1
|
Taha A, Bobi J, Dammers R, Dijkhuizen RM, Dreyer AY, van Es ACGM, Ferrara F, Gounis MJ, Nitzsche B, Platt S, Stoffel MH, Volovici V, Del Zoppo GJ, Duncker DJ, Dippel DWJ, Boltze J, van Beusekom HMM. Comparison of Large Animal Models for Acute Ischemic Stroke: Which Model to Use? Stroke 2022; 53:1411-1422. [PMID: 35164533 PMCID: PMC10962757 DOI: 10.1161/strokeaha.121.036050] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Translation of acute ischemic stroke research to the clinical setting remains limited over the last few decades with only one drug, recombinant tissue-type plasminogen activator, successfully completing the path from experimental study to clinical practice. To improve the selection of experimental treatments before testing in clinical studies, the use of large gyrencephalic animal models of acute ischemic stroke has been recommended. Currently, these models include, among others, dogs, swine, sheep, and nonhuman primates that closely emulate aspects of the human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, significantly influence the suitability of a model to address specific research questions. In this article, we review key characteristics of the main large animal models used in translational studies of acute ischemic stroke, regarding (1) anatomy and physiology of the cerebral vasculature, including brain morphology, coagulation characteristics, and immune function; (2) ischemic stroke modeling, including vessel occlusion approaches, reproducibility of infarct size, procedural complications, and functional outcome assessment; and (3) implementation aspects, including ethics, logistics, and costs. This review specifically aims to facilitate the selection of the appropriate large animal model for studies on acute ischemic stroke, based on specific research questions and large animal model characteristics.
Collapse
Affiliation(s)
- Aladdin Taha
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Stroke Center (A.T., D.W.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joaquim Bobi
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Stroke Center (R.D., V.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M.D.)
| | - Antje Y Dreyer
- Max Planck Institute for Infection Biology, Campus Charité Mitte, Berlin, Germany (A.Y.D.)
| | - Adriaan C G M van Es
- Department of Radiology, Leiden University Medical Center, the Netherlands (A.C.G.M.v.E.)
| | - Fabienne Ferrara
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany (F.F.)
| | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester (M.J.G.)
| | - Björn Nitzsche
- Institute of Anatomy, Faculty of Veterinary Medicine (B.N.), University of Leipzig, Germany
- Department of Nuclear Medicine (B.N.), University of Leipzig, Germany
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens (S.P.)
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Switzerland (M.H.S.)
| | - Victor Volovici
- Department of Neurosurgery, Stroke Center (R.D., V.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Gregory J Del Zoppo
- Division of Hematology (G.J.d.Z.), University of Washington School of Medicine, Seattle
- Department of Medicine (G.J.d.Z.), University of Washington School of Medicine, Seattle
- Department of Neurology (G.J.d.Z.), University of Washington School of Medicine, Seattle
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Stroke Center (A.T., D.W.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johannes Boltze
- School of Life Sciences, Faculty of Science, University of Warwick, Coventry, United Kingdom (J.B.)
| | - Heleen M M van Beusekom
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Treatment of combined traumatic brain injury and hemorrhagic shock with fractionated blood products versus fresh whole blood in a rat model. Eur J Trauma Emerg Surg 2018; 45:263-271. [PMID: 29344708 DOI: 10.1007/s00068-018-0908-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Treatment of combined traumatic brain injury and hemorrhagic shock, poses a particular challenge due to the possible conflicting consequences. While restoring diminished volume is the treatment goal for hypovolemia, maintaining adequate cerebral perfusion pressure and avoidance of secondary damage remains a treatment goal for the injured brain. Various treatment modalities have been proposed, but the optimal resuscitation fluid and goals have not yet been clearly defined. A growing body of evidence suggests that in hypovolemic shock, resuscitation with fresh whole blood (FWB) may be superior to component therapy without platelets (which are likely to be unavailable in the pre-hospital setting). Nevertheless, the effects of this approach have not been studied in the combined injury. Previously, in a rat model of combined injury we have found that mild resuscitation to MABP of 80 mmHg with FWB is superior to fluid resuscitation or aggressive resuscitation with FWB. In this study, we investigate the physiological and neurological outcomes in a rat model of combined traumatic brain injury (TBI) and hypovolemic shock, submitted to treatment with varying amounts of FWB, compared to similar resuscitation goals with fractionated blood products-red blood cells (RBCs) and plasma in a 1:1 ratio regimen. MATERIALS AND METHODS 40 male Lewis rats were divided into control and treatment groups. TBI was inflicted by a free-falling rod on the exposed cranium. Hypovolemia was induced by controlled hemorrhage of 30% blood volume. Treatment groups were treated either with fresh whole blood or with RBC + plasma in a 1:1 ratio, achieving a resuscitation goal of a mean arterial blood pressure (MAP) of 80 mmHg at 15 min. MAP was assessed at 60 min, and neurological outcomes and mortality in the subsequent 24 h. RESULTS At 60 min, hemodynamic parameters were improved compared to controls, but not significantly different between treatment groups. Survival rates at 48 h were 100% for both of the mildly resuscitated groups (MABP 80 mmHg) with FWB and RBC + plasma. The best neurological outcomes were found in the group mildly resuscitated with FWB and were better when compared to resuscitation with RBC + plasma to the same MABP goal (FWB: Neurological Severity Score (NSS) 6 ± 2, RBC + plasma: NSS 10 ± 2, p = 0.02). CONCLUSIONS In this study, we find that mild resuscitation with goals of restoring MAP to 80 mmHg (which is lower than baseline) with FWB, provided better hemodynamic stability and survival. However, the best neurological outcomes were found in the group resuscitated with FWB. Thus, we suggest that resuscitation with FWB is a feasible modality in the combined TBI + hypovolemic shock scenario, and may result in improved outcomes compared to platelet-free component blood products.
Collapse
|
3
|
Schmoker JD, Terrien C, McPartland KJ, Boyum J, Wellman GC, Trombley L, Kinne J. Cerebrovascular response to continuous cold perfusion and hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2009; 137:459-64. [PMID: 19185170 DOI: 10.1016/j.jtcvs.2008.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Clinical and laboratory studies have documented changes in cerebrovascular resistance after hypothermic circulatory arrest, both with and without adjunctive cerebral perfusion modalities. This study was designed to clarify whether these changes are due to cerebral edema, resistance vessel abnormalities, or alterations in the cerebral microcirculation. METHODS Four mature swine underwent hypothermic circulatory arrest for 60 minutes, and 7 mature swine underwent cold cerebral perfusion for 60 minutes to simulate antegrade selective perfusion. All were rewarmed and weaned from cardiopulmonary bypass. Pial vascular diameter and reactivity were measured in vivo through a cranial window and ex vivo in an organ chamber; cerebral microvascular endothelium was studied in culture for release of vasoactive mediators. Cerebral water content was recorded. RESULTS Cold perfusion caused pial arteriole and venule constriction, whereas hypothermic circulatory arrest alone caused pial arteriole and venule dilatation. Cold perfusion caused a temporal loss of endothelium-dependent vasodilatation, most notably to bradykinin. Hypothermic circulatory arrest caused a loss of nitric oxide-mediated endothelium-dependent vasodilatation. Endothelium-independent vasoreactivity remained intact in both groups. Endothelial cells from the cold group had a vasoconstrictive secretory phenotype, whereas endothelial cells from the hypothermic circulatory arrest group had a vasodilatory phenotype. Cerebral water content was the same in both groups. CONCLUSION The increase in cerebrovascular resistance observed after cold cerebral perfusion is caused by resistance vessel constriction and may be promoted by an altered microcirculation. Hypothermic circulatory arrest alone is associated with endothelium-dependent vasoparesis. Both could contribute to cerebral injury in the early hours after operation.
Collapse
Affiliation(s)
- Joseph D Schmoker
- Department of Surgery, The University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Maeda T, Lee SM, Hovda DA. Restoration of Cerebral Vasoreactivity by an L-Type Calcium Channel Blocker following Fluid Percussion Brain Injury. J Neurotrauma 2005; 22:763-71. [PMID: 16004579 DOI: 10.1089/neu.2005.22.763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant acute reductions in regional cerebral blood flow (rCBF). However, the mechanisms by which TBI impairs CBF and cerebral vascular reactivity have remained elusive. In the present study, the effect of verapamil, an L-type calcium (Ca(2+)) channel blocker, on post-traumatic vascular reactivity was evaluated following a lateral fluid percussion injury (FPI) in rats. rCBF was measured by [(14)C]-iodoantipyrine autoradiography 1 h after FPI. Following FPI, significant rCBF reductions were documented in all examined cortical areas. These reductions were the most prominent (72.0%) at the primary injury site. Intravenous infusion of verapamil (VE; 200 microg/kg/min), and norepinephrine (NE; 20 microg/mL/min) to maintain normal blood pressure, increased rCBF by 141.5% at the primary injury site when compared to untreated, FPinjured animals. Under stimulated conditions, both the ipsilateral and contralateral hemispheres failed to show any increases in rCBF at 1 h following FPI. In direct contrast, following VE+NE treatment all cortical areas measured showed near normal vascular reactivity to direct cortical stimulation (normal reactivity = 45% increase in rCBF vs. 47% increase in FPI+VE+NE cases). These findings suggest that the majority of post-traumatic hemodynamic depressions are closely related to mechanisms involving vasoconstriction. Furthermore, Ca(2+) may play a causative role in this vasoconstriction and the loss of vasoreactivity.
Collapse
Affiliation(s)
- Takeshi Maeda
- Brain Injury Research Center, Department of Surgery/Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
5
|
Zink BJ, Sheinberg MA, Wang X, Mertz M, Stern SA, Betz AL. Acute ethanol intoxication in a model of traumatic brain injury with hemorrhagic shock: effects on early physiological response. J Neurosurg 1998; 89:983-90. [PMID: 9833825 DOI: 10.3171/jns.1998.89.6.0983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Traumatic brain injury (TBI) is exacerbated by hypotension and hypoventilation. Because previous studies have shown a potentiating effect of ethanol (EtOH) on TBI and hemorrhagic shock (HS), the authors investigated the effects of EtOH on the early physiological response to TBI with and without HS. METHODS Anesthetized swine, weighing approximately 20 kg each, underwent fluid-percussion TBI of 3 atm with or without 30 ml/kg hemorrhage for a period of 30 minutes. The mean arterial blood pressure, intracranial pressure, cerebral perfusion pressure (CPP), cardiac output, cerebral venous oxygen saturation, and metabolic parameters were monitored for 3 hours postinjury. Ventilation and the response to hypercapnia were also measured. Regional cerebral blood flow and renal blood flow were measured using dye-labeled microspheres. Five groups were studied: control, TBI, TBI/EtOH, TBI/HS, and TBI/HS/EtOH. The EtOH (3.5 g) was given intragastrically 100 minutes preinjury. The TBI/HS/EtOH group demonstrated a 3-hour mortality rate of 56% and postinjury apnea requiring ventilation in 44% of animals compared with 0% in all other groups. Minute ventilation and the hypercapnic ventilatory response were significantly reduced in the postinjury period in the TBI/HS/EtOH group. The animals in this group had significantly lower CPP and cardiac output in the first 60 minutes postinjury, as well as lower renal and cerebral blood flow. Postinjury cerebral venous lactate levels were higher, and cerebral venous pH was lower in the TBI/HS/EtOH group. CONCLUSIONS In this model of TBI, acute EtOH intoxication in the presence of HS potentiates the physiological and metabolic alterations that may contribute to secondary brain injury.
Collapse
Affiliation(s)
- B J Zink
- Department of Surgery, University of Michigan, Ann Arbor, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Zink BJ, Stern SA, Wang X, Chudnofsky CC. Effects of ethanol in an experimental model of combined traumatic brain injury and hemorrhagic shock. Acad Emerg Med 1998; 5:9-17. [PMID: 9444336 DOI: 10.1111/j.1553-2712.1998.tb02568.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Given that clinical and laboratory studies suggest that ethanol and hemorrhagic shock (HS) potentiate traumatic brain injury (TBI), the authors studied the effects of ethanol in a model of combined TBI and HS. METHODS A controlled porcine model of combined TBI and HS was evaluated for the effect of ethanol on survival time, hemodynamic function, and cerebral tissue perfusion. Anesthetized swine (17-24 kg) were instrumented, splenectomized, and subjected to fluid percussion TBI with concurrent 25-mL/kg graded hemorrhage over 30 minutes. Two groups were studied: control (n = 11) and ethanol (n = 11). Ethanol, 3.5 g/kg intragastric, was given 100 minutes prior to TBI/HS. Systemic and cerebral physiologic and metabolic parameters were monitored for 2 hours without resuscitation. Regional cerebral blood flow (rCBF) and renal blood flow were measured with dye-labeled microspheres. Data were analyzed with 2-sample t-test and repeated-measures ANOVA. RESULTS Ethanol levels at the time of injury were 162 +/- 68 mg/dL. Average TBI was 2.65 +/- 0.35 atm. Survival time was significantly shorter in the ethanol group (60 +/- 27 min vs 94 +/- 28 min, p = 0.011). The ethanol group had significantly lower mean arterial pressure, cerebral perfusion pressure, and cerebral venous O2 saturation in the postinjury period. Cerebral O2 extraction ratios and cerebral venous lactate levels were significantly higher in the ethanol group. A trend toward lower postinjury rCBF in all brain regions was observed in the ethanol group. CONCLUSION In this TBI/HS model, ethanol administration decreased survival time, impaired the hemodynamic response, and worsened measures of cerebral tissue perfusion.
Collapse
Affiliation(s)
- B J Zink
- Department of Surgery, University of Michigan, Ann Arbor, USA.
| | | | | | | |
Collapse
|