1
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
McEwen ML, Sullivan PG, Rabchevsky AG, Springer JE. Targeting mitochondrial function for the treatment of acute spinal cord injury. Neurotherapeutics 2011; 8:168-79. [PMID: 21360236 PMCID: PMC3101832 DOI: 10.1007/s13311-011-0031-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traumatic injury to the mammalian spinal cord is a highly dynamic process characterized by a complex pattern of pervasive and destructive biochemical and pathophysiological events that limit the potential for functional recovery. Currently, there are no effective therapies for the treatment of spinal cord injury (SCI) and this is due, in part, to the widespread impact of the secondary injury cascades, including edema, ischemia, excitotoxicity, inflammation, oxidative damage, and activation of necrotic and apoptotic cell death signaling events. In addition, many of the signaling pathways associated with these cascades intersect and initiate other secondary injury events. Therefore, it can be argued that therapeutic strategies targeting a specific biochemical cascade may not provide the best approach for promoting functional recovery. A "systems approach" at the subcellular level may provide a better strategy for promoting cell survival and function and, as a consequence, improve functional outcomes following SCI. One such approach is to study the impact of SCI on the biology and function of mitochondria, which serve a major role in cellular bioenergetics, function, and survival. In this review, we will briefly describe the importance and unique properties of mitochondria in the spinal cord, and what is known about the response of mitochondria to SCI. We will also discuss a number of strategies with the potential to promote mitochondrial function following SCI.
Collapse
Affiliation(s)
- Melanie L. McEwen
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536–0509 USA
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, Kentucky 40536–0509 USA
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536–0509 USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536–0509 USA
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536–0509 USA
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536–0509 USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536–0509 USA
| | - Joe E. Springer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536–0509 USA
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, Kentucky 40536–0509 USA
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536–0509 USA
| |
Collapse
|
8
|
Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001; 24:254-64. [PMID: 11586110 DOI: 10.1097/00002826-200109000-00002] [Citation(s) in RCA: 503] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a devastating and common neurologic disorder that has profound influences on modern society from physical, psychosocial, and socioeconomic perspectives. Accordingly, the present decade has been labeled the Decade of the Spine to emphasize the importance of SCI and other spinal disorders. Spinal cord injury may be divided into both primary and secondary mechanisms of injury. The primary injury, in large part, determines a given patient's neurologic grade on admission and thereby is the strongest prognostic indicator. However, secondary mechanisms of injury can exacerbate damage and limit restorative processes, and hence, contribute to overall morbidity and mortality. A burgeoning body of evidence has facilitated our understanding of these secondary mechanisms of injury that are amenable to pharmacological interventions, unlike the primary injury itself. Secondary mechanisms of injury encompass an array of perturbances and include neurogenic shock, vascular insults such as hemorrhage and ischemia-reperfusion, excitotoxicity, calcium-mediated secondary injury and fluid-electrolyte disturbances, immunologic injury, apoptosis, disturbances in mitochondrion function, and other miscellaneous processes. Comprehension of secondary mechanisms of injury serves as a basis for the development and application of targeted pharmacological strategies to confer neuroprotection and restoration while mitigating ongoing neural injury. The first article in this series will comprehensively review the pathophysiology of SCI while emphasizing those mechanisms for which pharmacologic therapy has been developed, and the second article reviews the pharmacologic interventions for SCI.
Collapse
Affiliation(s)
- R J Dumont
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Dumont RJ, Verma S, Okonkwo DO, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol 2001; 24:265-79. [PMID: 11586111 DOI: 10.1097/00002826-200109000-00003] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) remains a common and devastating problem of modern society. Through an understanding of underlying pathophysiologic mechanisms involved in the evolution of SCI, treatments aimed at ameliorating neural damage may be developed. The possible pharmacologic treatments for acute spinal cord injury are herein reviewed. Myriad treatment modalities, including corticosteroids, 21-aminosteroids, opioid receptor antagonists, gangliosides, thyrotropin-releasing hormone (TRH) and TRH analogs, antioxidants and free radical scavengers, calcium channel blockers, magnesium replacement therapy, sodium channel blockers, N -methyl-D-aspartate receptor antagonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-kainate receptor antagonists, modulators of arachadonic acid metabolism, neurotrophic growth factors, serotonin antagonists, antibodies against inhibitors of axonal regeneration, potassium channel blockers (4-aminopyridine), paclitaxel, clenbuterol, progesterone, gabexate mesylate, activated protein C, caspase inhibitors, tacrolimus, antibodies against adhesion molecules, and other immunomodulatory therapy have been studied to date. Although most of these agents have shown promise, only one agent, methylprednisolone, has been shown to provide benefit in large clinical trials. Given these data, many individuals consider methylprednisolone to be the standard of care for the treatment of acute SCI. However, this has not been established definitively, and questions pertaining to methodology have emerged regarding the National Acute Spinal Cord Injury Study trials that provided these conclusions. Additionally, the clinical significance (in contrast to statistical significance) of recovery after methylprednisolone treatment is unclear and must be considered in light of the potential adverse effects of such treatment. This first decade of the new millennium, now touted as the Decade of the Spine, will hopefully witness the emergence of universal and efficacious pharmacologic therapy and ultimately a cure for SCI.
Collapse
Affiliation(s)
- R J Dumont
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|