemic MetS) participants were markedly higher vs. controls. Except for fasting plasma glucose (FPG) and glycosylated-hemoglobin (HbA1C); no further intergroup discrepancy could be identified between the MetS arms. Remarkably adiposity indices (body mass index (BMI), body adiposity index (BAI), and lipid accumulation product (LAP), but not conicity index (CI) or visceral adiposity index (VAI)); atherogenicity index of plasma (but not non-high-density lipoprotein-cholesterol (non-HDL-C/HDL-C) ratio, or total cholesterol (TC)/HDL-C ratio) or any of hematological indices (red cell distribution width (RDW-CV%), monocyte to lymphocyte ratio (MLR), neutrophil to lymphocyte ratio (NLR) and platelet (PLT) to lymphocyte ratio (PLR)) were substantially higher in both MetS (non- and preDM) groups vs. those of controls. Exceptionally low-density lipoprotein -cholesterol (LDL-C)/HDL-C ratio, and waist circumference (WC)/hip circumference (HC) ratio were much more pronounced in MetS-preDM vs. normoglycemic MetS recruits. In the MetS pool (both normoglycemic and preDM, n = 58), neither biomarker could relate to each other, or any of clinical parameters, adiposity or atherogenecity indices. Exceptionally ghrelin correlated significantly and inversely with age. ZBED3 correlated significantly and directly with RDW-CV% in the same pool of MetS recruits (n = 59).
Conclusions
Both biomarkers can not be ruled out as putative predictive/surrogate prognostic tools for metabolic anomalies prevention and pharmacotherapy.
Collapse
|