1
|
Zhong C, Shi Z, Binzel DW, Jin K, Li X, Guo P, Li SK. Posterior eye delivery of angiogenesis-inhibiting RNA nanoparticles via subconjunctival injection. Int J Pharm 2024; 657:124151. [PMID: 38657717 PMCID: PMC11221552 DOI: 10.1016/j.ijpharm.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Neovascularization contributes to various posterior eye segment diseases such as age-related macular degeneration and diabetic retinopathy. RNA nanoparticles were demonstrated previously to enter the corneal and retinal cells after subconjunctival injection for ocular delivery. In the present study, antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) were conjugated to RNA nanoparticles. The objectives were to investigate the clearance and distribution of these angiogenesis-inhibiting RNA nanoparticles after subconjunctival injection in vivo and their antiangiogenic effects for inhibiting ocular neovascularization in vitro. The results in the whole-body fluorescence imaging study showed that the clearance of RNA nanoparticles was size-dependent with no significant differences between RNA nanoparticles with and without the aptamers except for pRNA-3WJ. The distribution study of RNA nanoparticles by confocal microscopy of the dissected eye tissues in vivo indicated cell internalization of the larger RNA nanoparticles in the retina and retinal pigment epithelium after subconjunctival injection, and the larger nanoparticles with aptamers showed higher levels of cell internalization than those without. In the cell proliferation assay in vitro, RNA nanoparticles with multiple aptamers had higher antiangiogenic effects. With both longer retention time and high antiangiogenic effect, SQR-VEGF-Ang2 could be a promising RNA nanoparticle for posterior eye delivery.
Collapse
Affiliation(s)
- Cheng Zhong
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S Kevin Li
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Doe E, Hayth HL, Khisamutdinov EF. Bioconjugation of Functionalized Oligodeoxynucleotides with Fluorescence Reporters for Nanoparticle Assembly. Methods Mol Biol 2023; 2709:105-115. [PMID: 37572275 DOI: 10.1007/978-1-0716-3417-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
In the field of nucleic acid nanotechnology and therapeutics, there is an imperative need to improve the oligodeoxynucleotides' (ODNs) properties by either chemical modification of the oligonucleotides' structure or to covalently link them to a reporter or therapeutic moieties that possess biologically relevant properties. The chemical conjugation can thus significantly improve the intrinsic properties not only of ODNs but also reporter/therapeutic molecules. Bioconjugation of nucleic acids to small molecules also serves as a nano-delivery facility to transport various functionalities to specific targets. Herein, we describe a generalized methodology that deploys azide-alkyne cycloaddition, a click reaction to conjugate a cyanine-3 alkyne moiety to an azide-functionalized ODN 12-mer, as well as 3-azido 7-hydroxycoumarin to an alkyne functionalized ODN 12-mer.
Collapse
Affiliation(s)
- Erwin Doe
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Hannah L Hayth
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | | |
Collapse
|
3
|
Shu Y, Yin H, Rajabi M, Li H, Vieweger M, Guo S, Shu D, Guo P. RNA-based micelles: A novel platform for paclitaxel loading and delivery. J Control Release 2018; 276:17-29. [PMID: 29454064 PMCID: PMC5964609 DOI: 10.1016/j.jconrel.2018.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction. Taking advantage of pRNA 3WJ branched structure, the assembled RNA micelles are capable of escorting multiple functional modules. As a proof of concept for delivery for therapeutics, Paclitaxel was loaded into the RNA micelles with significantly improved water solubility. The successful construction of the drug loaded RNA micelles was confirmed and characterized by agarose gel electrophoresis, atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence Nile Red encapsulation assay. The estimate critical micelle formation concentration ranges from 39 nM to 78 nM. The Paclitaxel loaded RNA micelles can internalize into cancer cells and inhibit their proliferation. Further studies showed that the Paclitaxel loaded RNA micelles induced cancer cell apoptosis in a Caspase-3 dependent manner but RNA micelles alone exhibited low cytotoxicity. Finally, the Paclitaxel loaded RNA micelles targeted to tumor in vivo without accumulation in healthy tissues and organs. There is also no or very low induction of pro-inflammatory response. Therefore, multivalence, cancer cell permeability, combined with controllable assembly, low or non toxic nature, and tumor targeting are all promising features that make our pRNA micelles a suitable platform for potential drug delivery.
Collapse
Affiliation(s)
- Yi Shu
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Mehdi Rajabi
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States; Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Mario Vieweger
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Hill AC, Schroeder SJ. Thermodynamic stabilities of three-way junction nanomotifs in prohead RNA. RNA (NEW YORK, N.Y.) 2017; 23:521-529. [PMID: 28069889 PMCID: PMC5340915 DOI: 10.1261/rna.059220.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
The thermodynamic stabilities of four natural prohead or packaging RNA (pRNA) three-way junction (3WJ) nanomotifs and seven phi29 pRNA 3WJ deletion mutant nanomotifs were investigated using UV optical melting on a three-component RNA system. Our data reveal that some pRNA 3WJs are more stable than the phi29 pRNA 3WJ. The stability of the 3WJ contributes to the unique self-assembly properties of pRNA. Thus, ultrastable pRNA 3WJ motifs suggest new scaffolds for pRNA-based nanotechnology. We present data demonstrating that pRNA 3WJs differentially respond to the presence of metal ions. A comparison of our data with free energies predicted by currently available RNA secondary structure prediction programs shows that these programs do not accurately predict multibranch loop stabilities. These results will expand the existing parameters used for RNA secondary structure prediction from sequence in order to better inform RNA structure-function hypotheses and guide the rational design of functional RNA supramolecular assemblies.
Collapse
Affiliation(s)
| | - Susan J Schroeder
- Department of Microbiology and Plant Biology
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
5
|
Shu D, Li H, Shu Y, Xiong G, Carson WE, Haque F, Xu R, Guo P. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology. ACS NANO 2015; 9:9731-40. [PMID: 26387848 PMCID: PMC4723066 DOI: 10.1021/acsnano.5b02471] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/05/2015] [Indexed: 05/20/2023]
Abstract
MicroRNAs play important roles in regulating the gene expression and life cycle of cancer cells. In particular, miR-21, an oncogenic miRNA is a major player involved in tumor initiation, progression, invasion and metastasis in several cancers, including triple negative breast cancer (TNBC). However, delivery of therapeutic miRNA or anti-miRNA specifically into cancer cells in vivo without collateral damage to healthy cells remains challenging. We report here the application of RNA nanotechnology for specific and efficient delivery of anti-miR-21 to block the growth of TNBC in orthotopic mouse models. The 15 nm therapeutic RNA nanoparticles contains the 58-nucleotide (nt) phi29 pRNA-3WJ as a core, a 8-nt sequence complementary to the seed region of miR-21, and a 39-nt epidermal growth factor receptor (EGFR) targeting aptamer for internalizing RNA nanoparticles into cancer cells via receptor mediated endocytosis. The RNase resistant and thermodynamically stable RNA nanoparticles remained intact after systemic injection into mice and strongly bound to tumors with little or no accumulation in healthy organs 8 h postinjection, and subsequently repressed tumor growth at low doses. The observed specific cancer targeting and tumor regression is a result of several key attributes of RNA nanoparticles: anionic charge which disallows nonspecific passage across negatively charged cell membrane; "active" targeting using RNA aptamers which increases the homing of RNA nanoparticles to cancer cells; nanoscale size and shape which avoids rapid renal clearance and engulfment by lung macrophages and liver Kupffer cells; favorable biodistribution profiles with little accumulation in healthy organs, which minimizes nonspecific side effects; and favorable pharmacokinetic profiles with extended in vivo half-life. The results demonstrate the clinical potentials of RNA nanotechnology based platform to deliver miRNA based therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Dan Shu
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
- Address correspondence to ,
| | - Hui Li
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yi Shu
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Gaofeng Xiong
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - William E. Carson
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ren Xu
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
- Address correspondence to ,
| |
Collapse
|
6
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Cui D, Zhang C, Liu B, Shu Y, Du T, Shu D, Wang K, Dai F, Liu Y, Li C, Pan F, Yang Y, Ni J, Li H, Brand-Saberi B, Guo P. Regression of Gastric Cancer by Systemic Injection of RNA Nanoparticles Carrying both Ligand and siRNA. Sci Rep 2015; 5:10726. [PMID: 26137913 PMCID: PMC4490273 DOI: 10.1038/srep10726] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-related death worldwide. RNA nanotechnology has recently emerged as an important field due to recent finding of its high thermodynamic stability, favorable and distinctive in vivo attributes. Here we reported the use of the thermostable three-way junction (3WJ) of bacteriophage phi29 motor pRNA to escort folic acid, a fluorescent image marker and BRCAA1 siRNA for targeting, imaging, delivery, gene silencing and regression of gastric cancer in animal models. In vitro assay revealed that the RNA nanoparticles specifically bind to gastric cancer cells, and knock-down the BRCAA1 gene. Apoptosis of gastric cancer cells was observed. Animal trials confirmed that these RNA nanoparticles could be used to image gastric cancer in vivo, while showing little accumulation in crucial organs and tissues. The volume of gastric tumors noticeably decreased during the course of treatment. No damage to important organs by RNA nanoparticles was detectible. All the results indicated that this novel RNA nanotechnology can overcome conventional cancer therapeutic limitations and opens new opportunities for specific delivery of therapeutics to stomach cancer without damaging normal cells and tissues, reduce the toxicity and side effect, improve the therapeutic effect, and exhibit great potential in clinical tumor therapy.
Collapse
Affiliation(s)
- Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Bing Liu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yi Shu
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Tong Du
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Dan Shu
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Fangping Dai
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chao Li
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Fei Pan
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yuming Yang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, Bio-X center, National Center for Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|