1
|
Fikry H, Saleh LA, Sadek DR, Alkhalek HAA. The possible protective effect of luteolin on cardiovascular and hepatic changes in metabolic syndrome rat model. Cell Tissue Res 2025; 399:27-60. [PMID: 39514020 DOI: 10.1007/s00441-024-03927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The metabolic syndrome, or MetS, is currently a global health concern. The anti-inflammatory, anti-proliferative, and antioxidant properties of luteolin are some of its advantageous pharmacological characteristics. This research was designed to establish a MetS rat model and investigate the possible protective effect of luteolin on cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. Forty adult male albino rats were split into four groups: a negative control group, a group treated with luteolin, a group induced MetS (fed 20% fructose), and a group treated with luteolin (fed 20% fructose and given luteolin). Following the experiment after 8 weeks, biochemical, histological (light and electron), and immunohistochemistry analyses were performed on liver and heart tissues. Serum levels of cTnI, CK-MB, and LDH were significantly elevated in response to the cardiovascular effect of MetS. Furthermore, compared to the negative control group, the MetS group showed a marked increase in lipid peroxidation in the cardiac and hepatic tissues, as evidenced by elevated levels of MDA and a decline in the antioxidant defense system, as demonstrated by lower activities of GSH and SOD. The fatty liver-induced group exhibited histological alterations, including disrupted hepatic architecture, dilated and congested central veins, blood sinusoids, and portal veins. In addition to nuclear structural alterations, most hepatocytes displayed varying degrees of cytoplasmic vacuolation, mitochondrial alterations, and endoplasmic reticulum dilatation. These alterations were linked to inflammatory cellular infiltrations, collagen fiber deposition, active hepatic stellate cells, and scattered hypertrophied Kupffer cells, as demonstrated by electron microscopy and validated by immunohistochemical analysis. It is interesting to note that eosinophils were seen between the liver cells and in dilated blood sinusoids. Moreover, the biochemical (hepatic and cardiac) and histological (liver) changes were significantly less severe in luteolin-treated rat on a high-fructose diet. These results suggested that luteolin protects against a type of metabolic syndrome that is produced experimentally.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Doaa Ramadan Sadek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| |
Collapse
|
2
|
Zeng L, Huang J, Wang Y, Hu Y, Zhou S, Lu Y. Oleanolic acid induces hepatic injury by disrupting hepatocyte tight junction and dysregulation of farnesoid X receptor-mediated bile acid efflux transporters. J Appl Toxicol 2024; 44:1725-1741. [PMID: 39030772 DOI: 10.1002/jat.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Lares-Gutiérrez DA, Galván-Valencia M, Flores-Baza IJ, Lazalde-Ramos BP. Benefits of Chronic Administration of a Carbohydrate-Free Diet on Biochemical and Morphometric Parameters in a Rat Model of Diet-Induced Metabolic Syndrome. Metabolites 2023; 13:1085. [PMID: 37887410 PMCID: PMC10609360 DOI: 10.3390/metabo13101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Carbohydrate intake restriction positively affects markers related to metabolic syndrome (MS). However, the effects of long-term carbohydrate-free diets (CFD) have yet to be studied. The main objective of this study was to report the effects on biochemical and morphometric parameters in a rat model of MS. Male Wistar rats were initially divided into two groups: the standard diet group (SD, n = 20); and the MS group (n = 30) fed a high-glucose diet. Ten animals from each group were sacrificed after 20 weeks on their respective diets to verify MS development. The remaining MS animals were divided into two subgroups: one continued with the MS diet (n = 10); and the other transitioned to a carbohydrate-free diet (MS + CFD group, n = 10) for 20 more weeks. At week 40, parameters, including glucose, insulin, lipid profile, ketone bodies, C-reactive protein (CRP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, liver and muscle glycogen, and serum, hepatic, renal, and pancreatic malondialdehyde (MDA) levels were assessed. Transitioning to CFD resulted in decreased caloric intake and body weight, with normalized parameters including MDA, insulin, lipid profile, ALT, liver glycogen, creatinine, and CRP levels. This shift effectively reversed the MS-induced alterations, except for glycemia and uremia, likely influenced by the diet's high protein content stimulating gluconeogenesis. This research underscores the potential benefits of long-term carbohydrate restriction in mitigating MS-related markers.
Collapse
Affiliation(s)
| | | | | | - Blanca Patricia Lazalde-Ramos
- Maestría en Ciencia y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; (D.A.L.-G.); (M.G.-V.); (I.J.F.-B.)
| |
Collapse
|
4
|
Alhusaini AM, Alsoghayer R, Alhushan L, Alanazi AM, Hasan IH. Acetyl-L-Carnitine and Liposomal Co-Enzyme Q 10 Attenuate Hepatic Inflammation, Apoptosis, and Fibrosis Induced by Propionic Acid. Int J Mol Sci 2023; 24:11519. [PMID: 37511276 PMCID: PMC10380200 DOI: 10.3390/ijms241411519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Propionic acid (PRA) is a metabolic end-product of enteric bacteria in the gut, and it is commonly used as a food preservative. Despite the necessity of PRA for immunity in the body, excessive exposure to this product may result in disruptive effects. The purpose of this study is to examine the hepatoprotective effects of acetyl-L-carnitine (A-CAR) and liposomal-coenzyme Q10 (L-CoQ10) against PRA-induced injury. Liver injury in rats was induced by oral administration of PRA, and A-CAR and L-CoQ10 were administered concurrently with PRA for 5 days. Oxidative stress, inflammatory, apoptotic, and fibrotic biomarkers were analyzed; the histology of liver tissue was assessed as well to further explore any pathological alterations. PRA caused significant increases in the levels of serum liver enzymes and hepatic oxidative stress, inflammatory, and apoptotic biomarker levels, along with histopathological alterations. Concurrent treatment with A-CAR and/or L-CoQ10 with PRA prevented tissue injury and decreased the levels of oxidative stress, proinflammatory cytokines, and apoptotic markers. Additionally, A-CAR and/or L-CoQ10 modulated the expression of high-mobility group box-1, cytokeratin-18, transforming growth factor-beta1, and SMAD3 in liver tissue. In conclusion, A-CAR and/or L-CoQ10 showed hepatoprotective efficacy by reducing oxidative stress, the inflammatory response, apoptosis, and fibrosis in liver tissue.
Collapse
Affiliation(s)
- Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Rahaf Alsoghayer
- Pharm D Program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Lina Alhushan
- Pharm D Program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Abeer M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| |
Collapse
|
5
|
Goralska J, Razny U, Gruca A, Zdzienicka A, Micek A, Dembinska-Kiec A, Solnica B, Malczewska-Malec M. Plasma Cytokeratin-18 Fragment Level Reflects the Metabolic Phenotype in Obesity. Biomolecules 2023; 13:biom13040675. [PMID: 37189422 DOI: 10.3390/biom13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is growing interest in the non-invasive identification and monitoring of the outcome of liver damage in obese patients. Plasma cytokeratin-18 (CK-18) fragment levels correlate with the magnitude of hepatocyte apoptosis and have recently been proposed to independently predict the presence of non-alcoholic steatohepatitis (NASH). The aim of the study was to analyze the associations of CK-18 with obesity and related complications: insulin resistance, impaired lipid metabolism and the secretion of hepatokines, adipokines and pro-inflammatory cytokines. The study involved 151 overweight and obese patients (BMI 25-40), without diabetes, dyslipidemia or apparent liver disease. Liver function was assessed based on alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and the fatty liver index (FLI). CK-18 M30 plasma levels, FGF-21, FGF-19 and cytokines were determined by ELISA. CK-18 values >150 U/l were accompanied by high ALT, GGT and FLI, insulin resistance, postprandial hypertriglyceridemia, elevated FGF-21 and MCP-1 and decreased adiponectin. ALT activity was the strongest independent factor influencing high CK-18 plasma levels, even after an adjustment for age, sex and BMI [β coefficient (95%CI): 0.40 (0.19-0.61)]. In conclusion, the applied CK-18 cut-off point at 150 U/l allows to distinguish between two metabolic phenotypes in obesity.
Collapse
Affiliation(s)
- Joanna Goralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Anna Zdzienicka
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Agnieszka Micek
- Institute of Nursing and Midwifery, Jagiellonian University Medical College; Michałowskiego 12, 31-126 Krakow, Poland
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| | - Malgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland
| |
Collapse
|
6
|
Wu L, Wang M, Maher S, Fu P, Cai D, Wang B, Gupta S, Hijaz A, Daneshgari F, Liu G. Effects of different diets used to induce obesity/metabolic syndrome on bladder function in rats. Am J Physiol Regul Integr Comp Physiol 2023; 324:R70-R81. [PMID: 36374176 PMCID: PMC9799141 DOI: 10.1152/ajpregu.00218.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Preclinical and human studies on the relationship between obesity/metabolic syndrome (MetS) and lower urinary tract dysfunction (LUTD) are inconsistent. We compared the temporal effects of feeding four different diets used to induce obesity/MetS, including 60% fructose, 2% cholesterol +10% lard, 30% fructose + 20% lard, or 32.5% lard diet, up to 42 wk, on metabolic parameters and bladder function in male Sprague-Dawley rats. Rats fed a 30% fructose + 20% lard or 32.5% lard diet consumed less food (grams), but only the 32.5% lard diet group took in more calories. Feeding rats a 60% fructose or 30% fructose + 20% lard diet led to glucose intolerance and increased blood pressure. Higher body weight and increased cholesterol levels were observed in the rats maintained on a 2% cholesterol +10% lard diet, whereas exposure to a 32.5% lard diet affected most of the above parameters. Voiding behavior measurement showed that voiding frequency and the total voided volume were lower in the experimental diet groups except for the 30% fructose + 20% lard group. The mean voided volume was lower in the 30% fructose + 20% lard and 32.5% lard groups compared with the control group. Cystometric analysis revealed a decreased bladder capacity, mean voided volume, intermicturition interval, and compliance in the 32.5% lard diet group. In conclusion, experimental diets including 60% fructose, 30% fructose + 20% lard, or 2% cholesterol + 10% lard diet differently affected physiological and metabolic parameters and bladder function to a limited extent, while exposure to a 32.5% lard diet had a greater impact.
Collapse
Affiliation(s)
- Liyang Wu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Mingshuai Wang
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shaimaa Maher
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Dan Cai
- Department of Pathology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Bingcheng Wang
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Sanjay Gupta
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Firouz Daneshgari
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, Chin KY, Shamsuddin SA, Lokanathan Y. Recent Developments in Rodent Models of High-Fructose Diet-Induced Metabolic Syndrome: A Systematic Review. Nutrients 2021; 13:nu13082497. [PMID: 34444658 PMCID: PMC8401262 DOI: 10.3390/nu13082497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Ming Medical Sdn. Bhd., D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1A/22, Petaling Jaya 47101, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (A.M.L.C.); (A.M.H.N.); (R.B.H.I.); (J.X.L.); (M.D.Y.); (S.A.S.)
- Correspondence: ; Tel.: +60-3-9145-7704
| |
Collapse
|
9
|
Virgen-Carrillo CA, de Los Ríos DLH, Torres KR, Moreno AGM. Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review. Curr Diabetes Rev 2021; 17:e140421192834. [PMID: 33855947 DOI: 10.2174/1573399817666210414103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thousands of publications in recent years have addressed the induction of metabolic syndrome (MetS) in rodents. However, the criteria and the reference values for diagnosing this disease have not been defined. OBJECTIVE Our main objective was to carry out a systematic review to gather evidence about the criteria for biochemical and anthropometric parameters in which scientific studies have relied on to report that rats developed MetS from a previous dietary manipulation. METHODS We compiled characteristics and findings of diet-induced MetS with high-fat, high-carbohydrate, high-fat/high-carbohydrates, and cafeteria diet from PubMed and Science Direct databases published in the last 5 years. RESULTS The results on the principal determinants for the syndrome, published in the reviewed articles, were chosen to propose reference values in the rat models of food induction. CONCLUSION The values obtained will serve as reference cut-of points in the development of the disease; in addition, the compilation of data will be useful in planning and executing research protocols in animal models.
Collapse
Affiliation(s)
- Carmen Alejandrina Virgen-Carrillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Diana Laura Hernández de Los Ríos
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Karina Ruíz Torres
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Alma Gabriela Martínez Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
10
|
Hyer MM, Dyer SK, Kloster A, Adrees A, Taetzsch T, Feaster J, Valdez G, Neigh GN. Sex modifies the consequences of extended fructose consumption on liver health, motor function, and physiological damage in rats. Am J Physiol Regul Integr Comp Physiol 2019; 317:R903-R911. [PMID: 31553663 PMCID: PMC6957373 DOI: 10.1152/ajpregu.00046.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Sex differences are evident in the presentation of metabolic symptoms. A shift of sex hormones that signal the onset of puberty combined with a poor diet consumed in adolescence is likely to have sex-specific, long-term impacts on adult physiology. Here, we expanded on existing literature to elucidate the sex-specific mechanisms driving physiological deficits following high fructose consumption. Male and female Wistar rats were fed a high-fructose (55%) diet beginning immediately postweaning for 10 wk. Female rats fed the high-fructose diet displayed elevated weight gain and extensive liver pathology consistent with markers of nonalcoholic fatty liver disease (NAFLD). Male rats fed the high-fructose diet exhibited increased circulating glucose along with moderate hepatic steatosis. Levels of cytokines and gene expression of inflammatory targets were not altered by fructose consumption in either sex. However, circulating levels of markers for liver health, including alanine transaminase and uric acid, and markers for epithelial cell death were altered by fructose consumption. From the alterations in these markers for liver health, along with elevated circulating triglycerides, it was evident that liver health had deteriorated significantly and that a number of factors were at play. Both adult fructose-fed male and female rats displayed motor deficits that correlated with aberrant structural changes at the neuromuscular junction; however, these deficits were exacerbated in males. These data indicate that consumption of a high-fructose diet beginning in adolescence leads to adult pathology that is modified by sex. Identification of these sex-specific changes has implications for treatment of clinical presentation of metabolic syndrome and related disorders.
Collapse
Affiliation(s)
- Molly M Hyer
- Department of Anatomy and Neurobiology Virginia Commonwealth University, Richmond, Virginia
| | - Samya K Dyer
- Department of Anatomy and Neurobiology Virginia Commonwealth University, Richmond, Virginia
| | - Alix Kloster
- Department of Anatomy and Neurobiology Virginia Commonwealth University, Richmond, Virginia
| | - Anum Adrees
- Department of Anatomy and Neurobiology Virginia Commonwealth University, Richmond, Virginia
| | - Thomas Taetzsch
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Virginia Tech, Roanoke, Virginia
| | - Jonathan Feaster
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Virginia Tech, Roanoke, Virginia
| | - Gregorio Valdez
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Virginia Tech, Roanoke, Virginia
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
Salva-Pastor N, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2019; 194:105445. [PMID: 31381969 DOI: 10.1016/j.jsbmb.2019.105445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Patients with non-alcoholic fatty liver disease (NAFLD) often suffer from metabolic syndrome, atherosclerosis, ischemic heart disease, and extrahepatic tumors, conferring a lower survival than the general population; therefore it is crucial to study the association between NAFLD and PCOS since it remains poorly understood. Insulin resistance (IR) plays a central role in the pathogenesis of NAFLD and PCOS; also, hyperandrogenism enhances IR in these patients. IR, present in the NAFLD-PCOS association could decrease the hepatic production of sex hormone-binding globulin through a possible regulation mediated by hepatocyte nuclear factor 4 alpha. On the other hand, apoptotic processes initiated by androgens actively contribute to the progression of NAFLD. Considering the association between the two conditions, the screening of women with PCOS for the presence of NAFLD appears reasonable. The pathophysiological mechanisms of PCOS-NAFLD association and the initial approach will be reviewed here.
Collapse
Affiliation(s)
- Nicolás Salva-Pastor
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; School of Medicine, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Los Volcanes, Z.C. 72420, Puebla, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| |
Collapse
|