1
|
Lee J, Hahm SC, Yoo H, Yoon YW, Kim J. Protection of the Vascular System by Polyethylene Glycol Reduces Secondary Injury Following Spinal Cord Injury in Rats. Tissue Eng Regen Med 2023; 20:1191-1204. [PMID: 37698812 PMCID: PMC10646076 DOI: 10.1007/s13770-023-00566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Polyethylene glycol (PEG) is a hydrophilic polymer, which has been known to have a neuroprotective effect by sealing the ruptured cell membrane, but PEG effects on the vascular systems and its underlying mechanisms remain unclear. Here, we showed the neuroprotective effect of PEG by preventing damage to the vascular system. METHODS A spinal contusion was made at the T11 segment in male Sprague-Dawley rats. PEG was injected into the subdural space immediately after SCI. Vascular permeability was assessed for 24 h after SCI using intraperitoneally injected Evans blue dye. Junctional complexes were stained with CD31 and ZO-1. Infarct size was analyzed using triphenyltetrazolium chloride, and blood vessels were counted in the epicenter. Behavioral tests for motor and sensory function were performed for 6 weeks. And then the tissue-sparing area was assessed. RESULTS Immediately applied PEG significantly reduced the vascular permeability at 6, 12, and 24 h after SCI when it compared to saline, and infarct size was also reduced at 0, 6, and 24 h after SCI. In addition, a great number of blood vessels were observed in PEG group at 6 and 24 h after SCI compared to those of the saline group. The PEG group also showed a significant improvement in motor function. And tissue-sparing areas in the PEG were greater than those of the saline group. CONCLUSION The present results provide preclinical evidence for the neuroprotective effects of PEG as a promising therapeutic agent for reducing secondary injury following SCI through vascular protection.
Collapse
Affiliation(s)
- Jinseung Lee
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea
- Department of Physical Therapy, Undergraduate School, Korea University College of Health Science, Anam-dong, Sungbuk-gu, Seoul, 02841, Korea
| | - Suk-Chan Hahm
- Graduate School of Integrative Medicine, CHA University, Seongnam, 13488, Korea
| | - Heayeon Yoo
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea
| | - Young Wook Yoon
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea.
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea.
- Department of Physical Therapy, Undergraduate School, Korea University College of Health Science, Anam-dong, Sungbuk-gu, Seoul, 02841, Korea.
- Department of Health and Environmental Science, Undergraduate School, Korea University College of Health Science, Seoul, 02841, Korea.
| |
Collapse
|
2
|
Rogers EA, Beauclair T, Thyen A, Shi R. Utilizing novel TBI-on-a-chip device to link physical impacts to neurodegeneration and decipher primary and secondary injury mechanisms. Sci Rep 2022; 12:11838. [PMID: 35821510 PMCID: PMC9276772 DOI: 10.1038/s41598-022-14937-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
While clinical observations have confirmed a link between the development of neurodegenerative diseases and traumatic brain injuries (TBI), there are currently no treatments available and the underlying mechanisms remain elusive. In response, we have developed an in vitro pendulum trauma model capable of imparting rapid acceleration injuries to neuronal networks grown on microelectrode arrays within a clinically relevant range of g forces, with real-time electrophysiological and morphological monitoring. By coupling a primary physical insult with the quantification of post-impact levels of known biochemical pathological markers, we demonstrate the capability of our system to delineate and investigate the primary and secondary injury mechanisms leading to post-impact neurodegeneration. Specifically, impact experiments reveal significant, force-dependent increases in the pro-inflammatory, oxidative stress marker acrolein at 24 h post-impact. The elevation of acrolein was augmented by escalating g force exposures (30-200 g), increasing the number of rapidly repeated impacts (4-6 s interval, 3, 5 and 10×), and by exposing impacted cells to 40 mM ethanol, a known comorbidity of TBI. The elevated levels of acrolein following multiple impacts could be reduced by increasing time-intervals between repeated hits. In addition, we show that conditioned media from maximally-impacted cultures can cause cellular acrolein elevation when introduced to non-impact, control networks, further solidifying acrolein's role as a diffusive-factor in post-TBI secondary injuries. Finally, morphological data reveals post-impact acrolein generation to be primarily confined to soma, with some emergence in cellular processes. In conclusion, this novel technology provides accurate, physical insults with a unique level of structural and temporal resolution, facilitating the investigation of post-TBI neurodegeneration.
Collapse
Affiliation(s)
- Edmond A Rogers
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Timothy Beauclair
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew Thyen
- Indiana University School of Medicine, Indianapolis, IN, 46033, USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
4
|
Zhang C, Wang A, Zhang G, Rong W, Wu C, Huo X. Effects of the combination therapy of electric field stimulation and polyethylene glycol in the ex vivo spinal cord of female rats after compression. J Neurosci Res 2021; 99:1850-1863. [PMID: 33847010 DOI: 10.1002/jnr.24839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023]
Abstract
The application of electric field stimulation (EFS) can reduce the cation influx after spinal cord injury. However, regenerated cation influx and reestablished injury potential are observed after EFS. Polyethylene glycol (PEG) is popular as an effective cell membrane fusion agent. This study aims to determine the effects of the combination therapy of EFS and PEG in the ex vivo spinal cord after compression. The ex vivo spinal cords of female rats with compression injury were incubated in a double sucrose gap recording chamber (DSGRC) and randomly divided into the following four groups: (1) compression group: compression only, (2) EFS group: EFS for 15 min, (3) PEG group: PEG treatment for 4 min, and (4) EFS + PEG group: EFS for 15 min and PEG treatment for 4 min. The hematoxylin-eosin staining was performed to measure the necrotic area of the spinal cords. The gap potential was detected, and the area under the curve of the gap potential was calculated. The intracellular cation concentration, membrane permeability, and compound action potential were measured and quantified. Results revealed no significant difference in the necrotic areas among different groups, and the compression model of the ex vivo spinal cord in the DSGRC had high consistency and stability. The combination therapy could attenuate cation inflow, promote cell membrane restoration, and promote the functional recovery of the spinal cord conduction after compression in ex vivo spinal cords.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Aihua Wang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Rong
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
3D bioprinting applications in neural tissue engineering for spinal cord injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110741. [PMID: 32204049 DOI: 10.1016/j.msec.2020.110741] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.
Collapse
|
6
|
Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 2019; 14:1352-1363. [PMID: 30964053 PMCID: PMC6524500 DOI: 10.4103/1673-5374.253512] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.
Collapse
Affiliation(s)
- Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Ren X, Kim CY, Canavero S. Bridging the gap: Spinal cord fusion as a treatment of chronic spinal cord injury. Surg Neurol Int 2019; 10:51. [PMID: 31528389 PMCID: PMC6743693 DOI: 10.25259/sni-19-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of animal experimentation, human translation with cell grafts, conduits, and other strategies has failed to cure patients with chronic spinal cord injury (SCI). Recent data show that motor deficits due to spinal cord transection in animal models can be reversed by local application of fusogens, such as Polyethylene glycol (PEG). Results proved superior at short term over all other treatments deployed in animal studies, opening the way to human trials. In particular, removal of the injured spinal cord segment followed by PEG fusion of the two ends along with vertebral osteotomy to shorten the spine holds the promise for a cure in many cases.
Collapse
Affiliation(s)
- Xiaoping Ren
- Hand and Microsurgery Center, Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Nangang, Harbin, China
- Heilongjiang Medical Science Institute, Harbin Medical University, Nangang, Harbin, China
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Sergio Canavero
- HEAVEN-GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|
8
|
Quintá HR, Barrantes FJ. Damage and repair of the axolemmal membrane: From neural development to axonal trauma and restoration. CURRENT TOPICS IN MEMBRANES 2019; 84:169-185. [DOI: 10.1016/bs.ctm.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Aghaie T, Jazayeri MH, Manian M, Khani L, Erfani M, Rezayi M, Ferns GA, Avan A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J Cell Biochem 2018; 120:2749-2755. [DOI: 10.1002/jcb.27415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tayebe Aghaie
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Mir Hadi Jazayeri
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
- Immunology Research Center, Iran University of Medical Sciences Tehran Iran
| | - Mostafa Manian
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - leila Khani
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Marjan Erfani
- Department of Neurology Ghaem Hospital, Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Rezayi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer Brighton UK
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
10
|
Lu X, Perera TH, Aria AB, Callahan LAS. Polyethylene glycol in spinal cord injury repair: a critical review. J Exp Pharmacol 2018; 10:37-49. [PMID: 30100766 PMCID: PMC6067622 DOI: 10.2147/jep.s148944] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyethylene glycol (PEG) is a synthetic biocompatible polymer with many useful properties for developing therapeutics to treat spinal cord injury. Direct application of PEG as a fusogen to the injury site can repair cell membranes, mitigate oxidative stress, and promote axonal regeneration to restore motor function. PEG can be covalently or noncovalently conjugated to proteins, peptides, and nanoparticles to limit their clearance by the reticuloendothelial system, reduce their immunogenicity, and facilitate crossing the blood-brain barrier. Cross-linking PEG produces hydrogels that can act as delivery vehicles for bioactive molecules including growth factors and cells such as bone marrow stromal cells, which can modulate the inflammatory response and support neural tissue regeneration. PEG hydrogels can be cross-linked in vitro or delivered as an injectable formulation that can gel in situ at the site of injury. Chemical and mechanical properties of PEG hydrogels are tunable and must be optimized for creating the most favorable delivery environment. Peptides mimicking extracellular matrix protein such as laminin and n-cadherin can be incorporated into PEG hydrogels to promote neural differentiation and axonal extensions. Different hydrogel cross-linking densities and stiffness will also affect the differentiation process. PEG hydrogels with a gradient of peptide concentrations or Young's modulus have been developed to systematically study these factors. This review will describe these and other recent advancements of PEG in the field of spinal cord injury in greater detail.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - T Hiran Perera
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Alexander B Aria
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Laura A Smith Callahan
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| |
Collapse
|
11
|
Zhang G, Rodemer W, Lee T, Hu J, Selzer ME. The Effect of Axon Resealing on Retrograde Neuronal Death after Spinal Cord Injury in Lamprey. Brain Sci 2018; 8:E65. [PMID: 29661988 PMCID: PMC5924401 DOI: 10.3390/brainsci8040065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Failure of axon regeneration in the central nervous system (CNS) of mammals is due to both extrinsic inhibitory factors and to neuron-intrinsic factors. The importance of intrinsic factors is illustrated in the sea lamprey by the 18 pairs of large, individually identified reticulospinal (RS) neurons, whose axons are located in the same spinal cord tracts but vary greatly in their ability to regenerate after spinal cord transection (TX). The neurons that are bad regenerators also undergo very delayed apoptosis, signaled early by activation of caspases. We noticed that the neurons with a low probability of axon regeneration tend to be larger than the good regenerators. We postulate that the poorly regenerating larger neurons have larger caliber axons, which reseal more slowly, allowing more prolonged entry of toxic signals (e.g., Ca++) into the axon at the injury site. To test this hypothesis, we used a dye-exclusion assay, applying membrane-impermeable dyes to the cut ends of spinal cords at progressively longer post-TX intervals. Axons belonging to the very small neurons (not individually identified) of the medial inferior RS nucleus resealed within 15 min post-TX. Almost 75% of axons belonging to the medium-sized identified RS neurons resealed within 3 h. At this time, only 36% of the largest axons had resealed, often taking more than 24 h to exclude the dye. There was an inverse relationship between an RS neuron's size and the probability that its axon would regenerate (r = -0.92) and that the neuron would undergo delayed apoptosis, as indicated by staining with a fluorescently labeled inhibitor of caspases (FLICA; r = 0.73). The artificial acceleration of resealing with polyethylene glycol (PEG) reduced retrograde neuronal apoptosis by 69.5% at 2 weeks after spinal cord injury (SCI), suggesting that axon resealing is a critical determinant of cell survival. Ca++-free Ringer's solution with EGTA prolonged the sealing time and increased apoptotic signaling, suggesting that factors other than Ca++ diffusion into the injured tip contribute to retrograde death signaling. A longer distance of the lesion from the cell body reduced apoptotic signaling independent of the axon sealing time.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Taemin Lee
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Jianli Hu
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
- Department of Neurology, the Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
12
|
Wilems TS, Lu X, Kurosu YE, Khan Z, Lim HJ, Smith Callahan LA. Effects of free radical initiators on polyethylene glycol dimethacrylate hydrogel properties and biocompatibility. J Biomed Mater Res A 2017; 105:3059-3068. [PMID: 28744952 DOI: 10.1002/jbm.a.36160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Many studies have utilized Irgacure 2959 photopolymerized poly(ethylene glycol) (PEG) hydrogels for tissue engineering application development. Due to the limited penetration of ultraviolet light through tissue, Irgacure 2959 polymerized hydrogels are not suitable for use in tissues where material injection is desirable, such as the spinal cord. To address this, several free radical initiators (thermal initiator VA044, ammonium persulfate (APS)/TEMED reduction-oxidation reaction, and Fenton chemistry) are evaluated for their effects on the material and mechanical properties of PEG hydrogels compared with Irgacure 2959. To emulate the effects of endogenous thiols on in vivo polymerization, the effects of chain transfer agent (CTA) dithiothreitol on gelation rates, material properties, Young's and shear modulus, are examined. Mouse embryonic stem cells and human induced pluripotent stem cell derived neural stem cells were used to investigate the cytocompatibility of each polymerization. VA044 and Fenton chemistry polymerization of PEG hydrogels both had gelation rates and mechanical properties that were highly susceptible to changes in CTA concentration and showed poor cytocompatibility. APS/TEMED polymerized hydrogels maintained consistent gelation rates and mechanical properties at high CTA concentration and had a similar cytocompatibility as Irgacure 2959 when cells were encapsulated within the PEG hydrogels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3059-3068, 2017.
Collapse
Affiliation(s)
- Thomas S Wilems
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Xi Lu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Yuki E Kurosu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Zara Khan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Laura A Smith Callahan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,The Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| |
Collapse
|
13
|
Leung G, Tully M, Tang J, Wu S, Shi R. Elevated axonal membrane permeability and its correlation with motor deficits in an animal model of multiple sclerosis. Transl Neurodegener 2017; 6:5. [PMID: 28265351 PMCID: PMC5331741 DOI: 10.1186/s40035-017-0075-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/16/2017] [Indexed: 12/29/2022] Open
Abstract
Background It is increasingly clear that in addition to myelin disruption, axonal degeneration may also represent a key pathology in multiple sclerosis (MS). Hence, elucidating the mechanisms of axonal degeneration may not only enhance our understanding of the overall MS pathology, but also elucidate additional therapeutic targets. The objective of this study is assess the degree of axonal membrane disruption and its significance in motor deficits in EAE mice. Methods Experimental Autoimmune Encephalomyelitis was induced in mice by subcutaneous injection of myelin oligodendrocyte glycoprotein/complete Freud’s adjuvant emulsion, followed by two intraperitoneal injections of pertussis toxin. Behavioral assessment was performed using a 5-point scale. Horseradish Peroxidase Exclusion test was used to quantify the disruption of axonal membrane. Polyethylene glycol was prepared as a 30% (w/v) solution in phosphate buffered saline and injected intraperitoneally. Results We have found evidence of axonal membrane disruption in EAE mice when symptoms peak and to a lesser degree, in the pre-symptomatic stage of EAE mice. Furthermore, polyethylene glycol (PEG), a known membrane fusogen, significantly reduces axonal membrane disruption in EAE mice. Such PEG-mediated membrane repair was accompanied by significant amelioration of behavioral deficits, including a delay in the emergence of motor deficits, a delay of the emergence of peak symptom, and a reduction in the severity of peak symptom. Conclusions The current study is the first indication that axonal membrane disruption may be an important part of the pathology in EAE mice and may underlies behavioral deficits. Our study also presents the initial observation that PEG may be a therapeutic agent that can repair axolemma, arrest axonal degeneration and reduce motor deficits in EAE mice.
Collapse
Affiliation(s)
- Gary Leung
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907 USA
| | - Melissa Tully
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA.,MSTP program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jonathan Tang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907 USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907 USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
14
|
Bamba R, Riley DC, Boyer RB, Pollins AC, Shack RB, Thayer WP. Polyethylene glycol restores axonal conduction after corpus callosum transection. Neural Regen Res 2017; 12:757-760. [PMID: 28616031 PMCID: PMC5461612 DOI: 10.4103/1673-5374.206645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.
Collapse
Affiliation(s)
- Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Surgery, Georgetown University, Washington, DC, USA
| | - D Colton Riley
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Georgetown University School of Medicine, Washington, DC, USA
| | - Richard B Boyer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Bruce Shack
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Sabbieti MG, Dubbini A, Laus F, Paggi E, Marchegiani A, Capitani M, Marchetti L, Dini F, Vermonden T, Di Martino P, Agas D, Censi R. In vivo biocompatibility of p(HPMAm-lac)-PEG hydrogels hybridized with hyaluronan. J Tissue Eng Regen Med 2016; 11:3056-3067. [PMID: 27778485 DOI: 10.1002/term.2207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/05/2016] [Accepted: 03/27/2016] [Indexed: 12/17/2022]
Abstract
The present study reports on the biocompatibility in vivo after intramuscular and subcutaneous administration in Balb/c mice of vinyl sulphone bearing p(HPMAm-lac1-2)-PEG-p(HPMAm-lac1-2)/thiolated hyaluronic acid hydrogels, designed as novel injectable biomaterials for potential application in the fields of tissue engineering and regenerative medicine. Ultrasonography, used as a method to study hydrogel gelation and residence time in vivo, showed that, upon injection, the biomaterial efficiently formed a hydrogel by simultaneous thermal gelation and Michael Addition cross-linking forming a viscoelastic spherical depot at the injection site. The residence time in vivo (20 days) was found to be shorter than that observed in vitro (32 days), indicating that the injected hydrogel was resorbed not only by chemical hydrolysis but also by cellular metabolism and/or enzymatic activity. Systemic biocompatibility was tested by analysing routine haematological parameters at different time-points (7, 14 and 21 days after administration) and histology of the main organs, including the haematopoietic system. No statistically significant difference between parameters of the saline-treated group and those of the hydrogel-treated group was found. Importantly, a time-dependent decrease of important pro-inflammatory cytokines (TREM1 (Triggering Receptor Expressed on Myeloid cells-1), tumour necrosis factor-α and interleukin-1β) in cultured bone marrow cells extracted from hydrogel treated mice was observed, possibly correlated to the anti-inflammatory effect of hyaluronic acid released in time as hydrogel degraded. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy
| | | | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, (MC), Italy
| | - Emanuele Paggi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, (MC), Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, (MC), Italy
| | - Melania Capitani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy
| | - Luigi Marchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, (MC), Italy
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, (MC), Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| |
Collapse
|
16
|
Bamba R, Riley DC, Kelm ND, Does MD, Dortch RD, Thayer WP. A novel technique using hydrophilic polymers to promote axonal fusion. Neural Regen Res 2016; 11:525-8. [PMID: 27212898 PMCID: PMC4870894 DOI: 10.4103/1673-5374.180724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.
Collapse
Affiliation(s)
- Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Georgetown University, Washington, DC, USA
| | - D Colton Riley
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Nathaniel D Kelm
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Richard D Dortch
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
18
|
Hendricks BK, Shi R. Mechanisms of neuronal membrane sealing following mechanical trauma. Neurosci Bull 2014; 30:627-44. [PMID: 24993771 DOI: 10.1007/s12264-013-1446-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/20/2013] [Indexed: 12/11/2022] Open
Abstract
Membrane integrity is crucial for maintaining the intricate signaling and chemically-isolated intracellular environment of neurons; disruption risks deleterious effects, such as unregulated ionic flux, neuronal apoptosis, and oxidative radical damage as observed in spinal cord injury and traumatic brain injury. This paper, in addition to a discussion of the current understanding of cellular tactics to seal membranes, describes two major factors involved in membrane repair. These are line tension, the hydrophobic attractive force between two lipid free-edges, and membrane tension, the rigidity of the lipid bilayer with respect to the tethered cortical cytoskeleton. Ca(2+), a major mechanistic trigger for repair processes, increases following flux through a membrane injury site, and activates phospholipase enzymes, calpain-mediated cortical cytoskeletal proteolysis, protein kinase cascades, and lipid bilayer microdomain modification. The membrane tension appears to be largely modulated through vesicle dynamics, cytoskeletal organization, membrane curvature, and phospholipase manipulation. Dehydration of the phospholipid gap edge and modification of membrane packaging, as in temperature variation, experimentally impact line tension. Due to the time-sensitive nature of axonal sealing, increasing the efficacy of axolemmal sealing through therapeutic modification would be of great clinical value, to deter secondary neurodegenerative effects. Better therapeutic enhancement of membrane sealing requires a complete understanding of its intricate underlying neuronal mechanism.
Collapse
Affiliation(s)
- Benjamin K Hendricks
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
19
|
Kouhzaei S, Rad I, Mousavidoust S, Mobasheri H. Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in rat’s spinal cord. Neurol Res 2013; 35:415-23. [DOI: 10.1179/1743132812y.0000000133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Iman Rad
- University of TehranTehran, Iran
| | | | | |
Collapse
|
20
|
Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury. Neurosci Bull 2013; 29:460-6. [PMID: 23893430 DOI: 10.1007/s12264-013-1364-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022] Open
Abstract
The integrity of the neuronal membrane is crucial for its function and cellular survival; thus, ineffective repair of damaged membranes may be one of the key elements underlying the neuronal degeneration and overall functional loss that occurs after spinal cord injury (SCI). it has been shown that polyethylene glycol (PEG) can reseal axonal membranes following various injuries in multiple in vitro and in vivo injury models. in addition, PEG may also directly prevent the effects of mitochondria-derived oxidative stress on intracellular components. Thus, PEG repairs mechanically injured cells by at least two distinct pathways: resealing of the disrupted plasma membrane and direct protection of mitochondria. Besides repairing primary membrane damage, PEG treatment also results in significant attenuation of oxidative stress, likely due to its capacity to reseal the membrane, thereby breaking the cycle of cellular damage and free-radical production. Based on this, in addition to the practicality of its application, we expect that PEG may be established as an effective treatment for SCI where membrane disruption and mitochondrial damage are implicated.
Collapse
|
21
|
The Neuroprotective Ability of Polyethylene Glycol is Affected by Temperature in Ex Vivo Spinal Cord Injury Model. J Membr Biol 2013; 246:613-9. [DOI: 10.1007/s00232-013-9574-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022]
|
22
|
Abstract
Plasmalemmal repair is necessary for survival of damaged eukaryotic cells. Ca(2+) influx through plasmalemmal disruptions activates calpain, vesicle accumulation at lesion sites, and membrane fusion proteins; Ca(2+) influx also initiates competing apoptotic pathways. Using the formation of a dye barrier (seal) to assess plasmalemmal repair, we now report that B104 hippocampal cells with neurites transected nearer (<50 μm) to the soma seal at a lower frequency and slower rate compared to cells with neurites transected farther (>50 μm) from the soma. Analogs of cAMP, including protein kinase A (PKA)-specific and Epac-specific cAMP, each increase the frequency and rate of sealing and can even initiate sealing in the absence of Ca(2+) influx at both transection distances. Furthermore, Epac activates a cAMP-dependent, PKA-independent, pathway involved in plasmalemmal sealing. The frequency and rate of plasmalemmal sealing are decreased by a small molecule inhibitor of PKA targeted to its catalytic subunit (KT5720), a peptide inhibitor targeted to its regulatory subunits (PKI), an inhibitor of a novel PKC (an nPKCη pseudosubstrate fragment), and an antioxidant (melatonin). Given these and other data, we propose a model for redundant parallel pathways of Ca(2+)-dependent plasmalemmal sealing of injured neurons mediated in part by nPKCs, cytosolic oxidation, and cAMP activation of PKA and Epac. We also propose that the evolutionary origin of these pathways and substances was to repair plasmalemmal damage in eukaryotic cells. Greater understanding of vesicle interactions, proteins, and pathways involved in plasmalemmal sealing should suggest novel neuroprotective treatments for traumatic nerve injuries and neurodegenerative disorders.
Collapse
|