1
|
Cai D, Chen GL, Wang T, Zhang KH. Combination of multiple nucleic acid aptamers for precision detection of tumors based on optical methods. J Cancer Res Clin Oncol 2023; 149:7895-7903. [PMID: 36809501 DOI: 10.1007/s00432-023-04646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND PURPOSE Nucleic acid aptamers are a novel molecular recognition tool that is functionally similar to antibodies but superior to antibodies in terms of thermal stability, structural modification, preparation, and cost, and therefore hold great promise for molecular detection. However, due to the limitations of a single aptamer in molecular detection, the multiple aptamer combination for bioanalysis has received much attention. Here, we reviewed the progress of tumor precision detection based on the combination of multiple nucleic acid aptamers and optical methods and discussed its challenges and prospects. METHODS The relevant literature in PubMed was collected and reviewed. RESULTS The combination of two or more aptamers with modern nanomaterials and analytical methods allows the fabrication of various detection systems for the simultaneous detection of different structural domains of a substance and/or different substances, including soluble tumor markers, tumor cell surface and intracellular markers, circulating tumor cells, and other tumor-related biomolecules, which has great potential for application in efficient and precise tumor detection. CONCLUSION The combination of multiple nucleic acid aptamers provides a new approach for the precise detection of tumors and will play an important role in precision medicine for tumors.
Collapse
Affiliation(s)
- Dan Cai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, No 17, Yongwai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Gui-Lin Chen
- Department of Anorectal Surgery, Chinese People's Liberation Army Joint Security Force Hospital No. 908, No 1028, Jinggangshan Avenue, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, No 17, Yongwai Zheng Street, Nanchang, 330006, Jiangxi, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, No 17, Yongwai Zheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online 2021; 20:85. [PMID: 34419072 PMCID: PMC8379608 DOI: 10.1186/s12938-021-00922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene electrotransfer is an established method that enables transfer of DNA into cells with electric pulses. Several studies analyzed and optimized different parameters of gene electrotransfer, however, one of main obstacles toward efficient electrotransfection in vivo is relatively poor DNA mobility in tissues. Our aim was to analyze the effect of impaired mobility on gene electrotransfer efficiency experimentally and theoretically. We applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. In order to analyze the effect of impaired mobility on gene electrotransfer efficiency, we applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. Results We obtained the highest transfection in plated cells, while transfection efficiency of embedded cells in 3D model was lowest, similarly as in in vivo. To further analyze DNA diffusion in 3D model, we applied DNA on top or injected it into 3D model and showed, that for the former gene electrotransfer efficiency was similarly as in in vivo. The experimental results are explained with theoretical analysis of DNA diffusion and electromobility. Conclusion We show, empirically and theoretically that DNA has impaired electromobility and especially diffusion in collagen environment, where the latter crucially limits electrotransfection. Our model enables optimization of gene electrotransfer in in vitro conditions.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Flanagan SP, Fogel R, Edkins AL, Ho LSJ, Limson J. Nonspecific nuclear uptake of anti-MUC1 aptamers by dead cells: the role of cell viability monitoring in aptamer targeting of membrane-bound protein cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1191-1203. [PMID: 33605950 DOI: 10.1039/d0ay01878c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most aptamers targeting cell-expressed antigens are intended for in vivo application, however, these sequences are commonly generated in vitro against synthetic oligopeptide epitopes or recombinant proteins. As these in vitro analogues frequently do not mimic the in vivo target within an endogenous environment, the evolved aptamers are often prone to nonspecific binding. The presence of dead cells and cellular debris further complicate aptamer targeting, due to their high nonspecific affinities to single-stranded DNA. Despite these known limitations, assessment of cell viability and/or the removal of dead cells is rarely applied as part of the methodology during in vivo testing of aptamer binding. Furthermore, the extent and route(s) by which dead cells uptake existing aptamers remains to be determined in the literature. For this purpose, the previously reported aptamer sequences 5TR1, 5TR4, 5TRG2 and S22 - enriched against the MUC1 tumour marker of the mucin glycoprotein family - were used as model sequences to evaluate the influence of cell viability and the presence of nontarget cell-expressed protein on aptamer binding to the MUC1 expressing human cancer cell lines MCF-7, Hs578T, SW480, and SW620. From fluorescence microscopy analysis, all tested aptamers demonstrated extensive nonspecific uptake within the nuclei of dead cells with compromised membrane integrities. Using fluorescent-activated cell sorting (FACS), the inclusion of excess double-stranded DNA as a blocking agent showed no effect on nonspecific aptamer uptake by dead cells. Further nonspecific binding to cell-membrane bound and intracellular protein was evident for each aptamer sequence, as assessed by southwestern blotting and FACS. These factors likely contributed to the ∼120-fold greater binding response of the 5TR1 aptamer to dead MCF-7 cells over equivalent live cell populations. The identification of dead cells and cellular debris using viability stains and the subsequent exclusion of these cells from FACS analysis was identified as an essential requirement for the evaluation of aptamer binding specificity to live cell populations of the cancer cell lines MCF-7, Hs578T and SW480. The research findings stress the importance of dead cell uptake and more comprehensive cell viability screening to validate novel aptamer sequences for diagnostic and therapeutic application.
Collapse
|
4
|
Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer 2020; 11:6902-6915. [PMID: 33123281 PMCID: PMC7592013 DOI: 10.7150/jca.49532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023] Open
Abstract
Traditional anticancer therapies can cause serious side effects in clinical treatment due to their nonspecific of tumor cells. Aptamers, also termed as 'chemical antibodies', are short DNA or RNA oligonucleotides selected from the synthetic large random single-strand oligonucleotide library by systematic evolution of ligands by exponential enrichment (SELEX) to bind to lots of different targets, such as proteins or nucleic acid structures. Aptamers have good affinities and high specificity with target molecules, thus may be able to act as drugs themselves to directly inhibit the proliferation of tumor cells, or own great potentialities in the targeted drug delivery systems which can be used in tumor diagnosis and target specific tumor cells, thereby minimizing the toxicity to normal cells. Here we review the unique properties of aptamer represents a great opportunity when applied to the rapidly developing fields of biotechnology and discuss the recent developments in the use of aptamers as powerful tools for analytic, diagnostic and therapeutic applications for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Liang Gao
- Department of Dermatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| |
Collapse
|
5
|
Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens Bioelectron 2018; 126:214-221. [PMID: 30423478 DOI: 10.1016/j.bios.2018.10.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 01/14/2023]
Abstract
Herein, we present the research focused on the synthesis and application of aptamer-modified gold nanoshells for photothermal therapy (PTT). NIR-absorbing hollow gold nanoshells were synthetized and conjugated with anti-MUC1 aptamer (HGNs@anti-MUC1). MUC1 (Mucin 1) is a transmembrane glycoprotein, which is overexpressed in a variety of epithelial cancers (eg. breast, lung, pancreatic). In order to evaluate the efficiency of PTT with HGNs@anti-MUC1 we used 3D cell culture model - multicellular spheroids. The selected cell culture model is considered as the best in vitro model for cancer research (similar morphology, metabolite and oxygen gradients, cellular interactions and cell growth kinetics in the spheroids are similar to the early stage of a nonvascular tumor). We conducted our research on human normal (MRC-5, MCF-10A) and tumor (A549, MCF-7) cell lines using a microfluidic system. Aptamer-modified nanoparticles were accumulated selectively in tumor cells (A549, MCF-7) and this fact contributed to the reduction of tumor spheroids viability and size. It should be underlined, that it is the first example of photothermal therapy carried out in a microsystem on multicellular spheroids.
Collapse
|
6
|
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers (Basel) 2017; 9:cancers9120174. [PMID: 29261171 PMCID: PMC5742822 DOI: 10.3390/cancers9120174] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement (“signal-on”) or a quenching (“signal-off”) effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment.
Collapse
|
7
|
Boonstra MC, de Geus SWL, Prevoo HAJM, Hawinkels LJAC, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Sier CFM. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins. BIOMARKERS IN CANCER 2016; 8:119-133. [PMID: 27721658 PMCID: PMC5040425 DOI: 10.4137/bic.s38542] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| |
Collapse
|
8
|
Kakoti A, Goswami P. Multifaceted analyses of the interactions between human heart type fatty acid binding protein and its specific aptamers. Biochim Biophys Acta Gen Subj 2016; 1861:3289-3299. [PMID: 27545084 DOI: 10.1016/j.bbagen.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aptamer-protein interaction studies have been mainly confined to dissociation constant (Kd) determination. A combinatorial approach involving limited proteolysis mass spectroscopy, molecular docking and CD studies is reported here to elucidate the specific interactions involved. METHODS To generate aptamers specific for human FABP3, SELEX was performed incorporating counter SELEX cycles against control FABPs and GST tag, followed by their characterization by EMSA, CD and SVD analysis. Based on computationally obtained aptamer-protein complex models, the interacting aptamer, and protein residues were predicted and supported by limited proteolysis experiments. RESULTS Two aptamers N13 and N53 specific for human fatty acid binding protein (FABP3) were isolated with corresponding Kd of 0.0743±0.0142μM and 0.3337±0.1485μM for FABP3 interactions. Both aptamers possess stable B-DNA structures at salt concentration of 100mM and pH range (6-9). The N13 aptamer led interaction involved 3 salt bridges and 2 hydrogen bonds, whereas N53 had 2 salt bridges with 8 hydrogen and 7 hydrophobic interactions. CONCLUSIONS The aptamers generated are the first to be reported against human FABP3. The higher interaction footprint of N53 incited synergistic conformational changes in both N53 and FABP3 during interaction, leading to a decline in binding affinity in comparison to N13 which corroborated to the calculated Kd values. GENERAL SIGNIFICANCE This combinatorial method may be used to retrieve the possible specific binding modes and interaction patterns involved in large aptamer-protein complexes. Thus the method can be exploited to identify the optimum aptamer length for in-depth structure-function studies and its tailored applications.
Collapse
Affiliation(s)
- Ankana Kakoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
Pacheco-Marín R, Melendez-Zajgla J, Castillo-Rojas G, Mandujano-Tinoco E, Garcia-Venzor A, Uribe-Carvajal S, Cabrera-Orefice A, Gonzalez-Torres C, Gaytan-Cervantes J, Mitre-Aguilar IB, Maldonado V. Transcriptome profile of the early stages of breast cancer tumoral spheroids. Sci Rep 2016; 6:23373. [PMID: 27021602 PMCID: PMC4810430 DOI: 10.1038/srep23373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/02/2016] [Indexed: 12/15/2022] Open
Abstract
Oxygen or nutrient deprivation of early stage tumoral spheroids can be used to reliably mimic the initial growth of primary and metastatic cancer cells. However, cancer cell growth during the initial stages has not been fully explored using a genome-wide approach. Thus, in the present study, we investigated the transcriptome of breast cancer cells during the initial stages of tumoral growth using RNAseq in a model of Multicellular Tumor Spheroids (MTS). Network analyses showed that a metastatic signature was enriched as several adhesion molecules were deregulated, including EPCAM, E-cadherin, integrins and syndecans, which were further supported by an increase in cell migration. Interestingly, we also found that the cancer cells at this stage of growth exhibited a paradoxical hyperactivation of oxidative mitochondrial metabolism. In addition, we found a large number of regulated (long non coding RNA) lncRNAs, several of which were co-regulated with neighboring genes. The regulatory role of some of these lncRNAs on mRNA expression was demonstrated with gain of function assays. This is the first report of an early-stage MTS transcriptome, which not only reveals a complex expression landscape, but points toward an important contribution of long non-coding RNAs in the final phenotype of three-dimensional cellular models.
Collapse
Affiliation(s)
- Rosario Pacheco-Marín
- Epigenetics, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610.,Posgraduate Program in Biological Sciences, Faculty of Medicine (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Jorge Melendez-Zajgla
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Gonzalo Castillo-Rojas
- Microbial Molecular Immunology Program, Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Edna Mandujano-Tinoco
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Alfredo Garcia-Venzor
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Institute of Cellular Physiology (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Alfredo Cabrera-Orefice
- Department of Molecular Genetics, Institute of Cellular Physiology (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Carolina Gonzalez-Torres
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Javier Gaytan-Cervantes
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Irma B Mitre-Aguilar
- Unit of Biochemistry, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Av. Vasco de Quiroga N° 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan. CP.14080, México D. F., México
| | - Vilma Maldonado
- Epigenetics, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| |
Collapse
|
10
|
Abstract
In the past two decades, aptamers have emerged as a novel class of molecular recognition probes comprising uniquely-folded short RNA or single-stranded DNA oligonucleotides that bind to their cognate targets with high specificity and affinity. Aptamers, often referred to as "chemical antibodies", possess several highly desirable features for clinical use. They can be chemically synthesized and are easily conjugated to a wide range of reporters for different applications, and are able to rapidly penetrate tissues. These advantages significantly enhance their clinical applicability, and render them excellent alternatives to antibody-based probes in cancer diagnostics and therapeutics. Aptamer probes based on fluorescence, colorimetry, magnetism, electrochemistry, and in conjunction with nanomaterials (e.g., nanoparticles, quantum dots, single-walled carbon nanotubes, and magnetic nanoparticles) have provided novel ultrasensitive cancer diagnostic strategies and assays. Furthermore, promising aptamer targeted-multimodal tumor imaging probes have been recently developed in conjunction with fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). The capabilities of the aptamer-based platforms described herein underscore the great potential they hold for the future of cancer detection. In this review, we highlight the most prominent recent developments in this rapidly advancing field.
Collapse
Affiliation(s)
- Hongguang Sun
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Weihong Tan
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Dougherty CA, Cai W, Hong H. Applications of aptamers in targeted imaging: state of the art. Curr Top Med Chem 2016; 15:1138-52. [PMID: 25866268 DOI: 10.2174/1568026615666150413153400] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 01/23/2023]
Abstract
Aptamers are single-stranded oligonucleotides with high affinity and specificity to the target molecules or cells, thus they can serve as an important category of molecular targeting ligand. Since their discovery, aptamers have been rapidly translated into clinical practice. The strong target affinity/selectivity, cost-effectivity, chemical versatility and safety of aptamers are superior to traditional peptides- or proteins-based ligands which make them unique choices for molecular imaging. Therefore, aptamers are considered to be extremely useful to guide various imaging contrast agents to the target tissues or cells for optical, magnetic resonance, nuclear, computed tomography, ultrasound and multimodality imaging. This review aims to provide an overview of aptamers' advantages as targeting ligands and their application in targeted imaging. Further research in synthesis of new types of aptamers and their conjugation with new categories of contrast agents is required to develop clinically translatable aptamer-based imaging agents which will eventually result in improved patient care.
Collapse
Affiliation(s)
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705-2275, United States.
| | | |
Collapse
|
12
|
Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med 2014; 3:7. [PMID: 24679154 PMCID: PMC3994249 DOI: 10.1186/2001-1326-3-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different proteomic-based methodologies can be applied depending on the specific clinical context of use. Moreover, current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision making. To improve on this current situation, a well-defined study design has to be established driven by a clear clinical need, while several checkpoints between the different phases of discovery, verification and validation have to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline, exemplified by clinical applications in the field of bladder cancer biomarker research.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
| | - Akshay Bhat
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Agnieszka Latosinska
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|