1
|
Li J, Chen F, Zhang D, Wang Y, Kozak D, Chen K. An Accurate and Fast 31P qNMR Assay Method for Oligonucleotide Therapeutics. Anal Chem 2024; 96:16514-16519. [PMID: 39392205 DOI: 10.1021/acs.analchem.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemically modified nucleic acid molecules have been developed as oligonucleotide therapeutics, and its assay is critical in quality assurance. The common DNA/RNA quantification method using UV-260 nm can lack accuracy because of structure modifications and the possible formation of higher-order structure (HOS). Additionally, process-associated water and counterions affect the accuracy in gravimetric analysis. Thus, to improve accuracy, efficiency, and flexibility, in this work a fast (<1 h) externally referenced 31P quantitative-NMR (qNMR) method was developed. The qNMR assay results agreed within 1-5% of the UV-260 nm results for the single-stranded DNA standards, confirming the method accuracy. Next, an NMR and UV comparison study was performed on intact oligonucleotide drug products. The 31P qNMR method showed 7 ± 2%, 8 ± 1%, and 12 ± 1% lower concentration values compared with drug product labels for eteplirsen, inotersen, and inclisiran, respectively. Meanwhile the UV-260 nm results showed 28 ± 3%, 10 ± 3%, and 10 ± 1% lower concentrations than the label for the same three drugs. The agreement between NMR and UV for phosphorothioate (PS)-based inotersen and mostly phosphodiester (PO)-based inclisiran suggest that the labeled concentration may have been obtained using different extinction coefficients. The underestimate of UV results for eteplirsen, which has a phosphorodiamidate morpholino oligomer (PMO) structure, suggests that the UV-260 nm extinction coefficient may need to be re-established for the PMO based oligonucleotide. Therefore, the 31P qNMR method could be a primary assay method for the oligonucleotide drug and reference standard.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Deyi Zhang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yan Wang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Darby Kozak
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kang Chen
- Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Chamgordani SZ, Yadegar A, Azimirad M, Ghourchian H. An ultrasensitive genosensor for detection of toxigenic and non-toxigenic Clostridioides difficile based on a conserved sequence in surface layer protein coding gene. Talanta 2024; 275:126014. [PMID: 38615456 DOI: 10.1016/j.talanta.2024.126014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Clostridioides difficile (C. difficile) is the most common agent of antibiotic-associated diarrhea, leading to intestinal infection through the secretion of two major toxins. Not all strains of this bacterium are toxigenic, but some of them cause infection via their accessory virulence factors, such as surface layer protein (SlpA). SlpA is conserved in both toxigenic and non-toxigenic strains of C. difficile. In the present work, an amplification-free electrochemical genosensor was designed for the detection of the slpA gene. A glassy carbon electrode coated with gold nanoparticle-reduced graphene oxide nanocomposite was used as the working electrode, and its surface was modified using a simple thiolated linear oligonucleotide as the bioreceptor. Moreover, the hexaferrocenium tri[hexa(isothiocyanato) iron(III)] trihydroxonium (HxFc) complex was used as an intercalator, and its redox signal was recorded using differential pulse voltammetry. Scan rate studies indicated a quasi-reversible adsorption-controlled process for the HxFc complex. This genosensor showed high sensitivity with a limit of detection of 0.2 fM, a linear response range of 0.46-1900 fM, and a satisfactory specificity toward the synthetic slpA target gene. Also, the genosensor indicated responses in the mentioned linear range toward the genome extracted from either toxigenic or non-toxigenic strains of C. difficile.
Collapse
Affiliation(s)
- Sepideh Ziaei Chamgordani
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Vinjamuri BP, Pan J, Peng P. A Review on Commercial Oligonucleotide Drug Products. J Pharm Sci 2024; 113:1749-1768. [PMID: 38679232 DOI: 10.1016/j.xphs.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Oligonucleotide drug products commercially approved in the US and the EU are reviewed. A total of 20 products that includes 1 aptamer, 12 antisense oligonucleotides (ASOs), 6 small interfering ribonucleic acids (siRNAs), and 1 mixture of single-stranded and double-stranded polydeoxyribonucleotides have been identified. A typical oligonucleotide formulation is composed of an oligonucleotide with buffering agent(s), pH adjusting agents, and a tonicity adjusting agent. All the products are presented as 2.1 - 200 mg/mL solutions at pH between 6 and 8.7. Majority of the products are approved for intravenous (IV) and subcutaneous (SC) routes, with two for intravitreal (IVT), two for intrathecal (IT), and one for intramuscular (IM) routes. The primary packaging includes vials and prefilled syringes (PFS). Products approved for IV and IT administration routes and requiring >1.5 mL dose volumes are supplied in vials, while those approved for SC, IM, and IVT and requiring ≤1.5 mL dose volume are supplied in PFS. Based on the compiled dataset, we propose a generalized starting point for an oligonucleotide formulation during early phase development for IV, SC, and IT administration routes. Overall, we believe this harmonized evaluation and understanding of various oligonucleotide drug product attributes will help derive platform generalizations and allows for accelerated early phase development for first-in-human studies.
Collapse
Affiliation(s)
- Bhavani Prasad Vinjamuri
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States.
| | - Jiayi Pan
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States
| | - Paul Peng
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States.
| |
Collapse
|
4
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Gronke RS, Ruanjaikaen K, Delavari A, Immel-Brown JP, Penrod JC, Lam Y, Antia FD. Use of ultrafiltration/diafiltration for the processing of antisense oligonucleotides. Biotechnol Prog 2023; 39:e3350. [PMID: 37186510 DOI: 10.1002/btpr.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Ultrafiltration/diafiltration (UF/DF) has been the hallmark for concentrating and buffer exchange of protein and peptide-based therapeutics for years. Here we examine the capabilities and limitations of UF/DF membranes to process oligonucleotides using antisense oligonucleotides (ASOs) as a model. Using a 3 kDa UF/DF membrane, oligonucleotides as small as 6 kDa are shown to have low sieving coefficients (<0.008) and thus can be concentrated to high concentrations (≤200 mg/mL) with high yield (≥95%) and low viscosity (<15 centipoise), provided the oligonucleotide is designed not to undergo self-hybridization. In general, the oligonucleotide should be at least twice the reported membrane molecular weight cutoff for robust retention. Regarding diafiltration, results show that a small amount of salt is necessary to maintain adequate flux at concentrations exceeding about 40 mg/mL. Removal of salts along with residual solvents and small molecule process-related impurities can be robust provided they are not positively charged as the interaction with the oligonucleotide can prevent passage through the membrane, even for common divalent cations such as calcium or magnesium. Overall, UF/DF is a valuable tool to utilize in oligonucleotide processing, especially as a final drug substance formulation step that enables a liquid active pharmaceutical ingredient.
Collapse
Affiliation(s)
- Robert S Gronke
- Technical Development, Biogen, Inc, Cambridge, Massachusetts, USA
| | - Krisada Ruanjaikaen
- Technical Operations, Intellia Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Armin Delavari
- Technical Development, Biogen, Inc, Cambridge, Massachusetts, USA
| | | | - Joseph C Penrod
- Technical Development, Biogen, Inc, Durham, North Carolina, USA
| | - Yik Lam
- Technical Development, Biogen, Inc, Durham, North Carolina, USA
| | - Firoz D Antia
- Technical Development, Biogen, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
7
|
Agrawal P, Wilkstein K, Guinn E, Mason M, Serrano Martinez CI, Saylae J. A Review of Tangential Flow Filtration: Process Development and Applications in the Pharmaceutical Industry. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Hirsch E, Nacsa M, Pantea E, Szabó E, Vass P, Domján J, Farkas A, Nyíri Z, Eke Z, Vigh T, Andersen SK, Verreck G, Marosi GJ, Nagy ZK. Oligonucleotide Formulations Prepared by High-Speed Electrospinning: Maximizing Loading and Exploring Downstream Processability. Pharmaceutics 2023; 15:pharmaceutics15030855. [PMID: 36986716 PMCID: PMC10054037 DOI: 10.3390/pharmaceutics15030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The aim of this study was to develop antisense oligonucleotide tablet formulations using high-speed electrospinning. Hydroxypropyl-beta-cyclodextrin (HPβCD) was used as a stabilizer and as an electrospinning matrix. In order to optimize the morphology of the fibers, electrospinning of various formulations was carried out using water, methanol/water (1:1), and methanol as solvents. The results showed that using methanol could be advantageous due to the lower viscosity threshold for fiber formation enabling higher potential drug loadings by using less excipient. To increase the productivity of electrospinning, high-speed electrospinning technology was utilized and HPβCD fibers containing 9.1% antisense oligonucleotide were prepared at a rate of ~330 g/h. Furthermore, to increase the drug content of the fibers, a formulation with a 50% drug loading was developed. The fibers had excellent grindability but poor flowability. The ground fibrous powder was mixed with excipients to improve its flowability, which enabled the automatic tableting of the mixture by direct compression. The fibrous HPβCD–antisense oligonucleotide formulations showed no sign of physical or chemical degradation over the 1-year stability study, which also shows the suitability of the HPβCD matrix for the formulation of biopharmaceuticals. The obtained results demonstrate possible solutions for the challenges of electrospinning such as scale-up and downstream processing of the fibers.
Collapse
Affiliation(s)
- Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
- Correspondence:
| | - Márió Nacsa
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Eszter Pantea
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Panna Vass
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Júlia Domján
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Zoltán Nyíri
- Joint Research and Training Laboratory on Separation Techniques, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
| | - Zsuzsanna Eke
- Joint Research and Training Laboratory on Separation Techniques, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117 Budapest, Hungary
| | - Tamás Vigh
- Oral Solids Development, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Sune Klint Andersen
- Oral Solids Development, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - György János Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Müegyetem rkp. 3, 1111 Budapest, Hungary
| |
Collapse
|
9
|
Guan B, Yan W, Stolee JA. Trace analysis of dimethoxytrityl alcohol (DMT-OH) in oligonucleotide matrices using liquid chromatography coupled with tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1054-1061. [PMID: 36722996 DOI: 10.1039/d2ay02020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A liquid chromatography (LC) method with ultraviolet (UV) and tandem mass spectrometry (MS/MS) detection was developed to quantify dimethoxytrityl alcohol (DMT-OH), a small molecule byproduct generated during the detritylation reaction in oligonucleotide synthesis. The pros and cons of quantification via multiple analytical methods including LC coupled with UV, selected ion monitoring (SIM), and multiple reaction monitoring (MRM) were evaluated. The MRM method was ultimately selected for further qualification and exhibited good linearity (R2 = 0.997 from 0.5 to 64 ng mL-1), accuracy (recoveries ranging 75-90% with ≤ 2% RSD), repeatability (<5% RSD), and sensitivity (LOQ of 1.6 ng mL-1). The MRM method was further applied to analyze DMT-OH in various oligonucleotide intermediates and drug substances. Similar MRM methods for six other small molecule impurities (aniline, benzamide, isobutyramide, 2-phenylacetamide, succinamide, and uny-CTP) as well as their application are also presented.
Collapse
Affiliation(s)
- Bing Guan
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Wuming Yan
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
10
|
DeCollibus DP, Searcy J, Tivesten A, Akhtar N, Lindenberg C, Abarrou N, Pradhan S, Fiandaca M, Franklin J, Govindan G, Liu HY, Royle D, Soo PL, Storch K. Considerations for the Terminal Sterilization of Oligonucleotide Drug Products. Nucleic Acid Ther 2023. [PMID: 36787481 DOI: 10.1089/nat.2022.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A primary function of the parenteral drug product manufacturing process is to ensure sterility of the final product. The two most common methods for sterilizing parenteral drug products are terminal sterilization (TS), whereby the drug product is sterilized in the final container following filling and finish, and membrane sterilization, whereby the product stream is sterilized by membrane filtration and filled into presterilized containers in an aseptic processing environment. Although TS provides greater sterility assurance than membrane sterilization and aseptic processing, not all drug products are amenable to TS processes, which typically involve heat treatment or exposure to ionizing radiation. Oligonucleotides represent an emerging class of therapeutics with great potential for treating a broad range of indications, including previously undruggable targets. Owing to their size, structural complexity, and relative lack of governing regulations, several challenges in drug development are unique to oligonucleotides. This exceptionality justifies a focused assessment of traditional chemistry, manufacturing, and control strategies before their adoption. In this article, we review the current state of sterile oligonucleotide drug product processing, highlight the key aspects to consider when assessing options for product sterilization, and provide recommendations to aid in the successful evaluation and development of TS processes. We also explore current regulatory expectations and provide our interpretation as it pertains to oligonucleotide drug products.
Collapse
Affiliation(s)
| | - Justin Searcy
- Pharmaceutical Development, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Anna Tivesten
- CVRM CMC Projects, Pharmaceutical Sciences, AstraZeneca R&D, Gothenburg, Sweden
| | - Nadim Akhtar
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Christian Lindenberg
- Global Drug Development, Technical Research & Development, Novartis Pharma AG, Basel, Switzerland
| | - Nounja Abarrou
- Global Drug Development, Technical Research & Development, Novartis Pharma AG, Basel, Switzerland
| | - Sujana Pradhan
- GSK, Strategic External Development, Analytical Development, Collegeville, Pennsylvania, USA
| | - Maggie Fiandaca
- GSK, Strategic External Development, Analytical Development, Collegeville, Pennsylvania, USA
| | - Jenny Franklin
- CMC Regulatory Affairs, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Geetha Govindan
- Pharmaceutical Operations & Technology, Biogen, Cambridge, Massachusetts, USA
| | - Hung-Yi Liu
- Pharmaceutical Operations & Technology, Biogen, Cambridge, Massachusetts, USA
| | - David Royle
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Patrick Lim Soo
- Pharmaceutical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, Massachusetts, USA
| | - Kirsten Storch
- Pharma Technical Development, Roche Diagnostics GmbH, Mannheim, Germany
| |
Collapse
|
11
|
Borths CJ, Burr T, Figuccia A, Ford JG, Guan B, Jones MT, Klingeleers D, Lochner S, Rodriguez AA, Wetter C. Nitrosamine Risk Assessments in Oligonucleotides. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Tracey Burr
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, United States
| | - Aude Figuccia
- Novartis AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - J. Gair Ford
- AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Bing Guan
- Biogen, Cambridge, Massachusetts 02142, United States
| | - Michael T. Jones
- Pfizer, 875 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | | | | | | | - Christian Wetter
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
12
|
Farzan M, Ross A, Müller C, Allmendinger A. Liquid crystal phase formation and non-Newtonian behavior of oligonucleotide formulations. Eur J Pharm Biopharm 2022; 181:270-281. [PMID: 36435312 DOI: 10.1016/j.ejpb.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Viscosity behavior of liquid oligonucleotide therapeutics and its dependence on formulation properties has been poorly studied to date. We observed a high increase in viscosity and solidification of therapeutic oligonucleotide formulations with increasing oligonucleotide concentration creating challenges during drug product manufacturing. In this study, we characterized the viscosity behavior of three different single strand DNA oligonucleotides based on oligonucleotide concentration and formulation composition. We subsequently studied the underlying mechanism for increased viscosity at higher oligonucleotide concentrations by dynamic light scattering (DLS), 1H nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and polarized light microscopy. Viscosity was highly dependent on formulation composition, oligonucleotide sequence, and concentration, and especially dependent on the presence and combination of different individual ions, such as the presence of sodium chloride in the formulation. In samples with elevated viscosity, the viscosity behavior was characterized by non-Newtonian, shear-thinning flow behavior. We further studied these samples by DLS and 1H NMR, which revealed the presence of supra-molecular assemblies, and further characterization by polarized light and DSC characterized these assemblies as liquid crystals in the formulation. The present study links the macroscopic viscosity behavior of oligonucleotide formulations to the formation of supra-molecular assemblies and to the presence of liquid crystals, and highlights the importance of formulation composition selection for these therapeutics.
Collapse
Affiliation(s)
- Maryam Farzan
- Pharmaceutical Development & Supplies, Pharmaceutical Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland.
| | - Alfred Ross
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Claudia Müller
- Pharmaceutical Development & Supplies, Pharmaceutical Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Andrea Allmendinger
- Pharmaceutical Development & Supplies, Pharmaceutical Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland; Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany.
| |
Collapse
|
13
|
Fillon YA, Akhtar N, Andrews BI, Benstead D, Breitler S, Gronke RS, Olbrich M, Stolee JA, Vandermeersch T. Determination of Purge Factors for Use in Oligonucleotide Control Strategies. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannick A. Fillon
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | - Benjamin I. Andrews
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | | | - Simon Breitler
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert S. Gronke
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin Olbrich
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica A. Stolee
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
14
|
Becette OB, Tran A, Jones JW, Marino JP, Brinson RG. Structural Fingerprinting of Short Interfering RNA Therapeutics by Solution Nuclear Magnetic Resonance Spectroscopy. Nucleic Acid Ther 2022; 32:267-279. [PMID: 35263184 PMCID: PMC9416564 DOI: 10.1089/nat.2021.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids are an increasingly popular platform for the development of biotherapeutics to treat a wide variety of illnesses, including diseases where traditional drug development efforts have failed. To date, there are 14 short oligonucleotide therapeutics and 2 messenger RNA (mRNA) vaccines approved by the U.S. Food and Drug Administration (FDA), which demonstrates the potential of nucleic acids as a platform for the development of safe and effective medicines and vaccines. Despite the increasing popularity of nucleic acid-based drugs, there has been a paucity of high-resolution structural techniques applied to rigorously characterize these molecules during drug development. Here, we present application of nuclear magnetic resonance (NMR) methods to structurally "fingerprint" short oligonucleotide therapeutics at natural isotope abundance under full formulation conditions. The NMR methods described herein leverage signals arising from the native structural features of nucleic acids, including imino, aromatic, and ribose resonances, in addition to non-native chemistries, such as 2'-fluoro (2'-F), 2'-O-methyl (2'-OMe), and phosphorothioate (PS) modifications, introduced during drug development. We demonstrate the utility of the NMR methods to structurally "fingerprint" a model short interfering RNA (siRNA) and a sample that simulated the drug product Givosiran. We anticipate broad applicability of the NMR methods to other nucleic acid-based therapeutics due to the generalized nature of the approach and ability to monitor many quality attributes simultaneously.
Collapse
Affiliation(s)
- Owen B Becette
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA
| | - Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
15
|
Solution Oligonucleotide APIs: Regulatory Considerations. Ther Innov Regul Sci 2022; 56:386-393. [PMID: 35133632 PMCID: PMC8964572 DOI: 10.1007/s43441-022-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Manufacture of oligonucleotide active pharmaceutical ingredients (APIs) typically consists of solid-phase synthesis, deprotection and cleavage, purification and filtration, and isolation from aqueous solutions through lyophilization. In the first step of drug product manufacture, the API is dissolved in water again and excipients are added. While isolation of oligonucleotide APIs can be meaningful in many cases, there may be cases where keeping the API in solution provides benefit, and multiple technical aspects must be taken into account and balanced when determining the appropriate API form. A significant factor is whether an API in solution will contain additional components. While APIs in solution containing additional components (so-called formulated APIs) are well established for biological products, there are regulatory guidelines in place that represent hurdles for industry to using a formulated API approach for oligonucleotide drugs. The present communication outlines conditions where a formulated API approach can be chosen in compliance with existing guidelines. Relevant aspects pertaining to risk management, GMP standards, facility design, control strategies, and regulatory submission content are discussed. In addition, the authors propose that existing guidelines be modernized to enable the use of a formulated API approach for additional reasons than the ones described in the existing regulatory framework. The manuscript aims to promote a dialog with regulators in this field.
Collapse
|
16
|
Lemaitre MM. Individualized Antisense Oligonucleotide Therapies: How to Approach the Challenge of Manufacturing These Oligos from a Chemistry, Manufacturing, and Control-Regulatory Standpoint. Nucleic Acid Ther 2021; 32:101-110. [PMID: 34962152 DOI: 10.1089/nat.2021.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the development of antisense oligonucleotides over more than 30 years and the increasing number of identified unique severely debilitating or life-threatening diseases affecting only 1 person in the world-now referred to as N-of-1 diseases-it is more and more appealing to use antisense technology to treat N-of-1 diseases when they are caused by well-identified mutations in single genes. N-of-1 patients present unique challenges to the health care system because the patient may be, and often is, the single patient in the world with the specific mutation in question, thus requiring an approach particular to that patient. Yet, we now know that there are millions of such patients, requiring scalable solutions. This article offers suggestions on how a specific and very regulated area of the new drug development process, chemistry, manufacturing, and control, could be addressed for N-of-1 oligonucleotides from a regulatory standpoint.
Collapse
|
17
|
Kim SW, Cho YI, Jung KE. Avoiding
High‐Pressure
Problem for Modified
RNA
‐attached Polystyrene Support by
Pre‐Swelling
Using Toluene in the Oligonucleotide Synthesis. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sung Won Kim
- Research Center, Oligo CDMO, ST Pharm Siheung 15086 South Korea
- Catholic University Department of Biotechnology Bucheon 14662 South Korea
| | - Yang Il Cho
- Research Center, Oligo CDMO, ST Pharm Siheung 15086 South Korea
| | - Kyeong Eun Jung
- Research Center, Oligo CDMO, ST Pharm Siheung 15086 South Korea
| |
Collapse
|
18
|
Kiesman WF, McPherson AK, Diorazio LJ, Van den Bergh L, Smith PD, Northall JM, Fettes A, Wang T, Mehlmann M, Raza S, Held G. Perspectives on the Designation of Oligonucleotide Starting Materials. Nucleic Acid Ther 2021; 31:93-113. [PMID: 33534646 PMCID: PMC7997719 DOI: 10.1089/nat.2020.0909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The designation of starting materials (SMs) for pharmaceuticals has been a topic of great interest and debate since the first ICH quality guidance was published. The increase in the number and variety of commercialized oligonucleotides (antisense oligonucleotides—ASOs, small interfering RNAs—siRNAs, etc.) in recent years has reignited dialogue on this topic because of the unique complexity of the monomeric nucleotides and other contributory materials used to manufacture oligonucleotides. The SM working group in the European Pharma Oligonucleotide Consortium (EPOC) was formed to help establish simple, risk-based criteria to guide the justification of oligonucleotide SMs. This article provides a description of the common types of SMs, classes of SM impurities, and control strategies that will be helpful to maintain manufacturing consistency.
Collapse
Affiliation(s)
- William F Kiesman
- Antisense Oligonucleotide Development and Manufacturing, Biogen, Inc., Cambridge, Massachusetts, USA
| | - Andrew K McPherson
- Process Organic Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Louis J Diorazio
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | | | - Peter D Smith
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, United Kingdom
| | - John M Northall
- Chemical Development, Product Development and Supply, GlaxoSmithKline, Stevenage, United Kingdom
| | - Alec Fettes
- Pharmaceutical Division, Small Molecule Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tiejun Wang
- Global Regulatory Affairs, CMC & Devices, Sanofi, Bridgewater, New Jersey, USA
| | - Martin Mehlmann
- External Technical Oversight Analytics, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Syed Raza
- Amidite Manufacturing and Process Development, Thermo Fisher Scientific, Milwaukee, Wisconsin, USA
| | - Gary Held
- Amidite Quality Control and Analytical Development, Thermo Fisher Scientific, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Andrews BI, Antia FD, Brueggemeier SB, Diorazio LJ, Koenig SG, Kopach ME, Lee H, Olbrich M, Watson AL. Sustainability Challenges and Opportunities in Oligonucleotide Manufacturing. J Org Chem 2020; 86:49-61. [PMID: 33253568 PMCID: PMC8154579 DOI: 10.1021/acs.joc.0c02291] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
With a renewed and growing interest
in therapeutic oligonucleotides
across the pharmaceutical industry, pressure is increasing on drug
developers to take more seriously the sustainability ramifications
of this modality. With 12 oligonucleotide drugs reaching the market
to date and hundreds more in clinical trials and preclinical development,
the current state of the art in oligonucleotide production poses a
waste and cost burden to manufacturers. Legacy technologies make use
of large volumes of hazardous reagents and solvents, as well as energy-intensive
processes in synthesis, purification, and isolation. In 2016, the
American Chemical Society (ACS) Green Chemistry Institute Pharmaceutical
Roundtable (GCIPR) identified the development of greener processes
for oligonucleotide Active Pharmaceutical Ingredients (APIs) as a
critical unmet need. As a result, the Roundtable formed a focus team
with the remit of identifying green chemistry and engineering improvements
that would make oligonucleotide production more sustainable. In this
Perspective, we summarize the present challenges in oligonucleotide
synthesis, purification, and isolation; highlight potential solutions;
and encourage synergies between academia; contract research, development
and manufacturing organizations; and the pharmaceutical industry.
A critical part of our assessment includes Process Mass Intensity
(PMI) data from multiple companies to provide preliminary baseline
metrics for current oligonucleotide manufacturing processes.
Collapse
Affiliation(s)
- Benjamin I Andrews
- Chemical Development, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Firoz D Antia
- Biogen, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Louis J Diorazio
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 4TF, United Kingdom
| | - Stefan G Koenig
- Genentech, Inc., A Member of the Roche Group, South San Francisco, California 94080, United States
| | - Michael E Kopach
- Eli Lilly and Company, 1400 West Raymond Street, Indianapolis, Indiana 46285, United States
| | - Heewon Lee
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | | | - Anna L Watson
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 4TF, United Kingdom
| |
Collapse
|