1
|
Zhong W, Yuan Y, Gu X, Kim SIY, Chin R, Loye M, Dix TA, Wei L, Yu SP. Neuropsychological Deficits Chronically Developed after Focal Ischemic Stroke and Beneficial Effects of Pharmacological Hypothermia in the Mouse. Aging Dis 2020; 11:1-16. [PMID: 32010477 PMCID: PMC6961763 DOI: 10.14336/ad.2019.0507] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of human death and disability, with around 30% of stroke patients develop neuropsychological/neuropsychiatric symptoms, such as post-stroke depression (PSD). Basic and translational research on post-stroke psychological disorders is limited. In a focal ischemic stroke mouse model with selective damage to the sensorimotor cortex, sensorimotor deficits develop soon after stroke and spontaneous recovery is observed in 2-4 weeks. We identified that mice subjected to a focal ischemic insult gradually developed depression/anxiety like behaviors 4 to 8 weeks after stroke. Psychological/psychiatric disorders were revealed in multiple behavioral examinations, including the forced swim, tail suspension, sucrose preference, and open field tests. Altered neuronal plasticity such as suppressed long-term potentiation (LTP), reduced BDNF and oxytocin signaling, and disturbed dopamine synthesis/uptake were detected in the prefrontal cortex (PFC) during the chronic phase after stroke. Pharmacological hypothermia induced by the neurotensin receptor 1 (NTR1) agonist HPI-363 was applied as an acute treatment after stroke. A six-hr hypothermia treatment applied 45 min after stroke prevented depression and anxiety like behaviors examined at 6 weeks after stroke, as well as restored BDNF expression and oxytocin signaling. Additionally, hypothermia induced by physical cooling also showed an anti-depression and anti-anxiety effect. The data suggested a delayed beneficial effect of acute hypothermia treatment on chronically developed post-stroke neuropsychological disorders, associated with regulation of synaptic plasticity, neurotrophic factors, dopaminergic activity, and oxytocin signaling in the PFC.
Collapse
Affiliation(s)
- Weiwei Zhong
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Yan Yuan
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,3College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohuan Gu
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Samuel In-Young Kim
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ryan Chin
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Modupe Loye
- 2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Thomas A Dix
- 4Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ling Wei
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- 1Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.,2Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
2
|
Lee JH, Zhang J, Yu SP. Neuroprotective mechanisms and translational potential of therapeutic hypothermia in the treatment of ischemic stroke. Neural Regen Res 2017; 12:341-350. [PMID: 28469636 PMCID: PMC5399699 DOI: 10.4103/1673-5374.202915] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is a leading cause of disability and death, yet effective treatments for acute stroke has been very limited. Thus far, tissue plasminogen activator has been the only FDA-approved drug for thrombolytic treatment of ischemic stroke patients, yet its application is only applicable to less than 4–5% of stroke patients due to the narrow therapeutic window (< 4.5 hours after the onset of stroke) and the high risk of hemorrhagic transformation. Emerging evidence from basic and clinical studies has shown that therapeutic hypothermia, also known as targeted temperature management, can be a promising therapy for patients with different types of stroke. Moreover, the success in animal models using pharmacologically induced hypothermia (PIH) has gained increasing momentum for clinical translation of hypothermic therapy. This review provides an updated overview of the mechanisms and protective effects of therapeutic hypothermia, as well as the recent development and findings behind PIH treatment. It is expected that a safe and effective hypothermic therapy has a high translational potential for clinical treatment of patients with stroke and other CNS injuries.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Veteran's Affair Medical Center, Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA, USA
| |
Collapse
|
3
|
Lee JH, Wei ZZ, Cao W, Won S, Gu X, Winter M, Dix TA, Wei L, Yu SP. Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol Dis 2016; 96:248-260. [PMID: 27659107 PMCID: PMC5161414 DOI: 10.1016/j.nbd.2016.09.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6h) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16h after OGD. Finally, TH improved functional recovery at 1, 3, and 7days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization, migration and indicates that the anti-inflammatory effect is an important mechanism underlying the brain protective effects of a TH therapy.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Soonmi Won
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Megan Winter
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Thomas A Dix
- JT Pharmaceuticals, Mt. Pleasant, SC 29464, United States; Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29401, United States
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| |
Collapse
|
4
|
Dresden SM, O'Connor LM, Pearce CG, Courtney DM, Powell ES. National Trends in the Use of Postcardiac Arrest Therapeutic Hypothermia and Hospital Factors Influencing Its Use. Ther Hypothermia Temp Manag 2015; 5:48-54. [DOI: 10.1089/ther.2014.0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Scott M. Dresden
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Healthcare Studies, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lanty M. O'Connor
- Center for Education in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Charles G. Pearce
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - D. Mark Courtney
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emilie S. Powell
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Healthcare Studies, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
5
|
Gregersen M, Lee DH, Gabatto P, Bickler PE. Limitations of Mild, Moderate, and Profound Hypothermia in Protecting Developing Hippocampal Neurons After Simulated Ischemia. Ther Hypothermia Temp Manag 2013; 3:178-188. [PMID: 24380031 PMCID: PMC3868300 DOI: 10.1089/ther.2013.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mild hypothermia (33°C-34°C) after cerebral ischemia in intact animals or ischemia-like conditions in vitro reduces neuron death. However, it is now clear that more profound hypothermia or delayed hypothermia may not provide significant protection. To further define the limitations of hypothermia after cerebral ischemia, we used hippocampal slice cultures to examine the effects of various degrees, durations, and delays of hypothermia on neuron death after an ischemia-like insult. Organotypic cultures of the hippocampus from 7- to 8 day-old rat pups were cooled to 32°C, 23°C, 17°C, or 4°C immediately or after a 2-4 hour delay from an injurious insult of oxygen and glucose deprivation (OGD). Cell death in CA1, CA3 and dentate regions of the cultures was assessed 24 hours later with SYTOX® or propidium iodide, both of which are fluorescent markers labeling damaged cells. OGD caused extensive cell death in CA1, CA3, and dentate regions of the hippocampal cultures. Hypothermia (32°C, 23°C and 17°C) for 4-6 hours immediately after OGD was protective at 24 hours, but when hypothermia was applied for longer periods or delayed after OGD, no protection or increased death was seen. Ultra-profound hypothermia (4°C) increased cell death in all cell areas of the hippocampus even when after a milder insult of only hypoxia. In an in vitro model of recovery after an ischemia-like insult, mild to profound hypothermia is protective only when applied without delay and for limited periods of time (6-8 hours). Longer durations of hypothermia, or delayed application of the hypothermia can increase neuron death. These findings may have implications for clinical uses of therapeutic hypothermia after hypoxic or ischemic insults, and suggest that further work is needed to elucidate the limitations of hypothermia as a protective treatment after ischemic stress.
Collapse
Affiliation(s)
- Maren Gregersen
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco , San Francisco, California
| | - Deok Hee Lee
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco , San Francisco, California
| | - Pablo Gabatto
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco , San Francisco, California
| | - Philip E Bickler
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco , San Francisco, California
| |
Collapse
|
6
|
Wass CT, White RD, Schroeder DR, Mirzoyev SA, Warfield KT. Therapeutic hypothermia for out-of-hospital ventricular fibrillation survivors: a feasibility study comparing time to achieve target core temperature using conventional conductive cooling versus combined conductive plus pericranial convective cooling. J Cardiothorac Vasc Anesth 2013; 27:288-91. [PMID: 23507015 DOI: 10.1053/j.jvca.2012.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Mild to moderate therapeutic hypothermia (TH) has been shown to improve survival and neurologic outcome, as well as to reduce healthcare costs in patients resuscitated from out-of-hospital cardiac arrest (OHCA) with ventricular fibrillation. Accordingly, the American Heart Association has categorized this as a Class IB intervention. The therapeutic window for initiating TH is narrow, and thus, achieving target temperature expeditiously is of paramount importance to improve postresuscitative neurologic outcome. The present investigation is a feasibility study designed to assess the practicality and efficacy of including pericranial cooling in our postresuscitative TH protocol. Specifically, we compared time required to achieve target temperature (33°C) using our present standard of TH care (ie, conductive body cooling, conventional TH group) versus combined conductive body cooling plus convective (forced-air) head and neck cooling (combined TH group). DESIGN Adult patients who experienced OHCA were included in the study provided TH could be initiated within 4 hours of resuscitation from ventricular fibrillation. Patients enrolled in both groups were cooled using the servo-controlled Arctic Sun conductive cooling system (Medivance, Inc, Louisville, CO). However, patients enrolled in the combined TH group also received forced-air pericranial cooling with an ambient temperature of approximately 13°C. In all cases, the target core (bladder) temperature was 33°C. The primary endpoint (ie, time required to achieve a core temperature of 33°C) was analyzed as a continuous variable and compared between groups using the rank sum test, whereas categorical variables were compared between groups using the chi-square test. SETTING Cardiac intensive care unit at a major tertiary care teaching center in Rochester, MN. PARTICIPANTS Adult patients who experienced OHCA were included in the study. INTERVENTIONS Patients enrolled in both groups were cooled using the servo-controlled Arctic Sun conductive cooling system (Medivance, Inc, Louisville, CO). However, patients enrolled in the combined TH group also received forced-air pericranial cooling with an ambient temperature of approximately 13°C. MEASUREMENTS Only patients admitted after January 1, 2008, were included in the analysis (28 combined TH group patients v 55 conventional TH group patients). Demographic data were similar between groups. When compared with the conventional TH group, time to achieve 33°C was significantly shorter in the combined TH group: 207 minutes (173 and 286 min) [median (25th, 75th percentile)] v 181 minutes (63 and 247 min). The magnitude and frequency of hypothermia-mediated physiologic perturbations (eg, hypokalemia) were similar for both groups. CONCLUSIONS Both TH cooling paradigms effectively achieved 33°C; however, the combined TH technique significantly decreased the time required to achieve the target temperature. Although not evaluated in this study, such an effect may further improve postresuscitative neurologic outcomes beyond that previously described using conventional TH. Although a positive result (ie, abbreviated time taken to achieve target temperature) was observed, we maintain guarded enthusiasm for this evolving adjunctive technique until corroborative outcome-based evidence is available.
Collapse
Affiliation(s)
- C Thomas Wass
- Department of Anesthesiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | |
Collapse
|
7
|
Blood pH is a useful indicator for initiation of therapeutic hypothermia in the early phase of resuscitation after comatose cardiac arrest: a retrospective study. J Emerg Med 2013; 45:57-64. [PMID: 23623286 DOI: 10.1016/j.jemermed.2012.11.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 07/10/2012] [Accepted: 11/04/2012] [Indexed: 10/26/2022]
Abstract
BACKGROUND Therapeutic hypothermia (TH) is one of the key treatments after cardiac arrest (CA). Selection of post-CA patients for TH remains problematic, as there are no clinically validated tools to determine who might benefit from the therapy. OBJECTIVE The aim of this study was to investigate retrospectively whether laboratory findings or other patient data obtained during the early phase of hospital admission could be correlated with neurological outcome after TH in comatose survivors of CA. METHODS Medical charts of witnessed CA patients admitted between June 2003 and July 2009 who were treated with TH were reviewed retrospectively. The subjects were grouped based on their cerebral performance category (CPC) 6 months after CA, as either good recovery (GR) for CPC 1-2 or non-good recovery (non-GR) for CPC 3-5. The following well-known determinants of outcome obtained during the early phase of hospital admission were evaluated: age, gender, body mass index, cardiac origin, presence of ventricular fibrillation (VF), time from collapse to cardiopulmonary resuscitation, time from collapse to return of spontaneous circulation, body temperature, arterial blood gases, and blood test results. RESULTS We analyzed a total of 50 (25 GR and 25 non-GR) patients. Multivariate logistic analysis showed that initial heart rhythm and pH levels were significantly higher in the GR group than in the non-GR group (ventricular tachycardia/VF rate: p = 0.055, 95% confidence interval [CI] 0.768-84.272, odds ratio [OR] 8.047; pH: 7.155 ± 0.139 vs. 6.895 ± 0.100, respectively, p < 0.001, 95% CI 1.838-25.827; OR 6.89). CONCLUSION These results imply that in addition to initial heart rhythm, pH level may be a good candidate for neurological outcome predictor even though previous research has found no correlation between initial pH value and neurological outcome.
Collapse
|
8
|
Carlson DW, Pearson RD, Haggerty PF, Strilka RJ, Abella BS, Gourley PE. Commotio cordis, therapeutic hypothermia, and evacuation from a United States military base in Iraq. J Emerg Med 2012; 44:620-4. [PMID: 23079150 DOI: 10.1016/j.jemermed.2012.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/12/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Therapeutic hypothermia (TH) has been demonstrated to improve clinical outcomes after out-of-hospital ventricular fibrillation (VF) cardiac arrest. It remains unclear if TH can be safely and effectively used in the setting of traumatic arrest. Furthermore, the use of TH methods in the pre-hospital and transport environments remain poorly established and a domain of active investigation. OBJECTIVES To describe a case of successful TH utilization after blunt trauma with commotio cordis and pulmonary contusion, and to describe the continuation of TH during international fixed-wing aeromedical transport. CASE REPORT A 33-year-old active duty soldier suffered blunt chest trauma and immediate VF arrest. He was successfully resuscitated with cardiopulmonary resuscitation and defibrillation attempts. Given his ensuing comatose post-arrest state, he was therapeutically cooled and subsequently evacuated from Iraq to Germany, with cooling maintenance established in flight without the availability of training or commercial cooling equipment. The patient exhibited an eventual excellent neurologic recovery. To utilize TH for this patient, military physicians with limited local resources employed a telemedical approach to obtain a hypothermia protocol to develop a successful treatment plan. CONCLUSIONS The patient's successful resuscitation suggests that care should not be withheld for blunt trauma patients without vital signs in the field if VF is present, until the differential diagnosis of commotio cordis has been considered.
Collapse
Affiliation(s)
- Daniel W Carlson
- Cardiology Service, Walter Reed Army Medical Center, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
9
|
Malek M, Duszczyk M, Zyszkowski M, Ziembowicz A, Salinska E. Hyperbaric oxygen and hyperbaric air treatment result in comparable neuronal death reduction and improved behavioral outcome after transient forebrain ischemia in the gerbil. Exp Brain Res 2012; 224:1-14. [PMID: 23283415 PMCID: PMC3535395 DOI: 10.1007/s00221-012-3283-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022]
Abstract
Anoxic brain injury resulting from cardiac arrest is responsible for approximately two-thirds of deaths. Recent evidence suggests that increased oxygen delivered to the brain after cardiac arrest may be an important factor in preventing neuronal damage, resulting in an interest in hyperbaric oxygen (HBO) therapy. Interestingly, increased oxygen supply may be also reached by application of normobaric oxygen (NBO) or hyperbaric air (HBA). However, previous research also showed that the beneficial effect of hyperbaric treatment may not directly result from increased oxygen supply, leading to the conclusion that the mechanism of hyperbaric prevention of brain damage is not well understood. The aim of our study was to compare the effects of HBO, HBA and NBO treatment on gerbil brain condition after transient forebrain ischemia, serving as a model of cardiac arrest. Thereby, we investigated the effects of repetitive HBO, HBA and NBO treatment on hippocampal CA1 neuronal survival, brain temperature and gerbils behavior (the nest building), depending on the time of initiation of the therapy (1, 3 and 6 h after ischemia). HBO and HBA applied 1, 3 and 6 h after ischemia significantly increased neuronal survival and behavioral performance and abolished the ischemia-evoked brain temperature increase. NBO treatment was most effective when applied 1 h after ischemia; later application had a weak or no protective effect. The results show that HBO and HBA applied between 1 and 6 h after ischemia prevent ischemia-evoked neuronal damage, which may be due to the inhibition of brain temperature increase, as a result of the applied rise in ambient pressure, and just not due to the oxygen per se. This perspective is supported by the finding that NBO treatment was less effective than HBO or HBA therapy. The results presented in this paper may pave the way for future experimental studies dealing with pressure and temperature regulation.
Collapse
Affiliation(s)
- Michal Malek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Malgorzata Duszczyk
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Marcin Zyszkowski
- Department of Anesthesiology and Intensive Care, Military Institute of Medicine, Warsaw, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int J Mol Sci 2011; 12:6469-501. [PMID: 22072900 PMCID: PMC3210991 DOI: 10.3390/ijms12106469] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing “omics”-based, diagnostic tests to help influence therapies.
Collapse
|
11
|
Leary M, Fried DA, Gaieski DF, Merchant RM, Fuchs BD, Kolansky DM, Edelson DP, Abella BS. Neurologic prognostication and bispectral index monitoring after resuscitation from cardiac arrest. Resuscitation 2010; 81:1133-7. [DOI: 10.1016/j.resuscitation.2010.04.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/13/2010] [Accepted: 04/23/2010] [Indexed: 12/11/2022]
|
12
|
Therapeutic hypothermia: a case study. J Perianesth Nurs 2010; 25:141-5. [PMID: 20511084 DOI: 10.1016/j.jopan.2010.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/25/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022]
Abstract
Approximately 300,000 people experience sudden cardiac arrest (SCA) per year. The percentage of people who survive to discharge from the hospital is a dismal 10% to 25%. After SCA and the administration of cardiopulmonary resuscitation, these individuals can suffer what is known as "post resuscitation syndrome." This syndrome includes post-cardiac arrest brain injury, a cycle of cerebral edema and cell death that can lead to permanent neurological damage. In two landmark studies, therapeutic hypothermia (TH) was found to improve the chances of being discharged from the hospital post SCA by significant percentages. Despite endorsements, from the American Heart Association and other professional organizations, TH is not a well-known intervention. There are many reasons why this may be true. Despite its proven usefulness, TH does have some side effects that are best handled in the setting of intensive care units. This article describes a case of therapeutic hypothermia and its implications for perianesthesia nursing care.
Collapse
|
13
|
Zhang H. Does anesthetic provide similar neuroprotection to therapeutic hypothermia after cardiac arrest? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:137. [PMID: 20398330 PMCID: PMC2887150 DOI: 10.1186/cc8923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the previous issue of Critical Care, Meybohm and colleagues provide evidence to support hypothermia as a kind of therapeutic option for patients suffering cardiac arrest. Although anesthetics had been used to induce hypothermia, sevoflurane post-conditioning fails to confer additional anti-inflammatory effects after cardiac arrest. Further research in this area is warranted.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|