1
|
He S, Zheng S, Zhu H, Hu Y, Yu B, Wei J, Pan G, Zhou Z, Li C. A novel ATP-binding cassette protein (NoboABCG1.3) plays a role in the proliferation of Nosema bombycis. Parasitol Res 2024; 123:413. [PMID: 39699667 DOI: 10.1007/s00436-024-08440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
ATP-binding cassette (ABC) transporter proteins, one of the largest families of membrane transport proteins, participate in almost all biological processes and widely exist in living organisms. Microsporidia are intracellular parasites; they can reduce crop yields and pose a threat to human health. The ABC proteins are also present in microsporidia and play a critical role in their proliferation and energy transport. In this study, a novel ABC transporter protein of Nosema bombycis named NoboABCG1.3 was identified. The NoboABCG1.3 protein is comprised of 640 amino acids, which contain six transmembrane domains and one nucleotide-binding domain. After N. bombycis infection of cells or tissues, quantitative reverse transcription polymerase chain reaction analysis revealed a progressive elevation in the transcript levels of NoboABCG1.3. Downregulation of NoboABCG1.3 expression significantly inhibited N. bombycis proliferation. Subsequently, a transgenic cell line stably expressing an interfering fragment of NoboABCG1.3 was established, which exhibited extreme inhibition on the proliferation of N. bombycis. These findings indicate that NoboABCG1.3 plays a role in the proliferation of N. bombycis and holds promise as a target for developing N. bombycis-resistant silkworms.
Collapse
Affiliation(s)
- Shaogang He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Shiyi Zheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Affiliated Jinhua HospitalZhejiang University of MedicineJinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Honglin Zhu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Yuanke Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Hu C, Deng B, Fang W, Guo B, Chen P, Lu C, Dong Z, Pan M. Transgenic overexpression of bmo-miR-6498-5p increases resistance to Nosema bombycis in the silkworm, Bombyx mori. Appl Environ Microbiol 2024; 90:e0027024. [PMID: 39240120 PMCID: PMC11497792 DOI: 10.1128/aem.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/23/2024] [Indexed: 09/07/2024] Open
Abstract
Microsporidia are unfriendly microorganisms, and their infections cause considerable damage to economically or environmentally important insects like silkworms and honeybees. Thus, the identification of measures to improve host resistance to microsporidia infections is critically needed. Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with Nosema bombycis. H&E staining and RT-qPCR analyses revealed an inhibitory effect on the proliferation of N. bombycis in the transgenic larvae. Metabolomics analysis further revealed the presence of 56 differential metabolites between the two lines. KEGG analysis of these 56 metabolites found that they were involved in various amino acid and vitamin metabolism pathways. Notably, VB6 metabolism was enriched among the metabolites, and the pathway was well known for its involvement in the synthesis, interconversion, and degradation of amino acids. These suggest that miR-6498-5p modifies parasitic environments to inhibit the proliferation of N. bombycis by affecting the host amino acid metabolism. These results demonstrate the potential of microRNAs as biomolecules that can promote resistance to microsporidia and provide new insights and a new approach to generate microsporidia-resistant biological materials.IMPORTANCEMicrosporidia have an extremely wide host range and are capable of infecting a wide variety of insects and vertebrates, including humans, and their lethality to multiple species often poses significant environmental management challenge. Here, we successfully constructed a microsporidium-resistant line in the silkworm, based on the overexpression of miR-6498-5p. Our results strongly support the hypothesis that miR-6498-5p efficiently suppresses the proliferation of Nosema bombycis by regulating the host VB6 metabolism, a key pathway for enzymes involved in amino acid transport and protein metabolism. Our study provides new insights for understanding host anti-pathogen defenses toward microsporidia.
Collapse
Affiliation(s)
- Congwu Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bingyu Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Ma M, Ling M, Huang Q, Xu Y, Yang X, Kyei B, Wang Q, Tang X, Shen Z, Zhang Y, Zhao G. Functional characterization of Nosema bombycis (microsporidia) trehalase 3. Parasitol Res 2023; 123:59. [PMID: 38112902 DOI: 10.1007/s00436-023-08082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.
Collapse
Affiliation(s)
- Mingzhen Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Min Ling
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Qilong Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Yijie Xu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Xu Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Bismark Kyei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Qiang Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Xudong Tang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Yiling Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China.
| | - Guodong Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
5
|
Wadi L, El Jarkass HT, Tran TD, Islah N, Luallen RJ, Reinke AW. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog 2023; 19:e1011510. [PMID: 37471459 PMCID: PMC10393165 DOI: 10.1371/journal.ppat.1011510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Collapse
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Tuan D Tran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Nizar Islah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
7
|
Saleh M, Abdel-Baki AAS, Dkhil MA, El-Matbouli M, Al-Quraishy S. Silencing of heat shock protein 90 (hsp90): Effect on development and infectivity of Ichthyophthirius multifiliis. BMC Vet Res 2023; 19:62. [PMID: 36932404 PMCID: PMC10024447 DOI: 10.1186/s12917-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Recently, an increasing number of ichthyophthiriasis outbreaks has been reported, leading to high economic losses in fisheries and aquaculture. Although several strategies, including chemotherapeutics and immunoprophylaxis, have been implemented to control the parasite, no effective method is available. Hence, it is crucial to discover novel drug targets and vaccine candidates against Ichthyophthirius multifiliis. For this reason, understanding the parasite stage biology, host-pathogen interactions, molecular factors, regulation of major aspects during the invasion, and signaling pathways of the parasite can promote further prospects for disease management. Unfortunately, functional studies have been hampered in this ciliate due to the lack of robust methods for efficient nucleic acid delivery and genetic manipulation. In the current study, we used antisense technology to investigate the effects of targeted gene knockdown on the development and infectivity of I. multifiliis. Antisense oligonucleotides (ASOs) and their gold nanoconjugates were used to silence the heat shock protein 90 (hsp90) of I. multifiliis. Parasite stages were monitored for motility and development. In addition, the ability of the treated parasites to infect fish and cause disease was evaluated. RESULTS We demonstrated that ASOs were rapidly internalized by I. multifiliis and distributed diffusely throughout the cytosol. Knocking down of I. multifiliis hsp90 dramatically limited the growth and development of the parasite. In vivo exposure of common carp (Cyprinus carpio) showed reduced infectivity of ASO-treated theronts compared with the control group. No mortalities were recorded in the fish groups exposed to theronts pre-treated with ASOs compared with the 100% mortality observed in the non-treated control fish. CONCLUSION This study presents a gene regulation approach for investigating gene function in I. multifiliis in vitro. In addition, we provide genetic evidence for the crucial role of hsp90 in the growth and development of the parasite, suggesting hsp90 as a novel therapeutic target for successful disease management. Further, this study introduces a useful tool and provides a significant contribution to the assessing and understanding of gene function in I. multifiliis.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | | | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
- Scchool of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ricin B lectin-like proteins of the microsporidian Encephalitozoon cuniculi and Anncaliia algerae are involved in host-cell invasion. Parasitol Int 2021; 87:102518. [PMID: 34808329 DOI: 10.1016/j.parint.2021.102518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Microsporidia are obligate intracellular pathogens capable of infecting a wide variety of hosts ranging from invertebrates to vertebrates. The infection process requires a step of prior adherence of Microsporidia to the surface of host cells. A few studies demonstrated the involvement of proteins containing a ricin-B lectin (RBL) domain in parasite infection. In this study Anncalia algerae and Encephalitozoon cuniculi genomes were screened by bioinformatic analysis to identify proteins with an extracellular prediction and possessing RBL-type carbohydrate-binding domains, being both potentially relevant factors contributing to host cell adherence. Three proteins named AaRBLL-1 and AaRBLL-2 from A. algerae and EcRBLL-1 from E. cuniculi, were selected and comparative analysis of sequences suggested their belonging to a multigenic family, with a conserved structural RBL domain despite a significant amino acid sequence divergence. The production of recombinant proteins and antibodies against the three proteins allowed their subcellular localization on the spore wall and/or the polar tube. Adherence inhibition assays based on pre-treatments with recombinant proteins or antibodies highlighted the significant decrease of the proliferation of both E. cuniculi and A. algerae, strongly suggesting that these proteins are involved in the infection process.
Collapse
|
9
|
Abo-Al-Ela HG. RNA Interference in Aquaculture: A Small Tool for Big Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4343-4355. [PMID: 33835783 DOI: 10.1021/acs.jafc.1c00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For decades, the tight regulatory functions of DNA and RNA have been the focus of extensive research with the goal of harnessing RNA molecules (e.g., microRNA and small interfering RNA) to control gene expression and to study biological functions. RNA interference (RNAi) has shown evidence of mediating gene expression, has been utilized to study functional genomics, and recently has potential in therapeutic agents. RNAi is a natural mechanism and a well-studied tool that can be used to silence specific genes. This method is also used in aquaculture as a research tool and to enhance immune responses. RNAi methods do have their limitations (e.g., immune triggering); efficient and easy-to-use RNAi methods for large-scale applications need further development. Despite these limitations, RNAi methods have been successfully used in aquaculture, in particular shrimp. This review discusses the uses of RNAi in aquaculture, such as immune- and production-related issues and the possible limitations that may hinder the application of RNAi in the aquaculture industry. Our challenge is to develop a highly potent in vivo RNAi delivery platform that could complete the desired action with minimal side effects and which can be applied on a large-scale with relatively little expense in the aquaculture industry.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| |
Collapse
|
10
|
Zheng S, Huang Y, Huang H, Yu B, Zhou N, Wei J, Pan G, Li C, Zhou Z. The role of NbTMP1, a surface protein of sporoplasm, in Nosema bombycis infection. Parasit Vectors 2021; 14:81. [PMID: 33494800 PMCID: PMC7836179 DOI: 10.1186/s13071-021-04595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nosema bombycis is a unicellular eukaryotic pathogen of the silkworm, Bombyx mori, and is an economic and occupational hazard in the silkworm industry. Because of its long incubation period and horizontal and vertical transmission, it is subject to quarantine measures in sericulture production. The microsporidian life-cycle includes a dormant extracellular phase and intracellular proliferation phase, with the proliferation period being the most active period. This latter period lacks spore wall protection and may be the most susceptible stage for control. Methods In order to find suitable target for the selective breeding of N. bombycis-resistant silkworm strains, we screen highly expressed membrane proteins from the transcriptome data of N. bombycis. The subcellular localization of the candidate protein was verified by Indirect immunofluorescence analysis (IFA) and immunoelectron microscopy (IEM), and its role in N. bombycis proliferation was verified by RNAi. Results The N. bombycis protein (NBO_76g0014) was identified as a transmembrane protein and named NbTMP1. It is homologous with hypothetical proteins NGRA_1734 from Nosema granulosis. NbTMP1 has a transmembrane region of 23 amino acids at the N-terminus. Indirect immunofluorescence analysis (IFA) results suggest that NbTMP1 is secreted on the plasma membrane as the spores develop. Western blot and qRT-PCR analysis showed that NbTMP1 was expressed in all developmental stages of N. bombycis in infected cells and in the silkworm midgut. Downregulation of NbTMP1 expression resulted in significant inhibition of N. bombycis proliferation. Conclusions We confirmed that NbTMP1 is a membrane protein of N. bombycis. Reduction of the transcription level of NbTMP1 significantly inhibited N. bombycis proliferation, and this protein may be a target for the selective breeding of N. bombycis-resistant silkworm strains.
![]()
Collapse
Affiliation(s)
- Shiyi Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.,Affiliated Jinhua Hospital, Zhejiang University of Medicine-Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Yukang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongyun Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Ni Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.,College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
11
|
Wang LY, Liu ZX, Zhao LM, Huang LX, Qin YX, Su YQ, Zheng WQ, Wang F, Yan QP. Dual RNA-seq provides novel insight into the roles of dksA from Pseudomonas plecoglossicida in pathogen-host interactions with large yellow croakers ( Larimichthys crocea). Zool Res 2020; 41:410-422. [PMID: 32521576 PMCID: PMC7340521 DOI: 10.24272/j.issn.2095-8137.2020.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas plecoglossicida is a rod-shaped, gram-negative bacterium with flagella. It causes visceral white spot disease and high mortality in Larimichthys crocea during culture, resulting in serious economic loss. Analysis of transcriptome and quantitative real-time polymerase chain reaction (PCR) data showed that dksA gene expression was significantly up-regulated after 48 h of infection with Epinephelus coioides (log 2FC=3.12, P<0.001). RNAi of five shRNAs significantly reduced the expression of dksA in P. plecoglossicida, and the optimal silencing efficiency was 96.23%. Compared with wild-type strains, the symptoms of visceral white spot disease in L. crocea infected with RNAi strains were reduced, with time of death delayed by 48 h and mortality reduced by 25%. The dksA silencing led to a substantial down-regulation in cellular component-, flagellum-, and ribosome assembly-related genes in P. plecoglossicida, and the significant up-regulation of fliC may be a way in which virulence is maintained in P. plecoglossicida. The GO and KEGG results showed that RNAi strain infection in L. crocea led to the down-regulation of inflammatory factor genes in immune-related pathways, which were associated with multiple immune response processes. Results also showed that dksA was a virulence gene in P. plecoglossicida. Compared with the wild-type strains, RNAi strain infection induced a weaker immune response in L. crocea.
Collapse
Affiliation(s)
- Lu-Ying Wang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Zi-Xu Liu
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Min Zhao
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Li-Xing Huang
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Ying-Xue Qin
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Yong-Quan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China
| | - Fan Wang
- Fujian Provincial Fishery Technical Extension Center, Fuzhou, Fujian 350003, China
| | - Qing-Pi Yan
- Fisheries College, Jimei University, Xiamen, Fujian 361021, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian 352000, China. E-mail:
| |
Collapse
|
12
|
Al Quraishy S, Abdel-Gaber R, El Deeb N, Maher S, Al-Shaebi E, Abdel-Ghaffar F. Ultrastructure and phylogenetic characterization of the microsporidian parasite Heterosporis lessepsianus n. sp. (Microsporidia: Glugeidae) infecting the lizardfish Saurida lessepsianus (Pisces: Synodontidae) inhabiting the Red Sea. Microb Pathog 2019; 130:10-18. [DOI: 10.1016/j.micpath.2019.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/30/2022]
|
13
|
Madureira TV, Pinheiro I, Malhão F, Castro LFC, Rocha E, Urbatzka R. Silencing of PPARαBb mRNA in brown trout primary hepatocytes: effects on molecular and morphological targets under the influence of an estrogen and a PPARα agonist. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:1-9. [PMID: 30528668 DOI: 10.1016/j.cbpb.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/23/2022]
Abstract
The crosstalk between peroxisome proliferator-activated receptor α (PPARα) and estrogenic pathways are shared from fish to humans. Salmonid fish had an additional genome duplication, and two PPARα isoforms (PPARαBa and PPARαBb) were previously identified. Since a negative regulation between estrogen signaling and PPARα was described, a post-transcriptional gene silencing for PPARαBb was designed in primary brown trout hepatocytes. The aims of the study were to: (i) decipher the effects of PPARαBb knock-down on peroxisome morphology and on mRNA expression of potential target genes, and (ii) to assess the cross-interferences caused by an estrogenic compound (17α-ethinylestradiol - EE2) and a PPARα agonist (Wy-14,643 - Wy) using the established knock-down model. A knock-down efficiency of 70% was achieved for PPARαBb and its silencing significantly reduced the volume density of peroxisomes, but did not alter mRNA levels of the studied genes. Exposure to Wy did not change peroxisome morphology or mRNA expression, but under silencing conditions Wy rescued the volume density of peroxisomes to control levels, and increased acyl-coenzyme A oxidase 1-3l (Acox1-3l) mRNA. Exposure to EE2 caused a reduction of peroxisome volume density, but under silencing conditions this effect was abolished and ApoA1 mRNA level was diminished. The morphological alterations of peroxisomes by WY and EE2 demonstrated that obtained results are PPARαBb dependent, and suggest the regulation of unknown downstream targets of PPARαBb. In summary, PPARαBb is involved in the control of peroxisome size and/or number, which opens future opportunities to explore its regulation and molecular targets.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, University of Porto (U.Porto), Rua do Campo Alegre, P 4169-007 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
Huang Y, Zheng S, Mei X, Yu B, Sun B, Li B, Wei J, Chen J, Li T, Pan G, Zhou Z, Li C. A secretory hexokinase plays an active role in the proliferation of Nosema bombycis. PeerJ 2018; 6:e5658. [PMID: 30258733 PMCID: PMC6152459 DOI: 10.7717/peerj.5658] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023] Open
Abstract
The microsporidian Nosema bombycis is an obligate intracellular parasite of Bombyx mori, that lost its intact tricarboxylic acid cycle and mitochondria during evolution but retained its intact glycolysis pathway. N. bombycis hexokinase (NbHK) is not only a rate-limiting enzyme of glycolysis but also a secretory protein. Indirect immunofluorescence assays and recombinant HK overexpressed in BmN cells showed that NbHK localized in the nucleus and cytoplasm of host cell during the meront stage. When N. bombycis matured, NbHK tended to concentrate at the nuclei of host cells. Furthermore, the transcriptional profile of NbHK implied it functioned during N. bombycis’ proliferation stages. A knock-down of NbHK effectively suppressed the proliferation of N. bombycis indicating that NbHK is an important protein for parasite to control its host.
Collapse
Affiliation(s)
- Yukang Huang
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Shiyi Zheng
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Xionge Mei
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Bin Yu
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Bin Sun
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Boning Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Junhong Wei
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Jie Chen
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Tian Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China.,Chongqing Normal University, College of Life Sciences, Chongqing, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| |
Collapse
|
15
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|