1
|
Zhao S, Wang X, Gao X, Chen J. Delayed and progressive damages to juvenile mice after moderate traumatic brain injury. Sci Rep 2018; 8:7339. [PMID: 29743575 PMCID: PMC5943589 DOI: 10.1038/s41598-018-25475-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Symptoms are commonly more severe in pediatric traumatic brain injury (TBI) patients than in young adult TBI patients. To understand the mechanism, juvenile mice received a controlled cortical impact (CCI) injury at moderate level. Tissue lesion and cell death were measured and compared to our previous reports on brain injury in the young adult mice that received same level of impact using same injury device. Tissue lesion and cell death in the cortex was much less in the juvenile mouse brain in the first few hours after injury. However, once the injury occurred, it developed more rapidly, lasted much longer, and eventually led to exaggerated cell death and a 32.7% larger tissue lesion cavity in the cortex of juvenile mouse brain than of young adult mouse brain. Moreover, we found significant cell death in the thalamus of juvenile brains at 72 h, which was not commonly seen in the young adult mice. In summary, cell death in juvenile mice was delayed, lasted longer, and finally resulted in more severe brain injury than in the young adult mice. The results suggest that pediatric TBI patients may have a longer therapeutic window, but they also need longer intensive clinical care after injury.
Collapse
Affiliation(s)
- Shu Zhao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
2
|
Zhao S, Gao X, Dong W, Chen J. The Role of 7,8-Dihydroxyflavone in Preventing Dendrite Degeneration in Cortex After Moderate Traumatic Brain Injury. Mol Neurobiol 2016; 53:1884-1895. [PMID: 25801526 PMCID: PMC5441052 DOI: 10.1007/s12035-015-9128-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
Our previous research showed that traumatic brain injury (TBI) induced by controlled cortical impact (CCI) not only causes massive cell death, but also results in extensive dendrite degeneration in those spared neurons in the cortex. Cell death and dendrite degeneration in the cortex may contribute to persistent cognitive, sensory, and motor dysfunction. There is still no approach available to prevent cells from death and dendrites from degeneration following TBI. When we treated the animals with a small molecule, 7,8-dihydroxyflavone (DHF) that mimics the function of brain-derived neurotrophic factor (BDNF) through provoking TrkB activation reduced dendrite swellings in the cortex. DHF treatment also prevented dendritic spine loss after TBI. Functional analysis showed that DHF improved rotarod performance on the third day after surgery. These results suggest that although DHF treatment did not significantly reduced neuron death, it prevented dendrites from degenerating and protected dendritic spines against TBI insult. Consequently, DHF can partially improve the behavior outcomes after TBI.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
- Stark Neuroscience Research Institute, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Weiren Dong
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China.
- , 1838 North Guangzhou Blvd, Guangzhou, 510515, China.
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Stark Neuroscience Research Institute, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Indiana University, School of Medicine, 980 W. Walnut Street, R3, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. J Neurosci 2015; 35:8132-44. [PMID: 26019330 DOI: 10.1523/jneurosci.0504-15.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activity of neural precursor cells in the adult hippocampus is regulated by various stimuli; however, whether these stimuli regulate the same or different precursor populations remains unknown. Here, we developed a novel cell-sorting protocol that allows the purification to homogeneity of neurosphere-forming neural precursors from the adult mouse hippocampus and examined the responsiveness of individual precursors to various stimuli using a clonal assay. We show that within the Hes5-GFP(+)/Nestin-GFP(+)/EGFR(+) cell population, which comprises the majority of neurosphere-forming precursors, there are two distinct subpopulations of quiescent precursor cells, one directly activated by high-KCl depolarization, and the other activated by norepinephrine (NE). We then demonstrate that these two populations are differentially distributed along the septotemporal axis of the hippocampus, and show that the NE-responsive precursors are selectively regulated by GABA, whereas the KCl-responsive precursors are selectively modulated by corticosterone. Finally, based on RNAseq analysis by deep sequencing, we show that the progeny generated by activating NE-responsive versus KCl-responsive quiescent precursors are molecularly different. These results demonstrate that the adult hippocampus contains phenotypically similar but stimulus-specific populations of quiescent precursors, which may give rise to neural progeny with different functional capacity.
Collapse
|
4
|
Brezova V, Moen KG, Skandsen T, Vik A, Brewer JB, Salvesen O, Håberg AK. Prospective longitudinal MRI study of brain volumes and diffusion changes during the first year after moderate to severe traumatic brain injury. NEUROIMAGE-CLINICAL 2014; 5:128-40. [PMID: 25068105 PMCID: PMC4110353 DOI: 10.1016/j.nicl.2014.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 01/10/2023]
Abstract
The objectives of this prospective study in 62 moderate–severe TBI patients were to investigate volume change in cortical gray matter (GM), hippocampus, lenticular nucleus, lobar white matter (WM), brainstem and ventricles using a within subject design and repeated MRI in the early phase (1–26 days) and 3 and 12 months postinjury and to assess changes in GM apparent diffusion coefficient (ADC) in normal appearing tissue in the cortex, hippocampus and brainstem. The impact of Glasgow Coma Scale (GCS) score at admission, duration of post-traumatic amnesia (PTA), and diffusion axonal injury (DAI) grade on brain volumes and ADC values over time was assessed. Lastly, we determined if MRI-derived brain volumes from the 3-month scans provided additional, significant predictive value to 12-month outcome classified with the Glasgow Outcome Scale—Extended after adjusting for GCS, PTA and age. Cortical GM loss was rapid, largely finished by 3 months, but the volume reduction was unrelated to GCS score, PTA, or presence of DAI. However, cortical GM volume at 3 months was a significant independent predictor of 12-month outcome. Volume loss in the hippocampus and lenticular nucleus was protracted and statistically significant first at 12 months. Slopes of volume reduction over time for the cortical and subcortical GGM were significantly different. Hippocampal volume loss was most pronounced and rapid in individuals with PTA > 2 weeks. The 3-month volumes of the hippocampus and lentiform nucleus were the best independent predictors of 12-month outcome after adjusting for GCS, PTA and age. In the brainstem, volume loss was significant at both 3 and 12 months. Brainstem volume reduction was associated with lower GCS score and the presence of DAI. Lobar WM volume was significantly decreased first after 12 months. Surprisingly DAI grade had no impact on lobar WM volume. Ventricular dilation developed predominantly during the first 3 months, and was strongly associated with volume changes in the brainstem and cortical GM, but not lobar WM volume. Higher ADC values were detected in the cortex in individuals with severe TBI, DAI and PTA > 2 weeks, from 3 months. There were no associations between ADC values and brain volumes, and ADC values did not predict outcome. Longitudinal study of brain volume changes following TBI 3 month MRI derived volumes are independent predictors of outcome at 12 months. PTA, GCS and DAI have different impacts on different brain volumes. Subcortical and cortical GM volume losses follow significantly different trajectories. Significant changes in cortical ADC values develop slowly while volume changes are rapid.
Collapse
Affiliation(s)
- Veronika Brezova
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ; Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kent Gøran Moen
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ; Department of Neurosurgery, St. Olav's Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ; Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim, Norway
| | - Anne Vik
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ; Department of Neurosurgery, St. Olav's Hospital, Trondheim, Norway
| | - James B Brewer
- Department of Radiology, University of California San Diego, San Diego, USA ; Department of Neurosciences, University of California San Diego, San Diego, USA
| | - Oyvind Salvesen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta K Håberg
- Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway ; Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Bai R, Gao G, Xing Y, Xue H. Two outward potassium current types are expressed during the neural differentiation of neural stem cells. Neural Regen Res 2013; 8:2656-65. [PMID: 25206577 PMCID: PMC4146027 DOI: 10.3969/j.issn.1673-5374.2013.28.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/08/2013] [Indexed: 01/17/2023] Open
Abstract
The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cell patch-clamp recordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat campus could be cultured and induced to differentiate into functional neurons under defined conditions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.
Collapse
Affiliation(s)
- Ruiying Bai
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Guowei Gao
- Department of Radiotherapy, Center Hospital of Xinxiang, Xinxiang 453003, Henan Province, China
| | - Ying Xing
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China ; Stem Cell Research Center, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hong Xue
- Basic Medical Sciences of Henan University of Traditional Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
6
|
Prominin-1 allows prospective isolation of neural stem cells from the adult murine hippocampus. J Neurosci 2013; 33:3010-24. [PMID: 23407958 DOI: 10.1523/jneurosci.3363-12.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prominin-1 (CD133) is commonly used to isolate stem and progenitor cells from the developing and adult nervous system and to identify cancer stem cells in brain tumors. However, despite extensive characterization of Prominin-1(+) precursor cells from the adult subventricular zone, no information about the expression of Prominin-1 by precursor cells in the subgranular zone (SGZ) of the adult hippocampus has been available. We show here that Prominin-1 is expressed by a significant number of cells in the SGZ of adult mice in vivo and ex vivo, including postmitotic astrocytes. A small subset of Prominin-1(+) cells coexpressed the nonspecific precursor cell marker Nestin as well as GFAP and Sox2. Upon fluorescence-activated cell sorting, only Prominin-1/Nestin double-positive cells fulfilled the defining stem cell criteria of proliferation, self-renewal, and multipotentiality as assessed by a neurosphere assay. In addition, isolated primary Prominin-1(+) cells preferentially migrated to the neurogenic niche in the SGZ upon transplantation in vivo. Finally, despite its expression by various stem and progenitor cells, Prominin-1 turned out to be dispensable for precursor cell proliferation in vitro and in vivo. Nevertheless, a net decrease in hippocampal neurogenesis, by ∼30% was found in Prominin-1 knock-out mice, suggesting other roles in controlling adult hippocampal neurogenesis. Remarkably, an upregulation of Prominin-2 was detected in Prominin-1-deficient mice highlighting a potential compensatory mechanism, which might explain the lack of severe symptoms in individuals carrying mutations in the Prom1 gene.
Collapse
|
7
|
Zhavoronkova L, Zharikova A, Maksakova O. Why Voluntary Postural Training Improves Recovery of Mental and Motor Functions in Patients with Traumatic Brain Injury? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.36048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Gao X, Chen J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol 2012; 239:38-48. [PMID: 23022454 DOI: 10.1016/j.expneurol.2012.09.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury (TBI) promotes neural stem/progenitor cell (NSC) proliferation in the adult hippocampus; however, it remains inconclusive whether proliferation of these cells results in newly generated mature neurons, leading to increased neurogenesis. When we traced the fates of proliferating cells labeled with bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) we found that the number of BrdU-positive cells increased in the hippocampus of TBI mice compared to the sham control. However, double immunostaining to distinguish their cell types showed that most of these cells were glia, and that only a small subpopulation is newborn granular neurons. There was no significant difference with respect to neurogenesis in the adult hippocampus between the injured and the control mice. These results indicate that TBI promotes cell proliferation including astrocyte activation and NSC proliferation. Nevertheless, the majority of the BrdU-positive cells are glia. The neurogenesis is not increased by TBI. These data suggest that TBI activates through promotion of NSC proliferation an innate repair and/or plasticity mechanism in the brain. However, additional intervention is required to increase neurogenesis for successfully repairing the damaged brain following TBI.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
9
|
Gao X, Deng P, Xu ZC, Chen J. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PLoS One 2011; 6:e24566. [PMID: 21931758 PMCID: PMC3172233 DOI: 10.1371/journal.pone.0024566] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/14/2011] [Indexed: 11/19/2022] Open
Abstract
Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Ping Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zao C. Xu
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mild traumatic brain injury results in extensive neuronal degeneration in the cerebral cortex. J Neuropathol Exp Neurol 2011; 70:183-91. [PMID: 21293299 DOI: 10.1097/nen.0b013e31820c6878] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild traumatic brain injury (mTBI) leads to long-term cognitive and emotional difficulties and behavioral disturbances, but the diagnosis and treatment of mTBI have historically been hampered by a lack of evidence-based correlates of these clinical manifestations. Unlike moderate and severe TBI, mTBI does not show significant tissue lesions or cavities in the cortex. Moreover, neuroimaging by magnetic resonance imaging or computed tomography is usually negative, suggesting that the damage is beyond the resolution of current structure-based scanning technologies. Therefore, we investigated the morphologies of spared neurons in the mouse cortex after mTBI in a controlled cortical impact injury model. Our results indicate that, although mTBI caused only a mild extent of cell death, it led to extensive dendrite degeneration and synapse reduction in the cortex in this model. This study sheds light on the neuropathologic consequences of mTBI in humans and suggests that neurodegeneration may be a novel target for developing diagnostic methods and therapeutic approaches for mTBI.
Collapse
|
11
|
Abstract
Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interactions using multiple fluorescent proteins in the same mouse, and the cell cycle in real time and in the whole animal, and they can be used to perform deep tissue imaging in the whole animal, follow cell lineage during development and disease, and isolate large quantities of a pure cell type directly from organs. These novel transgenic mice and their applications provide the means for studying of molecular and biochemical events in the whole animal that was previously limited to cell cultures. In conclusion, transgenic mice are not just for generating knockouts.
Collapse
Affiliation(s)
- R Lance Miller
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107:11-22. [PMID: 19926406 PMCID: PMC3947580 DOI: 10.1016/j.drugalcdep.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 09/21/2009] [Accepted: 10/15/2009] [Indexed: 01/08/2023]
Abstract
The number of discovery proteomic studies of drug abuse has begun to increase in recent years, facilitated by the adoption of new techniques such as 2D-DIGE and iTRAQ. For these new tools to provide the greatest insight into the neurobiology of addiction, however, it is important that the addiction field has a clear understanding of the strengths, limitations, and drug abuse-specific research factors of neuroproteomic studies. This review outlines approaches for improving animal models, protein sample quality and stability, proteome fractionation, data analysis, and data sharing to maximize the insights gained from neuroproteomic studies of drug abuse. For both the behavioral researcher interested in what proteomic study results mean, and for biochemists joining the drug abuse research field, a careful consideration of these factors is needed. Similar to genomic, transcriptomic, and epigenetic methods, appropriate use of new proteomic technologies offers the potential to provide a novel and global view of the neurobiological changes underlying drug addiction. Proteomic tools may be an enabling technology to identify key proteins involved in drug abuse behaviors, with the ultimate goal of understanding the etiology of drug abuse and identifying targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Melinda E. Lull
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M. Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA, Functional Genomics Facility, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Pharmacology, R130, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA. Tel.: +1 717 531 8285; fax: +1 717 531 0419. (K.E. Vrana)
| |
Collapse
|
13
|
Gao X, Enikolopov G, Chen J. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol 2009; 219:516-23. [PMID: 19615997 DOI: 10.1016/j.expneurol.2009.07.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/16/2009] [Accepted: 07/06/2009] [Indexed: 12/13/2022]
Abstract
Recent evidence shows that traumatic brain injury (TBI) regulates proliferation of neural stem/progenitor cells in the dentate gyrus (DG) of adult hippocampus. There are distinct classes of neural stem/progenitor cells in the adult DG, including quiescent neural progenitors (QNPs), which carry stem cell properties, and their progeny, amplifying neural progenitors (ANPs). The response of each class of progenitors to TBI is not clear. We here used a transgenic reporter Nestin-GFP mouse line, in which QNP and ANP cells are easily visualized and quantified, to determine the targets of the TBI in the DG. We examined changes in proliferation of QNPs and ANPs in the acute phase following TBI and found that QNPs were induced by TBI insult to enter the cell cycle whereas proliferation of ANPs was not significantly affected. These results indicate that different subtypes of neural stem/progenitor cells respond differently to TBI insult. Stem cell activation by the TBI may reflect the induction of innate repair and plasticity mechanisms by the injured brain.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|