1
|
Pereira KE, de Aguiar GB, Villanova B, Rabello NJ, Schelbauer R, Carniel ES, Moresco RM, de Souza MA, Centenaro LA. Evaluation of developmental milestones and of brain measurements in rats exposed to the pesticide pyriproxyfen in prenatal period. Int J Dev Neurosci 2024; 84:758-768. [PMID: 39245789 DOI: 10.1002/jdn.10370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Pyriproxyfen is a pesticide used in Brazil to control the Aedes aegypti mosquito, vector of arboviruses like Zika and dengue. However, this pesticide is structurally similar to retinoic acid, a metabolite of vitamin A that regulates neuronal differentiation and hindbrain development during the embryonic period. Due to the similarity between pyriproxyfen and retinoic acid, studies indicate that this pesticide may have cross-reactivity with retinoid receptors. Thus, pregnant exposure to pyriproxyfen could interfere in the nervous system development of the fetal. In this context, the present study evaluated whether prenatal exposure to pyriproxyfen affects neonatal development and brain structure in rats. Wistar rat pups were divided in three experimental groups: (1) negative control (CT-)-offspring of rats that drink potable water during pregnancy; (2) pyriproxyfen (PIR)-offspring of rats exposed to Sumilarv® prenatally, a pesticide that has pyriproxyfen as active ingredient; and (3) positive control (CT+)-offspring of rats exposed to an excess of vitamin A prenatally. Only vitamin A treated-pregnant showed lower weight gain, but gestation length was similar among pregnant that received potable water, water containing vitamin A and water containing Sumilarv. In relation to the offspring, PIR group exhibits a delayed front-limb suspension response but performed early the negative geotaxis reflex. On the other hand, CT+ group exhibited lower body weight in the 1st postnatal day, delayed audio startle response, but performed early the eyelids opening and hindlimb placing response. A reduction in the maximum brain width was observed both in PIR and CT+ groups, but a reduction in the number of neurons in the M1 cortex was showed only in CT+ group. The number of glial cells in this brain area was similar between the three experimental groups studied. Although prenatal exposure to pyriproxyfen did not alter neonatal milestones in the same way as vitamin A in excess, both substances caused a reduction in the maximum width of the brain, suggesting that this pesticide can produce neurotoxic effects during the embryonic period.
Collapse
Affiliation(s)
- Katriane Endiel Pereira
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Gabrielle Batista de Aguiar
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Bianca Villanova
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Nicole Jansen Rabello
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Schelbauer
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Estela Soares Carniel
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Maria Moresco
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
2
|
Mu J, Hao L, Wang Z, Fu X, Li Y, Hao F, Duan H, Yang Z, Li X. Visualizing Wallerian degeneration in the corticospinal tract after sensorimotor cortex ischemia in mice. Neural Regen Res 2024; 19:636-641. [PMID: 37721295 PMCID: PMC10581571 DOI: 10.4103/1673-5374.380903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/11/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Stroke can cause Wallerian degeneration in regions outside of the brain, particularly in the corticospinal tract. To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke, we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract. We first used a routine, sensitive marker of axonal injury, amyloid precursor protein, to examine Wallerian degeneration of the corticospinal tract. An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex, with no positive signal in distal parts of the corticospinal tract, at all time points. To improve visualization of Wallerian degeneration, we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons. Using this approach, we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke. In addition, microglia mobilized and activated early, from day 7 after stroke, but did not maintain a phagocytic state over time. Meanwhile, astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration. Moreover, no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract. In conclusion, our data provide evidence for dynamic, pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Liufang Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuyang Fu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yusen Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Fang J, Song F, Chang C, Yao M. Intracerebral Hemorrhage Models and Behavioral Tests in Rodents. Neuroscience 2023; 513:1-13. [PMID: 36690062 DOI: 10.1016/j.neuroscience.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Intracerebral hemorrhage (ICH) is one of the common types of stroke, which can cause neurological dysfunction. In preclinical ICH studies, researchers often established rodent models by donor/autologous whole blood or a collagenase injection. White matter injury (WMI) can result from primary and secondary injuries after ICH. WMI can lead to short- and long-term neurological impairment, and functional recovery can assess the effect of drug therapy after ICH. Therefore, researchers have devised various behavioral tests to assess dysfunction. This review compares the two ICH modeling methods in rodents and summarizes the pathological mechanisms underlying dysfunction after ICH. We also summarize the functions and characteristics of various behavioral methods, including sensation, motion, emotion, and cognition, to assist researchers in selecting the appropriate tests for preclinical ICH research.
Collapse
Affiliation(s)
- Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Fanglai Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen 518060, China; Shenzhen SMQ Group Medical Laboratory, Shenzhen Academy of Measurement and Quality Inspection, Shenzhen 518060, China.
| |
Collapse
|
4
|
Ng ACK, Yao M, Cheng SY, Li J, Huang JD, Wu W, Leung GKK, Sun H. Protracted Morphological Changes in the Corticospinal Tract Within the Cervical Spinal Cord After Intracerebral Hemorrhage in the Right Striatum of Mice. Front Neurosci 2020; 14:506. [PMID: 32581678 PMCID: PMC7290159 DOI: 10.3389/fnins.2020.00506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is associated with high morbidity and mortality rates. Currently, there is no promising treatment that improves prognosis significantly. While a thorough investigation of the pathological process within the primary site of injury in the brain has been conducted by the research field, the focus was mainly on gray matter injury, which partly accounted for the failure of discovery of clinically efficacious treatments. It is not until recent years that white matter (WM) injury in the brain after subcortical ICH was examined. As WM tracts form networks between different regions, damage to fibers should impair brain connectivity, resulting in functional impairment. Although WM changes have been demonstrated in the brain after ICH, alterations distant from the initial injury site down in the spinal cord are unclear. This longitudinal study, for the first time, revealed prolonged morphological changes of the contralesional dorsal corticospinal tract (CST) in the spinal cord 5 weeks after experimental ICH in mice by confocal microscopy and transmission electron microscopy, implying that the structural integrity of the CST was compromised extensively after ICH. Given the important role of CST in motor function, future translational studies targeting motor recovery should delineate the treatment effects on CST integrity.
Collapse
Affiliation(s)
- Anson Cho Kiu Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Min Yao
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Stephen Yin Cheng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing Li
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wutian Wu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Re-Stem Biotechnology Co., Ltd., Suzhou, China
| | - Gilberto Ka Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haitao Sun
- The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Chen J, Qin R. MicroRNA‑138‑5p regulates the development of spinal cord injury by targeting SIRT1. Mol Med Rep 2020; 22:328-336. [PMID: 32319664 PMCID: PMC7248466 DOI: 10.3892/mmr.2020.11071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRs) play an important role in the development and progression of spinal cord injury (SCI). The role of miR-138-5p in SCI was investigated in the present study. The anti-inflammatory effects of miR-138-5p and underlying mechanisms were investigated in an SCI rat model and in vitro model. Reverse transcription-quantitative PCR (RT-qPCR) was used to examine the expression of miR-138-5p in the SCI in vivo and in vitro models, as well as patients with SCI; it was found that miR-138-5p was significantly upregulated in SCI. Bioinformatics and dual-luciferase reporter assays were performed to predict and confirm the binding sites between miR-138-5p and the 3′untranslated region of sirtuin 1 (SIRT1). Then, the expression of SIRT1 was detected via RT-qPCR and western blotting, indicating downregulation of SIRT1 in SCI. PC12 cells were transfected with miR-138-5p inhibitor, inhibitor control or miR-138-5p inhibitor + SIRT1 small interfering RNA for 48 h, and then subjected to lipopolysaccharide (100 ng/ml) treatment for 4 h. Then, MTT assay, flow cytometry and ELISA experiments were performed to analyze cell viability, apoptosis, and the levels of tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Findings suggested that downregulation of miR-138-5p increased PC12 cell viability, inhibited cell apoptosis and attenuated proinflammatory responses, which may result in amelioration of SCI. However, all these effects were reversed by SIRT1 knockdown. Finally, it was observed that miR-138-5p altered the related protein expression of the PTEN/AKT pathway. These results indicated that miR-138-5p could regulate inflammatory responses and cell apoptosis in SCI models by modulating the PTEN/AKT signaling pathway via SIRT1, thus playing an important role in the development of SCI. Collectively, the present study demonstrated that miR-138-5p may be a novel therapeutic target for the treatment of SCI.
Collapse
Affiliation(s)
- Jinchuan Chen
- Department of Spine Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Rujie Qin
- Department of Spine Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
6
|
The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord. J Neurosci 2019; 39:4714-4726. [PMID: 30962276 PMCID: PMC6561692 DOI: 10.1523/jneurosci.2571-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022] Open
Abstract
In response to cortical stroke and unilateral corticospinal tract degeneration, compensatory sprouting of spared corticospinal fibers is associated with recovery of skilled movement in rodents. To date, little is known about the molecular mechanisms orchestrating this spontaneous rewiring. In this study, we provide insights into the molecular changes in the spinal cord tissue after large ischemic cortical injury in adult female mice, with a focus on factors that might influence the reinnervation process by contralesional corticospinal neurons. We mapped the area of cervical gray matter reinnervation by sprouting contralesional corticospinal axons after unilateral photothrombotic stroke of the motor cortex in mice using anterograde tracing. The mRNA profile of this reinnervation area was analyzed using whole-genome sequencing to identify differentially expressed genes at selected time points during the recovery process. Bioinformatic analysis revealed two phases of processes: early after stroke (4–7 d post-injury), the spinal transcriptome is characterized by inflammatory processes, including phagocytic processes as well as complement cascade activation. Microglia are specifically activated in the denervated corticospinal projection fields in this early phase. In a later phase (28–42 d post-injury), biological processes include tissue repair pathways with upregulated genes related to neurite outgrowth. Thus, the stroke-denervated spinal gray matter, in particular its intermediate laminae, represents a growth-promoting environment for sprouting corticospinal fibers originating from the contralesional motor cortex. This dataset provides a solid starting point for future studies addressing key elements of the post-stroke recovery process, with the goal to improve neuroregenerative treatment options for stroke patients. SIGNIFICANCE STATEMENT We show that the molecular changes in the spinal cord target tissue of the stroke-affected corticospinal tract are mainly defined by two phases: an early inflammatory phase during which microglia are specifically activated in the target area of reinnervating corticospinal motor neurons; and a late phase during which growth-promoting factors are upregulated which can influence the sprouting response, arborization, and synapse formation. By defining for the first time the endogenous molecular machinery in the stroke-denervated cervical spinal gray matter with a focus on promotors of axon growth through the growth-inhibitory adult CNS, this study will serve as a basis to address novel neuroregenerative treatment options for chronic stroke patients.
Collapse
|
7
|
Liu CB, Yang DG, Zhang X, Zhang WH, Li DP, Zhang C, Qin C, Du LJ, Li J, Gao F, Zhang J, Zuo ZT, Yang ML, Li JJ. Degeneration of white matter and gray matter revealed by diffusion tensor imaging and pathological mechanism after spinal cord injury in canine. CNS Neurosci Ther 2018; 25:261-272. [PMID: 30076687 DOI: 10.1111/cns.13044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
AIM Exploration of the mechanism of spinal cord degeneration may be the key to treatment of spinal cord injury (SCI). This study aimed to investigate the degeneration of white matter and gray matter and pathological mechanism in canine after SCI. METHODS Diffusion tensor imaging (DTI) was performed on canine models with normal (n = 5) and injured (n = 7) spinal cords using a 3.0T MRI scanner at precontusion and 3 hours, 24 hours, 6 weeks, and 12 weeks postcontusion. The tissue sections were stained using H&E and immunohistochemistry. RESULTS For white matter, fractional anisotropy (FA) values significantly decreased in lesion epicenter, caudal segment 1 cm away from epicenter, and caudal segment 2 cm away from epicenter (P = 0.003, P = 0.004, and P = 0.013, respectively) after SCI. Apparent diffusion coefficient (ADC) values were initially decreased and then increased in lesion epicenter and caudal segment 1 cm away from epicenter (P < 0.001 and P = 0.010, respectively). There are no significant changes in FA and ADC values in rostral segments (P > 0.05). For gray matter, ADC values decreased initially and then increased in lesion epicenter (P < 0.001), and overall trend decreased in caudal segment 1 cm away from epicenter (P = 0.039). FA values did not change significantly (P > 0.05). Pathological examination confirmed the dynamic changes of DTI parameters. CONCLUSION Diffusion tensor imaging is more sensitive to degeneration of white matter than gray matter, and the white matter degeneration may be not symmetrical which meant the caudal degradation appeared to be more severe than the rostral one.
Collapse
Affiliation(s)
- Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wen-Hao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zhen-Tao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Li G, Che MT, Zeng X, Qiu XC, Feng B, Lai BQ, Shen HY, Ling EA, Zeng YS. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A 2018; 106:2158-2170. [PMID: 29577604 PMCID: PMC6055812 DOI: 10.1002/jbm.a.36414] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023]
Abstract
Spinal cord injury (SCI) normally results in cell death, scarring, cavitation, inhibitory molecules release, etc., which are regarded as a huge obstacle to reconnect the injured neuronal circuits because of the lack of effective stimulus. In this study, a functional gelatin sponge scaffold was used to inhibit local inflammation, enhance nerve fiber regeneration, and improve neural conduction in the canine. This scaffold had good porosity and modified with neurotrophin‐3 (NT‐3)/fibroin complex, which showed sustained release in vitro. After the scaffold was transplanted into canine spinal cord hemisection model, hindlimb movement, and neural conduction were improved evidently. Migrating host cells, newly formed neurons with associated synaptic structures together with functional blood vessels with intact endothelium in the regenerating tissue were identified. Taken together, the results demonstrated that using bioactive scaffold could establish effective microenvironment stimuli for endogenous regeneration, providing a potential and practical strategy for treatment of spinal cord injury. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2158‐2170, 2018.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Hui-Yong Shen
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
9
|
Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition. World Neurosurg 2018; 114:e1186-e1191. [PMID: 29614353 DOI: 10.1016/j.wneu.2018.03.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. METHODS Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. RESULTS Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. CONCLUSIONS Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI.
Collapse
|
10
|
Wang Y, Pang QJ, Liu JT, Wu HH, Tao DY. Down-regulated miR-448 relieves spinal cord ischemia/reperfusion injury by up-regulating SIRT1. ACTA ACUST UNITED AC 2018; 51:e7319. [PMID: 29561961 PMCID: PMC5875911 DOI: 10.1590/1414-431x20177319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 03/01/2023]
Abstract
MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII). The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.
Collapse
Affiliation(s)
- Yun Wang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Qing-Jiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Jiang-Tao Liu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hai-Hao Wu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dong-Ying Tao
- Department of Human Morphology, Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, Zhang Z, Hou B, Zhang W, Sun Y, Gu X, Ma Z, Liu Y. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun 2017; 64:195-207. [PMID: 28302458 DOI: 10.1016/j.bbi.2017.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022] Open
Abstract
Excessive inflammatory responses play important roles in the aggravation of secondary damage to an injured spinal cord. Dexmedetomidine (DEX), a selective α2-adrenoceptor agonist, has recently been implied to be neuroprotective in clinical anesthesia, but the underlying mechanism is elusive. As signaling through Toll-like receptor 4 (TLR4) and nicotinic receptors (nAChRs, notably α7nAChR) play important roles in the pro- and anti-inflammation systems in the central nervous system, respectively, this study investigated whether and how they were modulated by DEX pretreatment in a rat model of spinal cord compression. The model was used to mimic perioperative compressive spinal cord injury (SCI) during spinal correction. DEX preconditioning improved locomotor scores after SCI, which was accompanied by increased α7nAChR and acetylcholine (Ach, an endogenous ligand of α7nAChR) expression as well as PI3K/Akt activation. However, there was a decrease in Ly6h (a negative regulator for α7nAChR trafficking), TLR4, PU.1 (a critical transcriptional regulator of TLR4), HMGB1 (an endogenous ligand of TLR4), and caspase 3-positive cells, which was prevented by intrathecal preconditioning with antagonists of either α2R, α7nAChR or PI3K/Akt. In addition, application of an α7nAChR agonist produced effects similar to those of DEX after SCI, while application of an α7nAChR antagonist reversed these effects. Furthermore, both α7nAChR and TLR4 were mainly co-expressed in NeuN-positive cells of the spinal ventral horn, but not in microglia or astrocytes after SCI. These findings imply that the α2R/PI3K/Akt/Ly6h and α7nAChR/PI3K/Akt/PU.1 cascades are required for upregulated α7nAChR and downregulated TLR4 expression by DEX pretreatment, respectively, which provided a unique insight into understanding DEX-mediated neuroprotection.
Collapse
Affiliation(s)
- Hui Rong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhibin Zhao
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, China
| | - Jiying Feng
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hao Wu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Rao Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zuoxia Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - YuE Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
O'Hare Doig RL, Bartlett CA, Smith NM, Hodgetts SI, Dunlop SA, Hool L, Fitzgerald M. Specific combinations of ion channel inhibitors reduce excessive Ca 2+ influx as a consequence of oxidative stress and increase neuronal and glial cell viability in vitro. Neuroscience 2016; 339:450-462. [PMID: 27725216 DOI: 10.1016/j.neuroscience.2016.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 01/02/2023]
Abstract
Combinations of Ca2+ channel inhibitors have been proposed as an effective means to prevent excess Ca2+ flux and death of neurons and glia following neurotrauma in vivo. However, it is not yet known if beneficial outcomes such as improved viability have been due to direct effects on intracellular Ca2+ concentrations. Here, the effects of combinations of Lomerizine (Lom), 2,3-dioxo-7-(1H-imidazol-1-yl)6-nitro-1,2,3,4-tetrahydro-1-quinoxalinyl]acetic acid monohydrate (YM872), 3,5-dimethyl-1-adamantanamine (memantine (Mem)) and/or adenosine 5'-triphosphate periodate oxidized sodium salt (oxATP) to block voltage-gated Ca2+ channels, Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, NMDA receptors and purinergic P2X7 receptors (P2X7R) respectively, on Ca2+ concentration and viability of rat primary mixed cortical (MC) cultures exposed to hydrogen peroxide (H2O2) insult, were assessed. The contribution of ryanodine-sensitive intracellular stores to intracellular Ca2+ concentration was also assessed. Live cell calcium imaging revealed that a 30min H2O2 insult induced a slow increase in intracellular Ca2+, in part from intracellular sources, associated with loss of cell viability by 6h. Most combinations of inhibitors that included oxATP significantly decreased Ca2+ influx and increased cell viability when administered simultaneously with H2O2. However, reductions in intracellular Ca2+ concentration were not always linked to improved cell viability. Examination of the density of specific cell subpopulations demonstrated that most combinations of inhibitors that included oxATP preserved NG2+ non-oligodendroglial cells, but preservation of astrocytes and neurons required additional inhibitors. Olig2+ oligodendroglia and ED-1+ activated microglia/macrophages were not preserved by any of the inhibitor combinations. These data indicate that following H2O2 insult, limiting intracellular Ca2+ entry via P2X7R is generally associated with increased cell viability. Protection of NG2+ non-oligodendroglial cells by Ca2+ channel inhibitor combinations may contribute to observed beneficial outcomes in vivo.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Hool
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
13
|
Weishaupt N, Zhang A, Deziel RA, Tasker RA, Whitehead SN. Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions. Front Neurosci 2016; 10:81. [PMID: 26973455 PMCID: PMC4773446 DOI: 10.3389/fnins.2016.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Secondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model. Brain regions posterior to the prefrontal cortical infarct were analyzed for ongoing neurodegeneration using FluoroJadeB (FJB) and for neuroinflammation using Iba1 and OX-6 immunohistochemistry 28 days post-stroke. The FJB-positive dorsomedial nucleus of the thalamus (DMN) and retrosplenial area (RSA) of the cortex displayed substantial neuroinflammation. Significant neuronal loss was only observed within the cortex. Significant microglia recruitment and activation in the FJB-positive internal capsule indicates remote white matter pathology. These findings demonstrate that even regions far remote from an infarct are affected predictably based on anatomical connectivity, and that white matter inflammation is an integral part of remote pathology. The delayed nature of this pathology makes it a valid target for preventative treatment, potentially with an extended time window of opportunity for therapeutic intervention using anti-inflammatory agents.
Collapse
Affiliation(s)
- Nina Weishaupt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Angela Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Robert A Deziel
- Department of Biomedical Sciences, University of Prince Edward Island Charlottetown, PEI, Canada
| | - R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island Charlottetown, PEI, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| |
Collapse
|
14
|
Characterization of Behaviour and Remote Degeneration Following Thalamic Stroke in the Rat. Int J Mol Sci 2015; 16:13921-36. [PMID: 26090717 PMCID: PMC4490531 DOI: 10.3390/ijms160613921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought to include inflammation. We induce ischemia by unilateral injection of endothelin-I into the rat dorsomedial thalamic nucleus, which has defined reciprocal connections to the frontal cortex. We use a comprehensive test battery to probe for changes in behaviour, including executive functions. After a four-week recovery period, brain sections are stained with markers for degeneration, microglia, astrocytes and myelin. Degenerative processes are localized within the stroke core and along the full thalamocortical projection, which does not translate into measurable behavioural deficits. Significant microglia recruitment, astrogliosis or myelin loss along the axonal projection or within the frontal cortex cannot be detected. These findings indicate that critical effects of stroke-induced axonal degeneration may only be measurable beyond a threshold of stroke severity and/or follow a different time course. Further investigations are needed to clarify the impact of inflammation accompanying axonal degeneration on delayed remote atrophy after stroke.
Collapse
|
15
|
Jirjis MB, Vedantam A, Budde MD, Kalinosky B, Kurpad SN, Schmit BD. Severity of spinal cord injury influences diffusion tensor imaging of the brain. J Magn Reson Imaging 2015; 43:63-74. [DOI: 10.1002/jmri.24964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Michael B. Jirjis
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Aditya Vedantam
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Matthew D. Budde
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Benjamin Kalinosky
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Shekar N. Kurpad
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Brian D. Schmit
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| |
Collapse
|
16
|
Tennant KA. Thinking outside the brain: structural plasticity in the spinal cord promotes recovery from cortical stroke. Exp Neurol 2014; 254:195-9. [PMID: 24518486 DOI: 10.1016/j.expneurol.2014.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/02/2014] [Indexed: 11/29/2022]
Abstract
Neuroanatomically connected regions distal to a cortical stroke can exhibit both degenerative and adaptive changes during recovery. As the locus for afferent somatosensory fibres and efferent motor fibres, the spinal cord is ideally situated to play a critical role in functional recovery. In contrast to the wealth of research into cortical plasticity after stroke, much less focus has previously been placed on the role of subcortical or spinal cord plasticity in recovery of function after cortical stroke. Little is known about the extent and spatiotemporal profile of spinal rewiring, its regulation by neurotrophins or inflammatory cytokines, or its potential as a therapeutic target to improve stroke recovery. This commentary examines the recent findings by Sist et al. (2014) that there is a distinct critical period of heightened structural plasticity, growth factor expression, and inflammatory cytokine production in the spinal cord. They suggest that neuroplasticity is highest during the first two weeks after stroke and tapers off dramatically by the fourth week. Spinal cord plasticity correlates with the severity of cortical injury and temporally matches periods of accelerated spontaneous recovery of skilled reaching function. The potential of treatments that extend or re-open this window of spinal cord plasticity, such as anti-Nogo-A antibodies or chondroitinase ABC, to dramatically improve recovery from cortical stroke in clinical populations is discussed.
Collapse
Affiliation(s)
- Kelly A Tennant
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
17
|
Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol 2013; 252:47-56. [PMID: 24291254 DOI: 10.1016/j.expneurol.2013.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Stroke induces pathophysiological and adaptive processes in regions proximal and distal to the infarct. Recent studies suggest that plasticity at the level of the spinal cord may contribute to sensorimotor recovery after cortical stroke. Here, we compare the time course of heightened structural plasticity in the spinal cord against the temporal profile of cortical plasticity and spontaneous behavioral recovery. To examine the relation between trophic and inflammatory effectors and spinal structural plasticity, spinal expression of brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured. Growth-associated protein 43 (GAP-43), measured at 3, 7, 14, or 28 days after photothrombotic stroke of the forelimb sensorimotor cortex (FL-SMC) to provide an index of periods of heightened structural plasticity, varied as a function of lesion size and time after stroke in the cortical hemispheres and the spinal cord. Notably, GAP-43 levels in the cervical spinal cord were significantly increased after FL-SMC lesion, but the temporal window of elevated structural plasticity was more finite in spinal cord relative to ipsilesional cortical expression (returning to baseline levels by 28 post-stroke). Peak GAP-43 expression in spinal cord occurred during periods of accelerated spontaneous recovery, as measured on the Montoya Staircase reaching task, and returned to baseline as recovery plateaued. Interestingly, spinal GAP-43 levels were significantly correlated with spinal levels of the inflammatory cytokines TNF-α and IL-6 as well as the neurotrophin NT-3, while a transient increase in BDNF levels preceded elevated GAP-43 expression. These data identify a significant but time-limited window of heightened structural plasticity in the spinal cord following stroke that correlates with spontaneous recovery and the spinal expression of inflammatory cytokines and neurotrophic factors.
Collapse
Affiliation(s)
- Bernice Sist
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neurochemical Research Unit, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| | - Karim Fouad
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Faculty of Rehabilitative Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| | - Ian R Winship
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Department of Psychiatry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Neurochemical Research Unit, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.
| |
Collapse
|
18
|
Jirjis MB, Kurpad SN, Schmit BD. Ex vivo diffusion tensor imaging of spinal cord injury in rats of varying degrees of severity. J Neurotrauma 2013; 30:1577-86. [PMID: 23782233 DOI: 10.1089/neu.2013.2897] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague-Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm². Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r(2)=0.80). The diffusivity of water significantly decreased throughout "uninjured" portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury.
Collapse
Affiliation(s)
- Michael B Jirjis
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | |
Collapse
|
19
|
Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Exp Neurol 2013; 247:241-9. [PMID: 23684634 DOI: 10.1016/j.expneurol.2013.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 11/23/2022]
Abstract
Restoring voluntary fine motor control of the arm and hand is one of the main goals following cervical spinal cord injury (SCI). Although the functional improvement achievable with rehabilitative training in rat models is frequently accompanied by corticospinal tract (CST) plasticity, CST rewiring alone seems insufficient to account for the observed recovery. Recent investigations in animal models of SCI have suggested that the reticulospinal tract (RtST) might contribute to mediating improved motor performance of the forelimb. Here we investigate whether the spared RtST can compensate for the loss of CST input and whether RtST projections rearrange in response to cervical SCI. Animals underwent unilateral ablation of the dorsal CST and rubrospinal tract at spinal level C4, while the ventral RtST projections were spared. At the end of the six-week recovery period, injured animals had made significant improvements in single pellet reaching. This was not accompanied by increased sprouting of the injured CST above the injury compared to uninjured control animals. Injury-induced changes in RtST fiber density within the gray matter, as well as in the number of RtST collaterals entering the gray matter or crossing the cord midline were minor above the injury. However, all analyses directly below the injured spinal level consistently point to a significant decrease of RtST projections. The mechanism and the functional relevance behind this new finding warrant further study. Our results also suggest that mechanisms other than anatomical plasticity, such as plastic changes on a cellular level, might be responsible for the observed spontaneous recovery.
Collapse
|
20
|
Starkey ML, Bleul C, Zörner B, Lindau NT, Mueggler T, Rudin M, Schwab ME. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Brain 2012; 135:3265-81. [DOI: 10.1093/brain/aws270] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Lingor P, Koch JC, Tönges L, Bähr M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res 2012; 349:289-311. [PMID: 22392734 PMCID: PMC3375418 DOI: 10.1007/s00441-012-1362-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022]
Abstract
Degeneration of the axon is an important step in the pathomechanism of traumatic, inflammatory and degenerative neurological diseases. Increasing evidence suggests that axonal degeneration occurs early in the course of these diseases and therefore represents a promising target for future therapeutic strategies. We review the evidence for axonal destruction from pathological findings and animal models with particular emphasis on neurodegenerative and neurotraumatic disorders. We discuss the basic morphological and temporal modalities of axonal degeneration (acute, chronic and focal axonal degeneration and Wallerian degeneration). Based on the mechanistic concepts, we then delineate in detail the major molecular mechanisms that underlie the degenerative cascade, such as calcium influx, axonal transport, protein aggregation and autophagy. We finally concentrate on putative therapeutic targets based on the mechanistic prerequisites.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
22
|
Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 2011; 31:1113-22. [PMID: 21630007 DOI: 10.1007/s10571-011-9712-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.
Collapse
Affiliation(s)
- David Arboleda
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Delcour M, Russier M, Xin DL, Massicotte VS, Barbe MF, Coq J. Mild musculoskeletal and locomotor alterations in adult rats with white matter injury following prenatal ischemia. Int J Dev Neurosci 2011; 29:593-607. [DOI: 10.1016/j.ijdevneu.2011.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 11/25/2022] Open
Affiliation(s)
- Maxime Delcour
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| | - Michael Russier
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| | - Dong L. Xin
- Department of Physical TherapyTemple UniversityPhiladelphiaPA19140USA
| | - Vicky S. Massicotte
- Department of Anatomy and Cell BiologyTemple University School of MedicinePhiladelphiaPA19140USA
| | - Mary F. Barbe
- Department of Anatomy and Cell BiologyTemple University School of MedicinePhiladelphiaPA19140USA
| | - Jacques‐Olivier Coq
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| |
Collapse
|