1
|
Narwade M, Shaikh A, Gajbhiye KR, Kesharwani P, Gajbhiye V. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery. Biomater Res 2023; 27:42. [PMID: 37149607 PMCID: PMC10164340 DOI: 10.1186/s40824-023-00365-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 05/08/2023] Open
Abstract
The non-specificity of standard anticancer therapies has profound detrimental consequences in clinical treatment. Therapeutic specificity can be precisely achieved using cutting-edge ligands. Small synthetic oligonucleotide-ligands chosen through Systematic evolution of ligands by exponential enrichment (SELEX) would be an unceasing innovation in using nucleic acids as aptamers, frequently referred to as "chemical antibodies." Aptamers act as externally controlled switching materials that can attach to various substrates, for example, membrane proteins or nucleic acid structures. Aptamers pose excellent specificity and affinity for target molecules and can be used as medicines to suppress tumor cell growth directly. The creation of aptamer-conjugated nanoconstructs has recently opened up innovative options in cancer therapy that are more effective and target tumor cells with minor toxicity to healthy tissues. This review focuses on a comprehensive description of the most capable classes of aptamer-tethered nanocarriers for precise recognition of cancer cells with significant development in proficiency, selectivity, and targetability for cancer therapy. Existing theranostic applications with the problems and future directions are also highlighted.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Aazam Shaikh
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
2
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
3
|
Zhang GQ, Zhong LP, Yang N, Zhao YX. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol 2019; 25:3359-3369. [PMID: 31341361 PMCID: PMC6639558 DOI: 10.3748/wjg.v25.i26.3359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023] Open
Abstract
Aptamers are a class of single oligonucleotide molecules (DNA or RNA) that are screened from random DNA or RNA oligonucleotide chain libraries by the systemic evolution of ligands by exponential enrichment technology. The selected aptamers are capable of specifically binding to different targeting molecules, which is achieved by the three-dimensional structure of aptamers. Aptamers are similar in function to monoclonal antibodies, and therefore, they are also referred to as "chemical antibodies". Due to their high affinity and specificity and low immunogenicity, aptamers are topics of intense interest in today's biological targeting research especially in tumor research. They not only have high potential for clinical advances in tumor targeting detection but also are highly promising as targeted tumor drug carriers for use in tumor therapy. Various experimental studies have shown that aptamer-based diagnostic and therapeutic methods for liver cancer have great potential for application. This paper summarizes the structure, characteristics, and screening methods of aptamers and reviews the recent research progress on nucleic acid aptamers in the targeted diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Guo-Qing Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Sun X, Liu B, Chen X, Lin H, Peng Y, Li Y, Zheng H, Xu Y, Ou X, Yan S, Wu Z, Deng S, Zhang L, Zhao P. Aptamer-assisted superparamagnetic iron oxide nanoparticles as multifunctional drug delivery platform for chemo-photodynamic combination therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:76. [PMID: 31218573 DOI: 10.1007/s10856-019-6278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/03/2019] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) were widely employed as targeted drug delivery platform due to their unique magnetic property and effortless surface modification. However, the lack of targeting accuracy has been a big obstacle for SPION used in precise medicine. Herein, the tumor-targeting of SPION was enhanced by the conjugation of an aptamer-hybridized nucleic acid structure. The aptamer modified on the surface of SPION was composed of a double-stranded DNA (dsDNA) and a G-quadruplex DNA (AS1411) structure, which carried a chemical anticancer drug, daunomycin (DNM) and a photosensitizer molecule, namely 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP), respectively. The aptamer-dsDNA conjugated SPION nanocarriers (named Apt-S8@SPION) exhibited good stability in serum and nuclease DNase I. The drug-loaded nanocarriers (TMPyP&DNM&Apt-S8@SPION) have high cellular cytotoxicity to A549 and C26 cells which are represently nucleolin-overexpressing cancer cells. The nucleolin-blocking experiments unambiguously evidenced that the formed nanomedicine could target to the cell surface via the specific AS1411-nucleolin interaction, which increased the efficiency of cell uptake. Meanwhile, the TMPyP&DNM&Apt-S8@SPION nanospheres could produce cytotoxic reactive oxygen species efficiently by irradiation of visible light for establishing a new type of PDT to cancer cells. Therefore, the designed TMPyP&DNM&Apt-S8@SPION nanoparticles have magnetic-aptamer dual targeting and combined chemo-photodynamic therapy, and thus were supposed to be ideal drug delivery vehicles with great potential in the era of precision medicine.
Collapse
Affiliation(s)
- Xiangyu Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Xianli Chen
- Medical College of Shaoguan University, No. 128, Xinhuanan Road, 512026, Shaoguan, China
| | - Huichao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yanbo Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yanyu Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Haoran Zheng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Yibin Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Xulin Ou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Siqi Yan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Zonghai Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Shujun Deng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, Education Mega Centre, 510006, Guangzhou, China.
| |
Collapse
|
5
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
6
|
Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim Biophys Acta Gen Subj 2017; 1861:1414-1428. [PMID: 28007579 DOI: 10.1016/j.bbagen.2016.12.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Paula J Bates
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA.
| | | | - Mohammad T Malik
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| | - Emily M Murphy
- Department of Biomedical Engineering, University of Louisville, USA
| | - Martin G O'Toole
- Department of Biomedical Engineering, University of Louisville, USA
| | - John O Trent
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| |
Collapse
|
7
|
Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang XJ. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016; 91:44-56. [PMID: 26994877 DOI: 10.1016/j.biomaterials.2016.03.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/14/2022]
Abstract
By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery.
Collapse
Affiliation(s)
- Juan Liu
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Tuo Wei
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jing Zhao
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuanyu Huang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hua Deng
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Anil Kumar
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chenxuan Wang
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaowei Ma
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|