1
|
Giraldo E, Bonilla P, Mellado M, Garcia-Manau P, Rodo C, Alastrue A, Lopez E, Moratonas EC, Pellise F, Đorđević S, Vicent MJ, Moreno Manzano V. Transplantation of Human-Fetal-Spinal-Cord-Derived NPCs Primed with a Polyglutamate-Conjugated Rho/Rock Inhibitor in Acute Spinal Cord Injury. Cells 2022; 11:cells11203304. [PMID: 36291170 PMCID: PMC9600863 DOI: 10.3390/cells11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Neural precursor cell (NPC) transplantation represents a promising therapy for treating spinal cord injuries (SCIs); however, despite successful results obtained in preclinical models, the clinical translation of this approach remains challenging due, in part, to the lack of consensus on an optimal cell source for human neuronal cells. Depending on the cell source, additional limitations to NPC-based therapies include high tumorigenic potential, alongside poor graft survival and engraftment into host spinal tissue. We previously demonstrated that NPCs derived from rat fetal spinal cords primed with a polyglutamate (PGA)-conjugated form of the Rho/Rock inhibitor fasudil (PGA-SS-FAS) displayed enhanced neuronal differentiation and graft survival when compared to non-primed NPCs. We now conducted a similar study of human-fetal-spinal-cord-derived NPCs (hfNPCs) from legal gestational interruptions at the late gestational stage, at 19-21.6 weeks. In vitro, expanded hfNPCs retained neural features, multipotency, and self-renewal, which supported the development of a cell banking strategy. Before transplantation, we established a simple procedure to prime hfNPCs by overnight incubation with PGA-SS-FAS (at 50 μM FAS equiv.), which improved neuronal differentiation and overcame neurite-like retraction after lysophosphatidic-acid-induced Rho/Rock activation. The transplantation of primed hfNPCs into immune-deficient mice (NU(NCr)-Foxn1nu) immediately after the eighth thoracic segment compression prompted enhanced migration of grafted cells from the dorsal to the ventral spinal cord, increased preservation of GABAergic inhibitory Lbx1-expressing and glutamatergic excitatory Tlx3-expressing somatosensory interneurons, and elevated the numbers of preserved, c-Fos-expressing, activated neurons surrounding the injury epicenter, all in a low percentage. Overall, the priming procedure using PGA-SS-FAS could represent an alternative methodology to improve the capabilities of the hfNPC lines for a translational approach for acute SCI treatment.
Collapse
Affiliation(s)
- Esther Giraldo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Department of Biotechnology. Universitat Politècnica de València, E-46022 Valencia, Spain
- UPV-CIPF Joint Research Unit Disease Mechanisms and Nanomedicine, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Pablo Bonilla
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Mara Mellado
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Pablo Garcia-Manau
- Maternal-Foetal Medicine Unit, Vall d’Hebron Hospital Campus, E-08035 Barcelona, Spain
| | - Carlota Rodo
- Maternal-Foetal Medicine Unit, Vall d’Hebron Hospital Campus, E-08035 Barcelona, Spain
| | - Ana Alastrue
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Eric Lopez
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | - Ferran Pellise
- Spine Surgery Unit, Hospital Universitari Vall d’Hebron, E-08035 Barcelona, Spain
| | - Snežana Đorđević
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, E-46012, Valencia, Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, E-46012, Valencia, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Correspondence:
| |
Collapse
|
2
|
Liang L, Zhang J, Tian L, Wang S, Xu L, Wang Y, Guo-Shuai Q, Dong Y, Chen Y, Jia H, Yang X, Yuan C. AXL signaling in primary sensory neurons contributes to chronic compression of dorsal root ganglion-induced neuropathic pain in rats. Mol Pain 2021; 16:1744806919900814. [PMID: 31884887 PMCID: PMC6970473 DOI: 10.1177/1744806919900814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Low back pain is a chronic, highly prevalent, and hard-to-treat condition in the elderly. Clinical studies indicate that AXL, which belongs to the tyrosine kinase receptor subfamily, mediates pathological pain. However, it is not clear exactly how AXL regulates pain behaviors. In this study, we used a model of chronic compression of dorsal root ganglion-induced neuropathic pain to recreate clinical intervertebral foramen stenosis and related lumbocrural pain to explore whether AXL in primary sensory neurons contributes to this neuropathic pain in rats. Using double-labeling immunofluorescence, we observed that both phosphorylated AXL and AXL were localized primarily on isolectin B4-positive and calcitonin gene-related peptide-positive neurons, while AXL was also localized in neurofilament-200-positive neurons. Chronic compression of dorsal root ganglion-induced pain was associated with the upregulation of AXL mRNA and protein in injured dorsal root ganglia. Repeated intrathecal administration of the AXL inhibitor, TP0903, or the AXL small interfering RNA effectively alleviated chronic compression of dorsal root ganglion-induced pain hypersensitivities. Moreover, repeated intrathecal administration of either TP0903 or AXL small interfering RNA reduced the expression of mammalian target of rapamycin in injured dorsal root ganglia, suggesting that mammalian target of rapamycin may mediate AXL’s actions. These results indicate that the upregulation of dorsal root ganglion AXL may be part of a peripheral mechanism of neuropathic pain via an intracellular mammalian target of rapamycin-signaling pathway. Thus, while AXL inhibitors have so far primarily shown clinical efficacy in tumor treatment, AXL intervention could also serve as a potential target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Jun Zhang
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, PR China
| | - Lixia Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Shuo Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Yingxuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Qingying Guo-Shuai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Xuewei Yang
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, PR China
| | - Chunmei Yuan
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, PR China
| |
Collapse
|
3
|
Kishima K, Tachibana T, Yamanaka H, Kobayashi K, Okubo M, Maruo K, Noguchi K. Role of Rho-associated coiled-coil containing protein kinase in the spinal cord injury induced neuropathic pain. Spine J 2021; 21:343-351. [PMID: 32853793 DOI: 10.1016/j.spinee.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) can lead to increased phosphorylation of p38 in spinal cord microglia. This is one of the main causes for the development of persistent pain. Recently, we reported our study on the activation of p38 mitogen-activated protein kinases (MAPK) in spinal microglia, which has been considered the key molecule for the onset and maintenance of neuropathic pain after peripheral nerve injury, using a rat model. We also reported that the RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) pathway mediates p38 activation in spinal microglia in peripheral nerve injury. But the precise mechanisms of neuropathic pain induced by SCI are still unclear. PURPOSE This study aimed to examine the activation of microglia and the p38 MAPK expression in the lumbar spinal cord after thoracic SCI in rats, and the correlation to the therapeutic effect of ROCK inhibitor ripasudil in rats with SCI. STUDY DESIGN Male Sprague-Dawley rats underwent thoracic (T10) spinal cord contusion injury using an Infinite Horizon impactor device. SCI rats received ROCK inhibitor ripasudil (24 nmol/day or 240 nmol/day) from just before SCI to 3 days after SCI. METHODS The mechanical threshold in the rat's hind paws was measured over four weeks. Morphology of microglia and phosphorylation of p38 (p-p38) in the lumbar spinal cord and were analyzed using immunohistochemistry. RESULTS The p-p38 positive cell and Iba1 (a maker of microglia) positive area were significantly increased at the lumbar spinal dorsal horn (L4-5) 3 days and 7 days after SCI compared with the sham-control (p<.05), whereas phosphorylated p38 was co-localized with microglia. Three days after SCI, the intensity of phosphorylated p38 and Iba1 immunoreactive cells in the dorsal horn was significantly lower in the ripasudil treated groups than in the saline group. However, administration of ROCK inhibitor did not affect the numbers of microglia. Moreover, the withdrawal threshold of the ripasudil-treated rats was significantly higher than that of the saline-injected rats on 14 days and 28 days after SCI. CONCLUSIONS Our results suggest that activation of ROCK in spinal cord microglia is likely to have an important role in the activation of p38 MAPK, which has been considered as a key molecule that switches on neuropathic pain after SCI. Inhibition of ROCK signaling may offer a means in developing a novel neuropathic pain treatment after SCI. It may help patients with neuropathic pain after SCI. CLINICAL SIGNIFICANCE The findings in the present study regarding intracellular mechanisms suggest that modulation of ROCK signaling may be a focus for novel treatment for neuropathic pain after SCI.
Collapse
Affiliation(s)
- Kazuya Kishima
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshiya Tachibana
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Keishi Maruo
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
4
|
Macks C, Jeong D, Lee JS. Local delivery of RhoA siRNA by PgP nanocarrier reduces inflammatory response and improves neuronal cell survival in a rat TBI model. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102343. [PMID: 33259960 PMCID: PMC8714129 DOI: 10.1016/j.nano.2020.102343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with complex pathophysiology including prolonged neuroinflammation, apoptosis, and glial scar formation. The upregulation of RhoA is a key factor in the pathological development of secondary injury following TBI. Previously, we developed a novel cationic, amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP), as a nanocarrier for delivery of therapeutic nucleic acids. In a rat compression spinal cord injury model, delivery of siRNA targeting RhoA (siRhoA) by PgP resulted in RhoA knockdown; reduced astrogliosis and inflammation; and promoted axonal regeneration/sparing. Here, we evaluated the effect of RhoA knockdown by PgP/siRhoA nanoplexes in a rat controlled cortical impact TBI model. A single intraparenchymal injection of PgP/siRhoA nanoplexes significantly reduced RhoA expression, lesion volume, neuroinflammation, and apoptosis, and increased neuronal survival in the ipsilateral cortex. These results suggest that PgP/siRhoA nanoplexes can efficiently knockdown RhoA expression in the injured brain and reduce secondary injury.
Collapse
Affiliation(s)
- Christian Macks
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| | - DaUn Jeong
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| | - Jeoung Soo Lee
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
5
|
Amiri A, Barreto G, Sathyapalan T, Sahebkar A. siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr Neuropharmacol 2021; 19:1896-1911. [PMID: 33797386 PMCID: PMC9185778 DOI: 10.2174/1570159x19666210402104054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases (ND), as a group of central nervous system (CNS) disorders, are among the most prominent medical problems of the 21st century. They are often associated with considerable disability, motor dysfunction and dementia and are more common in the aged population. ND imposes a psychologic, economic and social burden on the patients and their families. Currently, there is no effective treatment for ND. Since many ND result from the gain of function of a mutant allele, small interference RNA (siRNA) can be a potential therapeutic agent for ND management. Based on the RNA interference (RNAi) approach, siRNA is a powerful tool for modulating gene expression through gene silencing. However, there are some obstacles in the clinical application of siRNA, including unfavorable immune response, off-target effects, instability of naked siRNA, nuclease susceptibility and a need to develop a suitable delivery system. Since there are some issues related to siRNA delivery routes, in this review, we focus on the application of siRNA in the management of ND treatment from 2000 to 2020.
Collapse
Affiliation(s)
| | | | | | - Amirhossein Sahebkar
- Address correspondence to this author at the Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Tel: 985118002288; Fax: 985118002287; E-mails: ;
| |
Collapse
|
6
|
Luo M, Li YQ, Lu YF, Wu Y, Liu R, Zheng YR, Yin M. Exploring the potential of RhoA inhibitors to improve exercise-recoverable spinal cord injury: A systematic review and meta-analysis. J Chem Neuroanat 2020; 111:101879. [PMID: 33197553 DOI: 10.1016/j.jchemneu.2020.101879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The spinal cord is one of the central nervous system. Spinal cord injury (SCI) will cause loss of physical function and dysfunction below the injury site, causing them to lose sensation and mobility, thereby reducing the quality of life of patients. Although regular rehabilitation management can reduce its severity, the current effective treatment methods are limited to the treatment of secondary injuries to SCI. The purpose of treatment should not only include the restoration of the histology of the lesion, but also should focus on the restoration of sensory and mobility and. The key to effective treatment is to reduce secondary injuries. RhoA inhibitor can improve the pathophysiological changes related to secondary injury and promote the recovery of activity ability, so it may become a clinical drug for the treatment of SCI. This article systematically analyzed the effects of RhoA inhibitors on the promotion of axon regeneration and the recovery of mobility and compared the therapeutic effects of different inhibitors on SCI and their effects on physical function recovery. METHODS We used a meta-analysis to systematically evaluate the effects of Rho inhibitors on SCI treatment and the recovery of body function. RESULTS 21 articles (738 animals) were identified in the literatures search. Studies were selected if they reported the therapeutic effects of RhoA/ROCK inhibitors (BA-210, EGCG, β-elemene, C3-exoenzmye, LINGO-1-Fc, Ibuprofen, SiRhoA, iRhoA + FK506, Fasudil, p21Cip1/WAF1, HA-1007, Y-27,632 and C3bot154-182). We measure the functional recovery by BBB and BMS scores. The random effect model of weighted mean difference (WMD, 95 % confidence interval) was used to analyze the effects. The WMD of the forest graph was 2.277; 95 % CI: 1.705∼2.849, P < 0.001, suggesting that RhoA inhibitors can effectively treat SCI. In addition to EGCG, all the other agents also showed the effects on the activity recovery post-SCI (P < 0.05). CONCLUSION β-elemene, LINGO-1-Fc, Ibuprofen, SiRhoA, RhoA + FK506, Fasudil, p21Cip1/WAF1 and Y-27,632 have similar effects to BA-210, they can promote axon germination and nerve fiber regeneration after thoracic spinal cord injury and reduce the formation of syringomyelia and protect white matter, thereby improving locomotor recovery. RhoA inhibitors have great potential to restore motor function and provide a new trend for the treatment of SCI.
Collapse
Affiliation(s)
- Min Luo
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Yu Qing Li
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Ya Feng Lu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Yue Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - RenShuai Liu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Yu Rong Zheng
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Mei Yin
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
7
|
Wang S, Liu S, Xu L, Zhu X, Liu W, Tian L, Chen Y, Wang Y, Nagendra BVP, Jia S, Liang L, Huo FQ. The upregulation of EGFR in the dorsal root ganglion contributes to chronic compression of dorsal root ganglions-induced neuropathic pain in rats. Mol Pain 2020; 15:1744806919857297. [PMID: 31215332 PMCID: PMC6585252 DOI: 10.1177/1744806919857297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shuo Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| | - Siyi Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| | - Linping Xu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| | - Xuan Zhu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,3 Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Wanyuan Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lixia Tian
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| | - Yu Chen
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuying Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| | - Borra V Padma Nagendra
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shushan Jia
- 3 Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Lingli Liang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| | - Fu-Quan Huo
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,2 Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Michael FM, Chandran P, Chandramohan K, Iyer K, Jayaraj K, Sundaramoorthy R, Venkatachalam S. Prospects of siRNA cocktails as tools for modifying multiple gene targets in the injured spinal cord. Exp Biol Med (Maywood) 2019; 244:1096-1110. [PMID: 31461324 DOI: 10.1177/1535370219871868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene silencing through RNA interference (RNAi) has been touted as a boon for identifying potential therapies for difficult-to-treat pathologies. In this regard, siRNA-mediated gene silencing for tackling the multifaceted pathophysiology of spinal cord injury seemed promising. The genes caspase 3 and sarm1 were targeted in the present study, using siRNAs in a rodent model of spinal cord injury, as the feasibility of concomitant silencing of more than one gene had not been previously attempted. The results indicated meager benefits in terms of functional recovery and tissue preservation. Interestingly, differential transfection efficiencies due to the heterogeneous nature of cells in the spinal cord along with variability in efficacy based on time of intervention affected the reproducibility of this approach. Complex gene interactions and inadequacies in molecular evaluation strategies further complicated the interpretation of the outcome. If these glitches are resolved through further research, gene therapy in general and RNAi, in particular, may become a mainstay approach for treating contusion spinal cord injury.Impact statementGene therapy has reached the level of clinical trials. However, safety and efficacy are yet to be confirmed. The present study tested the prospects of gene silencing using siRNAs in a rat model of spinal cord injury. Some noteworthy observations include the effective and long-lasting silencing effects of siRNAs, inhibition of one gene's expression resulting in silencing of multiple genes in associated pathways, possibility of targeting more than one gene through siRNA cocktails, and differential gene silencing effects based on temporal changes in their expression patterns. It is argued that differential uptake of siRNAs by cells as observed and limitations in the analysis methods available can skew interpretations. Thus, this study may serve as a cautionary tale indicating that gene silencing using siRNAs for spinal cord injury can be a potential therapy, but practical issues are to be addressed in order to ensure consistency and safety.
Collapse
Affiliation(s)
- Felicia Mary Michael
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | - Preeja Chandran
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | - Khaviyaa Chandramohan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | - Krithika Iyer
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | - Kevin Jayaraj
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | - Revathidevi Sundaramoorthy
- Department of Genetics, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| | - Sankar Venkatachalam
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India
| |
Collapse
|
9
|
Li YQ, Song FH, Zhong K, Yu GY, Zilundu PLM, Zhou YY, Fu R, Tang Y, Ling ZM, Xu X, Zhou LH. Pre-Injection of Small Interfering RNA (siRNA) Promotes c-Jun Gene Silencing and Decreases the Survival Rate of Axotomy-Injured Spinal Motoneurons in Adult Mice. J Mol Neurosci 2018; 65:400-410. [PMID: 29992498 DOI: 10.1007/s12031-018-1098-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Brachial plexus injury is a common clinical peripheral nerve trauma. A series of genes in motoneurons were activated in the corresponding segments of the spinal cord after brachial plexus roots axotomy. The spatial and temporal expression of these genes directly affects the speed of motoneuron axon regeneration and precise target organ reinnervation. In a previous study, we observed the overexpression of c-Jun in motoneurons of the spinal cord ventral horn after brachial plexus injury in rats. However, the relevance of c-Jun expression with respect to the fate of axotomy-induced branchial plexus injury in adult mice remains unknown. In the present study, we explored the function of c-Jun in motoneuron recovery after axotomy. We pre-injected small interfering RNA (siRNA) to knockdown c-Jun expression in mice and examined the effects of the overexpression of c-Jun in motoneurons after the axotomy of the brachial plexus in vivo. Axotomy induced c-Jun overexpression in the ventral horn motoneurons of adult mice from 3 to 14 days after injury. In addition, the pre-injection of siRNA transiently inhibited c-Jun expression and decreased the survival rate of axotomy-injured motoneurons. These findings indicate that the axotomy-induced overexpression of c-Jun plays an important role in the survival of ventral horn motoneurons in adult mice. In addition, the pre-injection of c-Jun siRNA through the brachial plexus stem effectively adjusts c-Jun gene expression at the ipsilateral side.
Collapse
Affiliation(s)
- Ying-Qin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, People's Republic of China
| | - Fa-Huan Song
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Guang-Yin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ying-Ying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Rao Fu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
10
|
刘 紫, 王 海, 唐 靖, 秦 再. [RhoA/Rho-kinase contributes to chronic pain following thoracotomy by up-regulating glutaminase 1 expression in rat spinal dorsal cord]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1358-1363. [PMID: 29070466 PMCID: PMC6743961 DOI: 10.3969/j.issn.1673-4254.2017.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate whether RhoA/Rho-kinase contributes to the occurrence of chronic post-thoracotomy pain (CPSP) by up regulation of glutaminase 1 (GLS1) expression in the spinal dorsal cord. METHODS Twenty five male Sprague Dawley (SD) rats were divided into control group (n=5) and model group (n=20). The rats in the model group were randomized into two sub groups (n=10) for observation on day 10 and day 21 after thoracotomy, and each group was further divided into CPSP and non CPSP groups according to the behavioral test results. All the rats were sacrificed after behavioral test for examination of GLS1 and RhoA expressions in the spinal cord using Western blotting and RT PCR. We also compared the effect of the Rho kinase inhibitor fasudil and saline, both injected intraperitoneally daily at 10 mg/kg for 7 consecutive days following thoracotomy, on CPSP and GLS1 expression in 30 male SD rats on day 21 after thoracotomy. RESULTS Compared with the control group, the rats with CPSP showed significantly increased expressions of GLS1 and RhoA mRNA in the spinal cord on both day 10 and day 21 following thoracotomy (P<0.01), but the rats without CPSP did not show obvious changes in GLS1 and RhoA expressions. In fasudil treated rats, the mechanical pain threshold was obviously increased and the expressions of GLS1 and RhoA were significantly reduced as compared with those in saline treated rats (P<0.01). CONCLUSION RhoA plays an important role in the occurence of CPSP by up-regulating the expression of GLS1 in the spinal dorsal cord of rats.
Collapse
Affiliation(s)
- 紫嫣 刘
- />南方医科大学南方医院麻醉科, 广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 海棠 王
- />南方医科大学南方医院麻醉科, 广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 靖 唐
- />南方医科大学南方医院麻醉科, 广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 再生 秦
- />南方医科大学南方医院麻醉科, 广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Gwak SJ, Macks C, Jeong DU, Kindy M, Lynn M, Webb K, Lee JS. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 2017; 121:155-166. [PMID: 28088077 DOI: 10.1016/j.biomaterials.2017.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 01/06/2023]
Abstract
Spinal cord injury (SCI) results in permanent loss of motor and sensory function due to developmentally-related and injured-induced changes in the extrinsic microenvironment and intrinsic neuronal biochemistry that limit plasticity and axonal regeneration. Our long term goal is to develop cationic, amphiphilic copolymers (poly (lactide-co-glycolide)-g-polyethylenimine, PgP) for combinatorial delivery of therapeutic nucleic acids (TNAs) and drugs targeting these different barriers. In this study, we evaluated the ability of PgP to deliver siRNA targeting RhoA, a critical signaling pathway activated by multiple extracellular inhibitors of axonal regeneration. After generation of rat compression SCI model, PgP/siRhoA polyplexes were locally injected into the lesion site. Relative to untreated injury only, PgP/siRhoA polyplexes significantly reduced RhoA mRNA and protein expression for up to 4 weeks post-injury. Histological analysis at 4 weeks post-injury showed that RhoA knockdown was accompanied by reduced apoptosis, cavity size, and astrogliosis and increased axonal regeneration within the lesion site. These studies demonstrate that PgP is an efficient non-viral delivery carrier for therapeutic siRhoA to the injured spinal cord and may be a promising platform for the development of combinatorial TNA/drug therapy.
Collapse
Affiliation(s)
- So-Jung Gwak
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Christian Macks
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Da Un Jeong
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Mark Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Michael Lynn
- Department of Neurosurgery, Greenville Health System, Greenville, SC 29615, USA
| | - Ken Webb
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
12
|
Kopp MA, Liebscher T, Watzlawick R, Martus P, Laufer S, Blex C, Schindler R, Jungehulsing GJ, Knüppel S, Kreutzträger M, Ekkernkamp A, Dirnagl U, Strittmatter SM, Niedeggen A, Schwab JM. SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open 2016; 6:e010651. [PMID: 27466236 PMCID: PMC4964175 DOI: 10.1136/bmjopen-2015-010651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The approved analgesic and anti-inflammatory drugs ibuprofen and indometacin block the small GTPase RhoA, a key enzyme that impedes axonal sprouting after axonal damage. Inhibition of the Rho pathway in a central nervous system-effective manner requires higher dosages compared with orthodox cyclooxygenase-blocking effects. Preclinical studies on spinal cord injury (SCI) imply improved motor recovery after ibuprofen/indometacin-mediated Rho inhibition. This has been reassessed by a meta-analysis of the underlying experimental evidence, which indicates an overall effect size of 20.2% regarding motor outcome achieved after ibuprofen/indometacin treatment compared with vehicle controls. In addition, ibuprofen/indometacin may also limit sickness behaviour, non-neurogenic systemic inflammatory response syndrome (SIRS), neuropathic pain and heterotopic ossifications after SCI. Consequently, 'small molecule'-mediated Rho inhibition after acute SCI warrants clinical investigation. METHODS AND ANALYSIS Protocol of an investigator-initiated clinical open-label pilot trial on high-dose ibuprofen treatment after acute traumatic, motor-complete SCI. A sample of n=12 patients will be enrolled in two cohorts treated with 2400 mg/day ibuprofen for 4 or 12 weeks, respectively. The primary safety end point is an occurrence of serious adverse events, primarily gastroduodenal bleedings. Secondary end points are pharmacokinetics, feasibility and preliminary effects on neurological recovery, neuropathic pain and heterotopic ossifications. The primary safety analysis is based on the incidence of severe gastrointestinal bleedings. Additional analyses will be mainly descriptive and casuistic. ETHICS AND DISSEMINATION The clinical trial protocol was approved by the responsible German state Ethics Board, and the Federal Institute for Drugs and Medical Devices. The study complies with the Declaration of Helsinki, the principles of Good Clinical Practice and all further applicable regulations. This safety and pharmacokinetics trial informs the planning of a subsequent randomised controlled trial. Regardless of the result of the primary and secondary outcome assessments, the clinical trial will be reported as a publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02096913; Pre-results.
Collapse
Affiliation(s)
- Marcel A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Ralf Watzlawick
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Martus
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christian Blex
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Schindler
- Division of Nephrology and Intensive Care, Department of Internal Medicine, Campus Virchow-Klinikum, Charité-University Medicine Berlin, Berlin, Germany
| | - Gerhard J Jungehulsing
- Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Knüppel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Germany
| | - Martin Kreutzträger
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Axel Ekkernkamp
- Trauma Surgery and Orthopedics Clinic, Trauma Hospital Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, USA
| | - Andreas Niedeggen
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Jan M Schwab
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany Department of Neurology, Spinal Cord Injury Division, The Ohio State University, Wexner Medical Center, Columbus, USA Department of Neuroscience and Center for Brain and Spinal Cord Repair, Department of Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, USA
| |
Collapse
|
13
|
Abstract
A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.
Collapse
Affiliation(s)
- Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Thomas AM, Palma JL, Shea LD. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release 2015; 204:1-10. [PMID: 25724274 DOI: 10.1016/j.jconrel.2015.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022]
Abstract
The environment within the spinal cord after injury, which changes in the progression from the acute to chronic stages, limits the extent of regeneration. The delivery of inductive factors to promote regeneration following spinal cord injury has been promising, yet, few strategies are versatile to allow delivery during acute or chronic injury that would facilitate screening of candidate therapies. This report investigates the intrathecal delivery of lentiviruses for long-term expression of regenerative factors. Lentivirus-filled sponges were inserted into the intrathecal space surrounding the spinal cord, with transgene expression observed within multiple cell types that persists for 12 weeks for both intact and injured spinal cord, without any apparent damage to the spinal cord tissue. Sponges loaded with lentivirus encoding for Sonic hedgehog (Shh) were investigated for acute (delivered at 0 weeks) and chronic (at 4 weeks) injuries, and for multiple locations relative to the injury. In an acute model, sponges placed directly above the injury increased oligodendrocyte and decreased astrocyte presence. Sponges placed caudal to the injury had reduced impact on oligodendrocytes and astrocytes in the injury. In a chronic model, sponges increased oligodendrocyte and decreased astrocyte presence. Furthermore, the effect of Shh was shown to be mediated in part by reduction of Bmp signaling, monitored with an Msx2-sensitive reporter vector. The implantation of lentivirus-loaded biomaterials intrathecally provides the opportunity to induce the expression of a factor at a specified time without entering the spinal cord, and has the potential to promote gene delivery within the spinal cord, which can influence the extent of regeneration.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
| | - Jaime L Palma
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA; Center for Reproductive Science (CRS), Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA.
| |
Collapse
|
15
|
Koch JC, Tönges L, Michel U, Bähr M, Lingor P. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells. Front Cell Neurosci 2014; 8:273. [PMID: 25249936 PMCID: PMC4155783 DOI: 10.3389/fncel.2014.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 12/26/2022] Open
Abstract
The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush.
Collapse
Affiliation(s)
- Jan Christoph Koch
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | - Lars Tönges
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medicine Göttingen Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medicine Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) Göttingen, Germany
| |
Collapse
|
16
|
Liu J, Pasini S, Shelanski ML, Greene LA. Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology. Front Cell Neurosci 2014; 8:177. [PMID: 25071442 PMCID: PMC4075335 DOI: 10.3389/fncel.2014.00177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/07/2014] [Indexed: 11/15/2022] Open
Abstract
The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology. shRNA-mediated silencing of ATF4 significantly reduces the densities of PSD-95 and GluR1 puncta (presumed markers of excitatory synapses) in long-term cultures of cortical and hippocampal neurons. ATF4 knockdown also decreases the density of mushroom spines and increases formation of abnormally-long dendritic filopodia in such cultures. In vivo knockdown of ATF4 in adult mouse hippocampal neurons also reduces mushroom spine density. In contrast, ATF4 over-expression does not affect the densities of PSD-95 puncta or mushrooom spines. Regulation of synaptic puncta and spine densities by ATF4 requires its transcriptional activity and is mediated at least in part by indirectly controlling the stability and expression of the total and active forms of the actin regulatory protein Cdc42. In support of such a mechanism, ATF4 silencing decreases the half-life of Cdc42 in cultured cortical neurons from 31.5 to 18.5 h while knockdown of Cdc42, like ATF4 knockdown, reduces the densities of mushroom spines and PSD-95 puncta. Thus, ATF4 appears to participate in neuronal development and plasticity by regulating the post-synaptic development of synapses and dendritic mushroom spines via a mechanism that includes regulation of Cdc42 levels.
Collapse
Affiliation(s)
- Jin Liu
- Department of Pathology and Cell Biology, Columbia University Medical Center New York, NY, USA
| | - Silvia Pasini
- Department of Pathology and Cell Biology, Columbia University Medical Center New York, NY, USA
| | - Michael L Shelanski
- Department of Pathology and Cell Biology, Columbia University Medical Center New York, NY, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center New York, NY, USA
| |
Collapse
|
17
|
Wang Y, Wu X, Zhong Y, Shen J, Wu X, Ju S, Wang X. Effects of histone deacetylase inhibition on the survival, proliferation and migration of Schwann cells, as well as on the expression of neurotrophic factors and genes associated with myelination. Int J Mol Med 2014; 34:599-605. [PMID: 24888454 DOI: 10.3892/ijmm.2014.1792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/06/2014] [Indexed: 11/06/2022] Open
Abstract
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, has been shown to have neuroprotective, neurotrophic and anti-inflammatory properties in both animal and cellular models of neurodegenerative disorders. In a previous study of ours, we demonstrated that TSA inhibited the proliferation and increased the differentiation of neuronal precursor cells (NPCs). However, the effects of TSA on Schwann cells (SCs) have not yet been fully elucidated. Thus, in the present study, using SCs derived from adult rat sciatic nerves, we investigated the effects of TSA on the survival, proliferation, migration and myelination of SCs. We found that TSA significantly induced SC death when used at high concentrations. We also observed that TSA promoted the proliferation of SCs in a time-dependent manner. In addition, TSA inhibited the migration of SCs. Moreover, RT-PCR revealed that TSA increased the mRNA expression of several neurotrophic factors and inhibited the expression of genes associated with myelination, including myelin basic protein (MBP) and myelin protein zero (MPZ). Taken together, our results suggest that TSA plays an important role in regulating the growth and biological function of SCs. These data may contribute to our understanding of TSA-based treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yazhou Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xingjun Wu
- Department of Neurology, Xuhui Central Hospital, Xuhui, Shanghai 200031, P.R. China
| | - Yueping Zhong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinhua Wu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaofei Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
18
|
Cheng X, Fu R, Gao M, Liu S, Li YQ, Song FH, Bruce I, Zhou LH, Wu W. Intrathecal application of short interfering RNA knocks down c-jun expression and augments spinal motoneuron death after root avulsion in adult rats. Neuroscience 2013; 241:268-79. [DOI: 10.1016/j.neuroscience.2013.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 12/21/2022]
|
19
|
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a major component of the glial scar that contributes to the limited regeneration of the CNS after axonal injury. However, the intracellular mechanisms that mediate the effects of CSPGs are not fully understood. Here we show that axonal growth inhibition mediated by CSPGs requires intra-axonal protein synthesis. Application of CSPGs to postnatal rat dorsal root ganglia axons results in an increase in the axonal levels of phosphorylated 4E-BP1, a marker of increased protein translation. Axons grown in media containing CSPGs exhibit markedly reduced growth rates, which can be restored by the selective application of protein synthesis inhibitors to distal axons. We show that these axons contain transcripts encoding RhoA, a regulator of the cytoskeleton that is commonly used by the signaling pathways activated by many inhibitors of axon growth. We also show that selective application of CSPGs to axons results in increased intra-axonal synthesis of RhoA and that depletion of RhoA transcripts from axons results in enhanced growth of axons in the presence of CSPGs. These data identify local translation as an effector pathway of CSPGs and demonstrate that local translation of RhoA contributes to the axon growth inhibitory effect of CSPGs.
Collapse
|
20
|
Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System. DRUG DELIVERY SYSTEMS: ADVANCED TECHNOLOGIES POTENTIALLY APPLICABLE IN PERSONALISED TREATMENT 2013. [DOI: 10.1007/978-94-007-6010-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Kopp MA, Liebscher T, Niedeggen A, Laufer S, Brommer B, Jungehulsing GJ, Strittmatter SM, Dirnagl U, Schwab JM. Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res 2012; 349:119-32. [PMID: 22350947 DOI: 10.1007/s00441-012-1334-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/16/2012] [Indexed: 01/16/2023]
Abstract
Limited axonal plasticity within the central nervous system (CNS) is a major restriction for functional recovery after CNS injury. The small GTPase RhoA is a key molecule of the converging downstream cascade that leads to the inhibition of axonal re-growth. The Rho-pathway integrates growth inhibitory signals derived from extracellular cues, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein, Ephrins and repulsive guidance molecule-A, into the damaged axon. Consequently, the activation of RhoA results in growth cone collapse and finally outgrowth failure. In turn, the inhibition of RhoA-activation blinds the injured axon to its growth inhibitory environment resulting in enhanced axonal sprouting and plasticity. This has been demonstrated in various CNS-injury models for direct RhoA-inhibition and for downstream/upstream blockade of the RhoA-associated pathway. In addition, RhoA-inhibition reduces apoptotic cell death and secondary damage and improves locomotor recovery in clinically relevant models after experimental spinal cord injury (SCI). Unexpectedly, a subset of "small molecules" from the group of non-steroid anti-inflammatory drugs, particularly the FDA-approved ibuprofen, has recently been identified as (1) inhibiting RhoA-activation, (2) enhancing axonal sprouting/regeneration, (3) protecting "tissue at risk" (neuroprotection) and (4) improving motor recovery confined to realistic therapeutical time-frames in clinically relevant SCI models. Here, we survey the effect of small-molecule-induced RhoA-inhibition on axonal plasticity and neurofunctional outcome in CNS injury paradigms. Furthermore, we discuss the body of preclinical evidence for a possible clinical translation with a focus on ibuprofen and illustrate putative risks and benefits for the treatment of acute SCI.
Collapse
Affiliation(s)
- M A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Barminko J, Kim JH, Otsuka S, Gray A, Schloss R, Grumet M, Yarmush ML. Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol Bioeng 2011; 108:2747-58. [PMID: 21656712 PMCID: PMC3178737 DOI: 10.1002/bit.23233] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/13/2022]
Abstract
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post-spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post-SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti-inflammatory cytokines upon induction with the pro-inflammatory factors, TNF-α and IFN-γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC-macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague-Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post-injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post-SCI indicated that as few as 5 × 10(4) encapsulated hMSC yielded increased numbers of CD206-expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post-CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection.
Collapse
Affiliation(s)
| | - Jae Hwan Kim
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Seiji Otsuka
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Andrea Gray
- Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rene Schloss
- Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Martin Grumet
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | |
Collapse
|
24
|
Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, Otsuka S, Sabaawy HE, Hart RP, Schachner M. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011; 33:1587-97. [PMID: 21447094 DOI: 10.1111/j.1460-9568.2011.07643.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) play important roles during development and also in adult organisms by regulating the expression of multiple target genes. Here, we studied the function of miR-133b during zebrafish spinal cord regeneration and show upregulation of miR-133b expression in regenerating neurons of the brainstem after transection of the spinal cord. miR-133b has been shown to promote tissue regeneration in other tissue, but its ability to do so in the nervous system has yet to be tested. Inhibition of miR-133b expression by antisense morpholino (MO) application resulted in impaired locomotor recovery and reduced regeneration of axons from neurons in the nucleus of the medial longitudinal fascicle, superior reticular formation and intermediate reticular formation. miR-133b targets the small GTPase RhoA, which is an inhibitor of axonal growth, as well as other neurite outgrowth-related molecules. Our results indicate that miR-133b is an important determinant in spinal cord regeneration of adult zebrafish through reduction in RhoA protein levels by direct interaction with its mRNA. While RhoA has been studied as a therapeutic target in spinal cord injury, this is the first demonstration of endogenous regulation of RhoA by a microRNA that is required for spinal cord regeneration in zebrafish. The ability of miR-133b to suppress molecules that inhibit axon regrowth may underlie the capacity for adult zebrafish to recover locomotor function after spinal cord injury.
Collapse
Affiliation(s)
- Young-Mi Yu
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|