1
|
Proctor JL, Xu S, Guo S, Piskoun B, Miller C, Roys S, Gullapalli RP, Fiskum G. Aeromedical evacuation-relevant hypobaria following traumatic brain injury in rats contributes to cerebral blood flow depression, altered neurochemistry, and increased neuroinflammation. J Cereb Blood Flow Metab 2024:271678X241299985. [PMID: 39696912 DOI: 10.1177/0271678x241299985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Aircraft cabins are routinely pressurized to the equivalent of 8000 ft altitude. Exposure of lab animals to aeromedical evacuation relevant hypobaria after traumatic brain injury worsens neurological outcomes, which is paradoxically exacerbated by hyperoxia. This study tested the hypothesis that exposure of rats to hypobaria following cortical impact reduces cerebral blood flow, increases neuroinflammation, and alters brain neurochemistry. Rats were exposed to simulated ground (normobaric) or air (hypobaric 8000 ft) transport, under normoxia or hyperoxia, 24 hr after trauma. Hypobaria exposure resulted in lower cerebral blood flow to the contralateral cortex and bilateral thalamus during flight and increased delayed cortical inflammation (ED1 immunoreactivity) at 14 days post injury. Impacted rats exposed to hypobaria had higher cortical creatine levels compared rats maintained at sea level. Exposure to the combination of hyperoxia and hypobaria resulted in the greatest reduction in cortical blood flow and total creatine during flight which persisted up to two weeks. In conclusion, hypoperfusion during hypobaria exposure could contribute to worsening of neuroinflammation and neurochemical imbalances. The presence of excessive O2 during hypobaria results in long-term suppression of cerebral blood flow, indicating that supplemental O2 should be titrated during hypobaria to maintain normoxia.
Collapse
Affiliation(s)
- Julie L Proctor
- Department of Anesthesiology and the Center for Shock Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sijia Guo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Boris Piskoun
- Department of Anesthesiology and the Center for Shock Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Catriona Miller
- Department of Anesthesiology and the Center for Shock Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven Roys
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gary Fiskum
- Department of Anesthesiology and the Center for Shock Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Dougan CE, Roberts BL, Crosby AJ, Karatsoreos IN, Peyton SR. Short-term neural and glial response to mild traumatic brain injury in the hippocampus. Biophys J 2024; 123:3346-3354. [PMID: 39091025 PMCID: PMC11480756 DOI: 10.1016/j.bpj.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to postmortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the cornu ammonis 3 region of the hippocampus dynamically alters synaptic release onto cornu ammonis 1 pyramidal neurons in a cannabinoid 1 receptor-dependent manner. Further, we show that NIC induces an increase in extracellular matrix protein GFAP associated with neural repair that is mitigated by cannabinoid 1 receptor antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level and the development of treatments that promote neural repair in response to brain injury.
Collapse
Affiliation(s)
- Carey E Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry and Department of Engineering, Smith College, Northampton, Massachusetts
| | - Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Zoology & Physiology, University of Wyoming, Laramie, Wyoming; Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.
| |
Collapse
|
3
|
Dougan CE, Roberts BL, Crosby AJ, Karatsoreos I, Peyton SR. Acute and Chronic Neural and Glial Response to Mild Traumatic Brain Injury in the Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587620. [PMID: 38617329 PMCID: PMC11014627 DOI: 10.1101/2024.04.01.587620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to post-mortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute and chronic cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the Cornu Ammonis (CA)3 region of the hippocampus dynamically alters synaptic release onto CA1 pyramidal neurons in a cannabinoid 1 receptor (CB1R)-dependent manner. Further, we show that NIC induces an increase in extracellular matrix proteins associated with neural repair that is mitigated by CB1R antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level, and the development of treatments that promote neural repair in response to brain injury.
Collapse
Affiliation(s)
- Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry and Department of Engineering, Smith College, Northampton, MA 01063
| | - Brandon L. Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 83072, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 83072, USA
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ilia Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Kim S, Ollinger J, Song C, Raiciulescu S, Seenivasan S, Wolfgang A, Kim H, Werner JK, Yeh PH. White Matter Alterations in Military Service Members With Remote Mild Traumatic Brain Injury. JAMA Netw Open 2024; 7:e248121. [PMID: 38635266 PMCID: PMC11161843 DOI: 10.1001/jamanetworkopen.2024.8121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Importance Mild traumatic brain injury (mTBI) is the signature injury experienced by military service members and is associated with poor neuropsychiatric outcomes. Yet, there is a lack of reliable clinical tools for mTBI diagnosis and prognosis. Objective To examine the white matter microstructure and neuropsychiatric outcomes of service members with a remote history of mTBI (ie, mTBI that occurred over 2 years ago) using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Design, Setting, and Participants This case-control study examined 98 male service members enrolled in a study at the National Intrepid Center of Excellence. Eligible participants were active duty status or able to enroll in the Defense Enrollment Eligibility Reporting system, ages 18 to 60 years, and had a remote history of mTBI; controls were matched by age. Exposures Remote history of mTBI. Main Outcomes and Measures White matter microstructure was assessed using a region-of-interest approach of skeletonized diffusion images, including DTI (fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity) and NODDI (orientation dispersion index [ODI], isotropic volume fraction, intra-cellular volume fraction). Neuropsychiatric outcomes associated with posttraumatic stress disorder (PTSD) and postconcussion syndrome were assessed. Results A total of 65 male patients with a remote history of mTBI (mean [SD] age, 40.5 [5.0] years) and 33 age-matched male controls (mean [SD] age, 38.9 [5.6] years) were included in analysis. Compared with the control cohort, the 65 service members with mTBI presented with significantly more severe PTSD-like symptoms (mean [SD] PTSD CheckList-Civilian [PCL-C] version scores: control, 19.0 [3.8] vs mTBI, 41.2 [11.6]; P < .001). DTI and NODDI metrics were altered in the mTBI group compared with the control, including intra-cellular volume fraction of the right cortico-spinal tract (β = -0.029, Cohen d = 0.66; P < .001), ODI of the left posterior thalamic radiation (β = -0.006, Cohen d = 0.55; P < .001), and ODI of the left uncinate fasciculus (β = 0.013, Cohen d = 0.61; P < .001). In service members with mTBI, fractional anisotropy of the left uncinate fasciculus was associated with postconcussion syndrome (β = 5.4 × 10-3; P = .003), isotropic volume fraction of the genu of the corpus callosum with PCL-C (β = 4.3 × 10-4; P = .01), and ODI of the left fornix and stria terminalis with PCL-C avoidance scores (β = 1.2 × 10-3; P = .02). Conclusions and Relevance In this case-control study of military-related mTBI, the results suggest that advanced magnetic resonance imaging techniques using NODDI can reveal white matter microstructural alterations associated with neuropsychiatric symptoms in the chronic phase of mTBI. Diffusion trends observed throughout widespread white matter regions-of-interest may reflect mechanisms of neurodegeneration as well as postinjury tissue scarring and reorganization.
Collapse
Affiliation(s)
- Sharon Kim
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Chihwa Song
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Sorana Raiciulescu
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Srija Seenivasan
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Aaron Wolfgang
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - J. Kent Werner
- School of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
5
|
Goeckner BD, Brett BL, Mayer AR, España LY, Banerjee A, Muftuler LT, Meier TB. Associations of prior concussion severity with brain microstructure using mean apparent propagator magnetic resonance imaging. Hum Brain Mapp 2024; 45:e26556. [PMID: 38158641 PMCID: PMC10789198 DOI: 10.1002/hbm.26556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Magnetic resonance imaging (MRI) diffusion studies have shown chronic microstructural tissue abnormalities in athletes with history of concussion, but with inconsistent findings. Concussions with post-traumatic amnesia (PTA) and/or loss of consciousness (LOC) have been connected to greater physiological injury. The novel mean apparent propagator (MAP) MRI is expected to be more sensitive to such tissue injury than the conventional diffusion tensor imaging. This study examined effects of prior concussion severity on microstructure with MAP-MRI. Collegiate-aged athletes (N = 111, 38 females; ≥6 months since most recent concussion, if present) completed semistructured interviews to determine the presence of prior concussion and associated injury characteristics, including PTA and LOC. MAP-MRI metrics (mean non-Gaussian diffusion [NG Mean], return-to-origin probability [RTOP], and mean square displacement [MSD]) were calculated from multi-shell diffusion data, then evaluated for associations with concussion severity through group comparisons in a primary model (athletes with/without prior concussion) and two secondary models (athletes with/without prior concussion with PTA and/or LOC, and athletes with/without prior concussion with LOC only). Bayesian multilevel modeling estimated models in regions of interest (ROI) in white matter and subcortical gray matter, separately. In gray matter, the primary model showed decreased NG Mean and RTOP in the bilateral pallidum and decreased NG Mean in the left putamen with prior concussion. In white matter, lower NG Mean with prior concussion was present in all ROI across all models and was further decreased with LOC. However, only prior concussion with LOC was associated with decreased RTOP and increased MSD across ROI. Exploratory analyses conducted separately in male and female athletes indicate associations in the primary model may differ by sex. Results suggest microstructural measures in gray matter are associated with a general history of concussion, while a severity-dependent association of prior concussion may exist in white matter.
Collapse
Affiliation(s)
- Bryna D. Goeckner
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Benjamin L. Brett
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research InstituteAlbuquerqueNew MexicoUSA
- Departments of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Lezlie Y. España
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Anjishnu Banerjee
- Department of BiostatisticsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - L. Tugan Muftuler
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Timothy B. Meier
- Department of NeurosurgeryMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Biomedical EngineeringMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
6
|
Shevelev OB, Cherkasova OP, Razumov IA, Zavjalov EL. In vivo MRS study of long-term effects of traumatic intracranial injection of a culture medium in mice. Vavilovskii Zhurnal Genet Selektsii 2023; 27:633-640. [PMID: 38223456 PMCID: PMC10784322 DOI: 10.18699/vjgb-23-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/21/2023] [Accepted: 06/01/2023] [Indexed: 01/16/2024] Open
Abstract
Orthotopic transplantation of glioblastoma cells in the brain of laboratory mice is a common animal model for studying brain tumors. It was shown that 1H magnetic resonance spectroscopy (MRS) enables monitoring of the tumor's occurrence and its development during therapy based on the ratio of several metabolites. However, in studying new approaches to the therapy of glioblastoma in the model of orthotopic xenotransplantation of glioma cells into the brain of mice, it is necessary to understand which metabolites are produced by a growing tumor and which are the result of tumor cells injection along the modeling of the pathology. Currently, there are no data on the dynamic metabolic processes in the brain that occur after the introduction of glioblastoma cells into the brain of mice. In addition, there is a lack of data on the delayed effects of invasive brain damage. Therefore, this study investigates the long-term dynamics of the neurometabolic profile, assessed using 1H MRS, after intracranial injection of a culture medium used in orthotopic modeling of glioma in mice. Levels of N-acetylaspartate, N-acetylaspartylglutamic acid, myoinositol, taurine, glutathione, the sum of glycerophosphocholine and phosphocholine, glutamic acid (Glu), glutamine (Gln), and gamma aminobutyric acid (GABA) indicate patterns of neurometabolites in the early stage after intracranial injection similar to brain trauma ones. Most of the metabolites, with the exception of Gln, Glu and GABA, returned to their original values on day 28 after injection. A progressive increase in the Glu/Gln and Glu/GABA ratio up to 28 days after surgery potentially indicates an impaired turnover of these metabolites or increased neurotransmission. Thus, the data indicate that the recovery processes are largely completed on day 28 after the traumatic event in the brain tissue, leaving open the question of the neurotransmitter system impairment. Consequently, when using animal models of human glioma, researchers should clearly distinguish between which changes in neurometabolites are a response to the injection of cancer cells into the brain, and which processes may indicate the early development of a brain tumor. It is important to keep this in mind when modeling human glioblastoma in mice and monitoring new treatments. In addition, these results may be important in the development of approaches for non-invasive diagnostics of traumatic brain injury as well as recovery and rehabilitation processes of patients after certain brain surgeries.
Collapse
Affiliation(s)
- O B Shevelev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute "International Tomografic Center" of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O P Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Technical University, Novosibirsk, Russia
| | - I A Razumov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E L Zavjalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Allen J, Pham L, Bond ST, O’Brien WT, Spitz G, Shultz SR, Drew BG, Wright DK, McDonald SJ. Acute effects of single and repeated mild traumatic brain injury on levels of neurometabolites, lipids, and mitochondrial function in male rats. Front Mol Neurosci 2023; 16:1208697. [PMID: 37456524 PMCID: PMC10338885 DOI: 10.3389/fnmol.2023.1208697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Mild traumatic brain injuries (mTBIs) are the most common form of acquired brain injury. Symptoms of mTBI are thought to be associated with a neuropathological cascade, potentially involving the dysregulation of neurometabolites, lipids, and mitochondrial bioenergetics. Such alterations may play a role in the period of enhanced vulnerability that occurs after mTBI, such that a second mTBI will exacerbate neuropathology. However, it is unclear whether mTBI-induced alterations in neurometabolites and lipids that are involved in energy metabolism and other important cellular functions are exacerbated by repeat mTBI, and if such alterations are associated with mitochondrial dysfunction. Methods In this experiment, using a well-established awake-closed head injury (ACHI) paradigm to model mTBI, male rats were subjected to a single injury, or five injuries delivered 1 day apart, and injuries were confirmed with a beam-walk task and a video observation protocol. Abundance of several neurometabolites was evaluated 24 h post-final injury in the ipsilateral and contralateral hippocampus using in vivo proton magnetic resonance spectroscopy (1H-MRS), and mitochondrial bioenergetics were evaluated 30 h post-final injury, or at 24 h in place of 1H-MRS, in the rostral half of the ipsilateral hippocampus. Lipidomic evaluations were conducted in the ipsilateral hippocampus and cortex. Results We found that behavioral deficits in the beam task persisted 1- and 4 h after the final injury in rats that received repetitive mTBIs, and this was paralleled by an increase and decrease in hippocampal glutamine and glucose, respectively, whereas a single mTBI had no effect on sensorimotor and metabolic measurements. No group differences were observed in lipid levels and mitochondrial bioenergetics in the hippocampus, although some lipids were altered in the cortex after repeated mTBI. Discussion The decrease in performance in sensorimotor tests and the presence of more neurometabolic and lipidomic abnormalities, after repeated but not singular mTBI, indicates that multiple concussions in short succession can have cumulative effects. Further preclinical research efforts are required to understand the underlying mechanisms that drive these alterations to establish biomarkers and inform treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon T. Bond
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - William T. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian G. Drew
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Mayer AR, Ling JM, Dodd AB, Stephenson DD, Pabbathi Reddy S, Robertson-Benta CR, Erhardt EB, Harms RL, Meier TB, Vakhtin AA, Campbell RA, Sapien RE, Phillips JP. Multicompartmental models and diffusion abnormalities in paediatric mild traumatic brain injury. Brain 2022; 145:4124-4137. [PMID: 35727944 DOI: 10.1093/brain/awac221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 01/23/2023] Open
Abstract
The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA.,Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA
| | | | | | | | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Richard A Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - John P Phillips
- The Mind Research Network/LBERI, Albuquerque, NM 87106, USA.,Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Exploration of RCBF and Metabolic Changes in the Brain Functional Areas of Patients with Hypothyroidism by ASL and MRS Techniques. DISEASE MARKERS 2022; 2022:9204119. [PMID: 36277976 PMCID: PMC9586791 DOI: 10.1155/2022/9204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Objective To study the regional cerebral blood flow (rCBF) in important brain functional areas and the metabolic levels of these brain functional areas in patients with primary hypothyroidism by using arterial spin labeling (ASL) and magnetic resonance spectroscopy (MRS) techniques to explain the possible causes of brain dysfunction in patients with primary hypothyroidism. Methods Twenty-five patients with primary hypothyroidism (newly diagnosed and not treated) who were treated in the endocrinology department of our hospital were selected as the research group, and 25 healthy patients with normal thyroid function who came to our hospital during the same period with matched gender and age were selected as the control group. ASL and MRS techniques were used to detect and calculate regional cerebral blood flow (rCBF) in the frontal lobe, hippocampus, and posterior cingulate gyrus, as well as N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho) in the brain/Cr, and inositol/creatine (mI/Cr) ratio. The correlations between metabolite ratios measured by rCBF, MRS, and serum TSH, FT3, and FT4 levels were analyzed. Results Compared with the control group, the rCBF in the frontal lobe, hippocampus, and posterior cingulate gyrus of the dominant hemisphere of the hypothyroid patients in the study group decreased significantly (P < 0.05). The comparison of metabolite ratios showed that compared with the control group, the NAA/Cr ratio of the frontal lobe and posterior cingulate gyrus of the study group was significantly decreased, and the Cho/Cr ratio of the posterior cingulate gyrus of the study group was significantly increased. The MI/Cr ratio of the hippocampus was significantly decreased (all P values < 0.05). Correlation analysis showed that rCBF and NAA/Cr in posterior cingulate gyrus were significantly negatively correlated with serum TSH levels (P < 0.05). Conclusion The changes of rCBF and metabolite ratios in the frontal lobe, hippocampus, and posterior cingulate gyrus of patients with primary hypothyroidism can be detected using ASL and MRS techniques. The changes of rCBF and metabolite ratio and their negative correlation with serum TSH level are helpful to explain the causes of brain dysfunction in patients with primary hypothyroidism.
Collapse
|
10
|
Li B, Zhang D, Verkhratsky A. Astrocytes in Post-traumatic Stress Disorder. Neurosci Bull 2022; 38:953-965. [PMID: 35349095 PMCID: PMC8960712 DOI: 10.1007/s12264-022-00845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
11
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
12
|
Hutchinson E, Osting S, Rutecki P, Sutula T. Diffusion Tensor Orientation as a Microstructural MRI Marker of Mossy Fiber Sprouting After TBI in Rats. J Neuropathol Exp Neurol 2021; 81:27-47. [PMID: 34865073 DOI: 10.1093/jnen/nlab123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diffusion tensor imaging (DTI) metrics are highly sensitive to microstructural brain alterations and are potentially useful imaging biomarkers for underlying neuropathologic changes after experimental and human traumatic brain injury (TBI). As potential imaging biomarkers require direct correlation with neuropathologic alterations for validation and interpretation, this study systematically examined neuropathologic abnormalities underlying alterations in DTI metrics in the hippocampus and cortex following controlled cortical impact (CCI) in rats. Ex vivo DTI metrics were directly compared with a comprehensive histologic battery for neurodegeneration, microgliosis, astrocytosis, and mossy fiber sprouting by Timm histochemistry at carefully matched locations immediately, 48 hours, and 4 weeks after injury. DTI abnormalities corresponded to spatially overlapping but temporally distinct neuropathologic alterations representing an aggregate measure of dynamic tissue damage and reorganization. Prominent DTI alterations of were observed for both the immediate and acute intervals after injury and associated with neurodegeneration and inflammation. In the chronic period, diffusion tensor orientation in the hilus of the dentate gyrus became prominently abnormal and was identified as a reliable structural biomarker for mossy fiber sprouting after CCI in rats, suggesting potential application as a biomarker to follow secondary progression in experimental and human TBI.
Collapse
Affiliation(s)
- Elizabeth Hutchinson
- From the Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA (EH); and Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA (SO, PR, TS)
| | - Susan Osting
- From the Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA (EH); and Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA (SO, PR, TS)
| | - Paul Rutecki
- From the Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA (EH); and Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA (SO, PR, TS)
| | - Thomas Sutula
- From the Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA (EH); and Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA (SO, PR, TS)
| |
Collapse
|
13
|
Javaid S, Farooq T, Rehman Z, Afzal A, Ashraf W, Rasool MF, Alqahtani F, Alsanea S, Alasmari F, Alanazi MM, Alharbi M, Imran I. Dynamics of Choline-Containing Phospholipids in Traumatic Brain Injury and Associated Comorbidities. Int J Mol Sci 2021; 22:ijms222111313. [PMID: 34768742 PMCID: PMC8583393 DOI: 10.3390/ijms222111313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Ammara Afzal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
- Correspondence: ; Tel.: +966-114697749
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.A.); (M.M.A.); (M.A.)
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.J.); (T.F.); (Z.R.); (A.A.); (W.A.); (I.I.)
| |
Collapse
|
14
|
Ramos-Languren LE, Avila-Luna A, García-Díaz G, Rodríguez-Labrada R, Vázquez-Mojena Y, Parra-Cid C, Montes S, Bueno-Nava A, González-Piña R. Glutamate, Glutamine, GABA and Oxidative Products in the Pons Following Cortical Injury and Their Role in Motor Functional Recovery. Neurochem Res 2021; 46:3179-3189. [PMID: 34387812 DOI: 10.1007/s11064-021-03417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl2, 50 mM); and the recovery group (n = 20), in which rats were injured and allowed to recover. Beam-walking, sensorimotor and spontaneous motor activity tests were performed to evaluate motor performance after injury. Lipid fluorescent products (LFPs) were measured in the pons. The total pontine contents of glutamate (GLU), glutamine (GLN) and gamma-aminobutyric acid (GABA) were also measured. In injured rats, the motor deficits, LFPs and total GABA and GLN contents in the pons were increased, while the GLU level was decreased. In contrast, in recovering rats, none of the studied variables were significantly different from those in sham rats. Thus, motor impairment after cortical injury seems to be mediated by an inhibitory pontine response, and functional recovery may result from a pontine restoration of the GLN-GLU-GABA cycle, while LP may be a primary mechanism leading to remote pontine inhibition after cortical injury.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Faculty of Psychology, Coordination of Psychobiology and Neurosciences, National Autonomous University of Mexico, Av. Universidad 3040 Col, Copilco Universidad Alcaldía Coyoacán, 04510, Mexico City, Mexico
| | - Alberto Avila-Luna
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Gabriela García-Díaz
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- School of Physical Culture, University of Holguín, Avenida XX Aniversario, 80100, Holguín, Cuba
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Yaimee Vázquez-Mojena
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Carmen Parra-Cid
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Sergio Montes
- Reynosa-Aztlan Multidisciplinary Unit, Autonomous University of Tamaulipas, Fuente de Diana, Aztlán, 88740, Tamaulipas, Mexico
| | - Antonio Bueno-Nava
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratory of Aging Biology, National Geriatric Institute, Av. Contreras 428 Col. San Jerónimo Lídice Alcaldía Magdalena Contreras, 10200, Mexico City, Mexico.
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
- Department of Special Education, University of the Americas Mexico City College, Puebla # 223 Col. Roma Alcaldía Cuauhtemoc, 06700, Mexico City, Mexico.
| |
Collapse
|
15
|
Wang R, Hu B, Sun C, Geng D, Lin J, Li Y. Metabolic abnormality in acute stroke-like lesion and its relationship with focal cerebral blood flow in patients with MELAS: Evidence from proton MR spectroscopy and arterial spin labeling. Mitochondrion 2021; 59:276-282. [PMID: 34186261 DOI: 10.1016/j.mito.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Abstract
Our purpose is to detect the metabolic alterations in acute stroke-like lesions (SLLs) and further investigate the correlations between metabolic concentrations and focal cerebral blood flow in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) using proton MR spectroscopy (1H-MRS) and arterial spin labeling (ASL). A total of 23 patients with MELAS at acute stage of stroke-like episodes (SLEs) and 20 normal controls (NC) were recruited in this study, respectively. All subjects underwent conventional MRI and1H-MRS. In addition, ASL was performed in each patient. The measurements of creatine (Cr), choline (Cho), N-acetyl aspartate (NAA), lactate (Lac), glutamine/glutamate (Glx) levels and the ratios of Cho/Cr, NAA/Cr, Lac/Cr and Glx/Cr in acute SLLs for MELAS patients and left parietal and occipital lobes for NC were measured using LC-model software. Furthermore, in MELAS group, the associations between relative cerebral blood flow (rCBF) and metabolite concentrations in acute SLLs were also assessed. In MELAS group, acute SLLs were identified with metabolic abnormalities and increased rCBF. Specifically, compared with controls, MELAS patients exhibited significantly higher Lac, Cho levels and Lac/Cr, Cho/Cr ratios, and lower NAA, Glx levels and NAA/Cr and Glx/Cr ratios. Moreover, for MELAS patients, Lac concentration in acute SLLs was positively correlated with focal rCBF. This study exhibited the neural injury with increasing lactate and cerebral blood flow in the acute SLEs. It might shed light on the underlying biochemical mechanism of mitochondrial cytopathy and angiopathy in MELAS.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Bin Hu
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yuxin Li
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China.
| |
Collapse
|
16
|
Rudroff T, Workman CD. Transcranial Direct Current Stimulation as a Treatment Tool for Mild Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11060806. [PMID: 34207004 PMCID: PMC8235194 DOI: 10.3390/brainsci11060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short- and long-term motor and cognitive impairments. Recent studies have documented the therapeutic potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique used for this purpose is transcranial direct current stimulation (tDCS). The focus of this review was to provide a detailed, comprehensive (i.e., both cognitive and motor impairment) overview of the literature regarding therapeutic tDCS paradigms after mTBI. A publication search of the PubMed, Scopus, CINAHL, and PsycINFO databases was performed to identify records that applied tDCS in mTBI. The publication search yielded 14,422 records from all of the databases, however, only three met the inclusion criteria and were included in the final review. Based on the review, there is limited evidence of tDCS improving cognitive and motor performance. Surprisingly, there were only three studies that used tDCS in mTBI, which highlights an urgent need for more research to provide additional insights into ideal therapeutic brain targets and optimized stimulation parameters.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
17
|
DeVience SJ, Lu X, Proctor JL, Rangghran P, Medina JA, Melhem ER, Gullapalli RP, Fiskum G, Mayer D. Enhancing Metabolic Imaging of Energy Metabolism in Traumatic Brain Injury Using Hyperpolarized [1- 13C]Pyruvate and Dichloroacetate. Metabolites 2021; 11:metabo11060335. [PMID: 34073714 PMCID: PMC8225170 DOI: 10.3390/metabo11060335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022] Open
Abstract
Hyperpolarized magnetic resonance spectroscopic imaging (MRSI) of [1-13C]pyruvate metabolism has previously been used to assess the effects of traumatic brain injury (TBI) in rats. Here, we show that MRSI can be used in conjunction with dichloroacetate to measure the phosphorylation state of pyruvate dehydrogenase (PDH) following mild-to-moderate TBI, and that measurements can be repeated in a longitudinal study to monitor the course of injury progression and recovery. We found that the level of 13C-bicarbonate and the bicarbonate-to-lactate ratio decreased on the injured side of the brain four hours after injury and continued to decrease through day 7. Levels recovered to normal by day 28. Measurements following dichloroacetate administration showed that PDH was inhibited equally by PDH kinase (PDK) on both sides of the brain. Therefore, the decrease in aerobic metabolism is not due to inhibition by PDK.
Collapse
Affiliation(s)
- Stephen J. DeVience
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.J.D.); (X.L.); (E.R.M.); (R.P.G.)
- Center for Metabolic Imaging & Therapeutics (CMIT), University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Xin Lu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.J.D.); (X.L.); (E.R.M.); (R.P.G.)
- Center for Metabolic Imaging & Therapeutics (CMIT), University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Julie L. Proctor
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.L.P.); (P.R.); (J.A.M.); (G.F.)
| | - Parisa Rangghran
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.L.P.); (P.R.); (J.A.M.); (G.F.)
| | - Juliana A. Medina
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.L.P.); (P.R.); (J.A.M.); (G.F.)
| | - Elias R. Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.J.D.); (X.L.); (E.R.M.); (R.P.G.)
- Center for Metabolic Imaging & Therapeutics (CMIT), University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.J.D.); (X.L.); (E.R.M.); (R.P.G.)
- Center for Metabolic Imaging & Therapeutics (CMIT), University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Gary Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.L.P.); (P.R.); (J.A.M.); (G.F.)
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.J.D.); (X.L.); (E.R.M.); (R.P.G.)
- Center for Metabolic Imaging & Therapeutics (CMIT), University of Maryland Medical Center, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
18
|
Li Y, Liu K, Li C, Guo Y, Fang J, Tong H, Tang Y, Zhang J, Sun J, Jiao F, Zhang Q, Jin R, Xiong K, Chen X. 18F-FDG PET Combined With MR Spectroscopy Elucidates the Progressive Metabolic Cerebral Alterations After Blast-Induced Mild Traumatic Brain Injury in Rats. Front Neurosci 2021; 15:593723. [PMID: 33815036 PMCID: PMC8012735 DOI: 10.3389/fnins.2021.593723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
A majority of blast-induced mild traumatic brain injury (mTBI) patients experience persistent neurological dysfunction with no findings on conventional structural MR imaging. It is urgent to develop advanced imaging modalities to detect and understand the pathophysiology of blast-induced mTBI. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) could detect neuronal function and activity of the injured brain, while MR spectroscopy provides complementary information and assesses metabolic irregularities following injury. This study aims to investigate the effectiveness of combining 18F-FDG PET with MR spectroscopy to evaluate acute and subacute metabolic cerebral alterations caused by blast-induced mTBI. Thirty-two adult male Sprague–Dawley rats were exposed to a single blast (mTBI group) and 32 rats were not exposed to the blast (sham group), followed by 18F-FDG PET, MRI, and histological evaluation at baseline, 1–3 h, 1 day, and 7 days post-injury in three separate cohorts. 18F-FDG uptake showed a transient increase in the amygdala and somatosensory cortex, followed by a gradual return to baseline from day 1 to 7 days post-injury and a continuous rise in the motor cortex. In contrast, decreased 18F-FDG uptake was seen in the midbrain structures (inferior and superior colliculus). Analysis of MR spectroscopy showed that inflammation marker myo-inositol (Ins), oxidative stress marker glutamine + glutamate (Glx), and hypoxia marker lactate (Lac) levels markedly elevated over time in the somatosensory cortex, while the major osmolyte taurine (Tau) level immediately increased at 1–3 h and 1 day, and then returned to sham level on 7 days post-injury, which could be due to the disruption of the blood–brain barrier. Increased 18F-FDG uptake and elevated Ins and Glx levels over time were confirmed by histology analysis which showed increased microglial activation and gliosis in the frontal cortex. These results suggest that 18F-FDG PET and MR spectroscopy can be used together to reflect more comprehensive neuropathological alterations in vivo, which could improve our understanding of the complex alterations in the brain after blast-induced mTBI.
Collapse
Affiliation(s)
- Yang Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Tang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Fangyang Jiao
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianhui Zhang
- Department of Foreign Language, Army Medical University, Chongqing, China
| | - Rongbing Jin
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
19
|
Soni N, Medeiros R, Alateeq K, To XV, Nasrallah FA. Diffusion Tensor Imaging Detects Acute Pathology-Specific Changes in the P301L Tauopathy Mouse Model Following Traumatic Brain Injury. Front Neurosci 2021; 15:611451. [PMID: 33716645 PMCID: PMC7943881 DOI: 10.3389/fnins.2021.611451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked with tauopathy. However, imaging methods that can non-invasively detect tau-protein abnormalities following TBI need further investigation. This study aimed to investigate the potential of diffusion tensor imaging (DTI) to detect tauopathy following TBI in P301L mutant-tau-transgenic-pR5-mice. A total of 24 9-month-old pR5 mice were randomly assigned to sham and TBI groups. Controlled cortical injuries/craniotomies were performed for TBI/sham groups followed by DTI data acquisition on days 1 and 7 post-injury. DTI data were analyzed by using voxelwise analysis and track-based spatial statistics for gray matter and white matter. Further, immunohistochemistry was performed for total-tau and phosphorylated-tau, astrocytes, and microglia. To detect the association of DTI with these pathological markers, a correlation analysis was performed between DTI and histology findings. At day 1 post-TBI, DTI revealed a widespread reduction in fractional anisotropy (FA) and axial diffusivity (AxD) in the TBI group compared to shams. On day 7, further reduction in FA, AxD, and mean diffusivity and increased radial diffusivity were observed. FA was significantly increased in the amygdala and cortex. Correlation results showed that in the ipsilateral hemisphere FA reduction was associated with increased phosphorylated-tau and glial-immunoreactivity, whereas in the contralateral regions, the FA increase was associated with increased immunostaining for astrocytes. This study is the first to exploit DTI to investigate the effect of TBI in tau-transgenic mice. We show that alterations in the DTI signal were associated with glial activity following TBI and would most likely reflect changes that co-occur with/without phosphorylated-tau. In addition, FA may be a promising measure to identify discrete pathological processes such as increased astroglia activation, tau-hyperphosphorylation or both in the brain following TBI.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
20
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
21
|
|
22
|
Xu S, Tang S, Li X, Iyer SR, Lovering RM. Abnormalities in Brain and Muscle Microstructure and Neurochemistry of the DMD Rat Measured by in vivo Diffusion Tensor Imaging and High Resolution Localized 1H MRS. Front Neurosci 2020; 14:739. [PMID: 32760246 PMCID: PMC7372970 DOI: 10.3389/fnins.2020.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of dystrophin with progressive degeneration of skeletal muscles. Most studies regarding DMD understandably focus on muscle, but dystrophin is also expressed in the central nervous system, potentially resulting in cognitive and behavioral changes. Animal models are being used for developing more comprehensive neuromonitoring protocols and clinical image acquisition procedures. The recently developed DMD rat is an animal model that parallels the progressive muscle wasting seen in DMD. Here, we studied the brain and temporalis muscle structure and neurochemistry of wild type (WT) and dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both structural and neurochemistry alterations were observed in the DMD rat brain and the temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3; DMD = 1501 mm3; p = 0.039, Cohen’s d = 1.867), but not normalized (WT = 4.27; DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain volume correlated to severity of muscle dystrophy (r = −0.975). Neurochemical changes in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and GABA in the hippocampus. Such findings could indicate disturbed motor and sensory signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable osmoregulation in the dystrophin-null brain.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xin Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Effect of Methionine Diet on Time-Related Metabolic and Histopathological Changes of Rat Hippocampus in the Model of Global Brain Ischemia. Biomolecules 2020; 10:biom10081128. [PMID: 32751764 PMCID: PMC7465067 DOI: 10.3390/biom10081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer's disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
Collapse
|
24
|
Postnatal Guinea Pig Brain Development, as Revealed by Magnetic Resonance and Diffusion Kurtosis Imaging. Brain Sci 2020; 10:brainsci10060365. [PMID: 32545593 PMCID: PMC7349860 DOI: 10.3390/brainsci10060365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
This study used in vivo magnetic resonance imaging (MRI) to identify age dependent brain structural characteristics in Dunkin Hartley guinea pigs. Anatomical T2-weighted images, diffusion kurtosis (DKI) imaging, and T2 relaxometry measures were acquired from a cohort of male guinea pigs from postnatal day (PND) 18–25 (juvenile) to PND 46–51 (adolescent) and PND 118–123 (young adult). Whole-brain diffusion measures revealed the distinct effects of maturation on the microstructural complexity of the male guinea pig brain. Specifically, fractional anisotropy (FA), as well as mean, axial, and radial kurtosis in the corpus callosum, amygdala, dorsal-ventral striatum, and thalamus significantly increased from PND 18–25 to PND 118–123. Age-related alterations in DKI measures within these brain regions paralleled the overall alterations observed in the whole brain. Age-related changes in FA and kurtosis in the gray matter-dominant parietal cerebral cortex and dorsal hippocampus were less pronounced than in the other brain regions. The regional data analysis revealed that between-age changes of diffusion kurtosis metrics were more pronounced than those observed in diffusion tensor metrics. The age-related anatomical differences reported here may be important determinants of the age-dependent neurobehavior of guinea pigs in different tasks.
Collapse
|
25
|
Sheth C, Prescot AP, Legarreta M, Renshaw PF, McGlade E, Yurgelun-Todd D. Increased myoinositol in the anterior cingulate cortex of veterans with a history of traumatic brain injury: a proton magnetic resonance spectroscopy study. J Neurophysiol 2020; 123:1619-1629. [DOI: 10.1152/jn.00765.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study of veterans, we used a state-of-the-art neuroimaging tool to probe the neurometabolic profile of the anterior cingulate cortex in veterans with traumatic brain injury (TBI). We report significantly elevated myoinositol levels in veterans with TBI compared with those without TBI.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, Utah
| | - Andrew P. Prescot
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, Utah
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, Utah
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, Utah
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, Utah
| |
Collapse
|
26
|
Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 2020; 328:113247. [PMID: 32061629 DOI: 10.1016/j.expneurol.2020.113247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.
Collapse
|
27
|
Guan Y, Li L, Chen J, Lu H. Effect of AQP4-RNAi in treating traumatic brain edema: Multi-modal MRI and histopathological changes of early stage edema in a rat model. Exp Ther Med 2020; 19:2029-2036. [PMID: 32104262 PMCID: PMC7027281 DOI: 10.3892/etm.2020.8456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and permanent disabilities worldwide. Brain edema following TBI remains to be the predominant cause of mortality and disability in patients worldwide. Previous studies have reported that brain edema is closely associated with aquaporin-4 (AQP4) expression. AQP4 is a water channel protein and mediates water homeostasis in a variety of brain disorders. In the current study, a rat TBI model was established, and the features of brain edema following TBI were assessed using multimodal MRI. The results of the multimodal MRI were useful, reliable and were used to evaluate the extent and the type of brain edema following TBI. Brain edema was also successfully alleviated using an intracerebral injection of AQP4 small interfering (si)RNA. The expression of AQP4 and its role in brain edema were also examined in the present study. The AQP4 siRNA was demonstrated to downregulate AQP4 expression following TBI and reduced brain edema at the early stages of TBI (6 and 12 h). The current study revealed the MRI features of brain edema and the changes in AQP4 expression exhibited following TBI, and the results provide important information that can be used to improve the early diagnosis and treatment of brain edema.
Collapse
Affiliation(s)
- Ying Guan
- Department of Ultrasonography, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Jianqiang Chen
- Department of Radiology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hong Lu
- Department of Radiology, The Seventh People's Hospital of Chongqing, Chongqing 400054, P.R. China
| |
Collapse
|
28
|
Taylor PN, Moreira da Silva N, Blamire A, Wang Y, Forsyth R. Early deviation from normal structural connectivity: A novel intrinsic severity score for mild TBI. Neurology 2020; 94:e1021-e1026. [PMID: 31937623 PMCID: PMC7238920 DOI: 10.1212/wnl.0000000000008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
Objective Studies of outcome after traumatic brain injury (TBI) are hampered by the lack of robust injury severity measures that can accommodate spatial-anatomical and mechanistic heterogeneity. In this study we introduce a Mahalanobis distance measure (M) as an intrinsic injury severity measure that combines in a single score the many ways a given injured brain's connectivity can vary from that of healthy controls. Our objective is to test the hypotheses that M is superior to univariate measures in (1) discriminating patients and controls and (2) correlating with cognitive assessment. Methods Sixty-five participants (34 with mild TBI, 31 controls) underwent diffusion tensor MRI and extensive neuropsychological testing. Structural connectivity was inferred for all participants for 22 major white matter connections. Twenty-two univariate measures (1 per connection) and 1 multivariate measure (M), capturing and summarizing all connectivity change in a single score, were computed. Results Our multivariate measure (M) was able to better discriminate between patients and controls (area under the curve 0.81) than any individual univariate measure. M significantly correlated with cognitive outcome (Spearman ρ = 0.31; p < 0.05). No univariate measure showed significant correlation after correction for multiple comparisons. Conclusions Heterogeneity in the severity and distribution of injuries after TBI has traditionally complicated the understanding of outcomes after TBI. Our approach provides a single, continuous variable that can fully capture individual heterogeneity. M's ability to distinguish even mildly injured patients from controls and its correlation with cognitive assessment suggest utility as an imaging-based marker of intrinsic injury severity.
Collapse
Affiliation(s)
- Peter Neal Taylor
- From the Interdisciplinary Complex Systems Group, School of Computing (P.N.T., N.M.d.S., Y.W.), Institute of Neuroscience, Faculty of Medical Sciences (P.N.T., Y.W., R.F.), and Institute of Cellular Medicine & Newcastle MR Centre (A.B.), Newcastle University, Newcastle Upon Tyne; and Institute of Neurology (P.N.T., Y.W.), University College London, UK.
| | - Nádia Moreira da Silva
- From the Interdisciplinary Complex Systems Group, School of Computing (P.N.T., N.M.d.S., Y.W.), Institute of Neuroscience, Faculty of Medical Sciences (P.N.T., Y.W., R.F.), and Institute of Cellular Medicine & Newcastle MR Centre (A.B.), Newcastle University, Newcastle Upon Tyne; and Institute of Neurology (P.N.T., Y.W.), University College London, UK
| | - Andrew Blamire
- From the Interdisciplinary Complex Systems Group, School of Computing (P.N.T., N.M.d.S., Y.W.), Institute of Neuroscience, Faculty of Medical Sciences (P.N.T., Y.W., R.F.), and Institute of Cellular Medicine & Newcastle MR Centre (A.B.), Newcastle University, Newcastle Upon Tyne; and Institute of Neurology (P.N.T., Y.W.), University College London, UK
| | - Yujiang Wang
- From the Interdisciplinary Complex Systems Group, School of Computing (P.N.T., N.M.d.S., Y.W.), Institute of Neuroscience, Faculty of Medical Sciences (P.N.T., Y.W., R.F.), and Institute of Cellular Medicine & Newcastle MR Centre (A.B.), Newcastle University, Newcastle Upon Tyne; and Institute of Neurology (P.N.T., Y.W.), University College London, UK
| | - Rob Forsyth
- From the Interdisciplinary Complex Systems Group, School of Computing (P.N.T., N.M.d.S., Y.W.), Institute of Neuroscience, Faculty of Medical Sciences (P.N.T., Y.W., R.F.), and Institute of Cellular Medicine & Newcastle MR Centre (A.B.), Newcastle University, Newcastle Upon Tyne; and Institute of Neurology (P.N.T., Y.W.), University College London, UK
| |
Collapse
|
29
|
Kovalska M, Hnilicova P, Kalenska D, Tothova B, Adamkov M, Lehotsky J. Effect of Methionine Diet on Metabolic and Histopathological Changes of Rat Hippocampus. Int J Mol Sci 2019; 20:ijms20246234. [PMID: 31835644 PMCID: PMC6941024 DOI: 10.3390/ijms20246234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) is regarded as an independent and strong risk factor for cerebrovascular diseases, stroke, and dementias. The hippocampus has a crucial role in spatial navigation and memory processes and is being constantly studied for neurodegenerative disorders. We used a moderate methionine (Met) diet at a dose of 2 g/kg of animal weight/day in duration of four weeks to induce mild hHcy in adult male Wistar rats. A novel approach has been used to explore the hippocampal metabolic changes using proton magnetic resonance spectroscopy (1H MRS), involving a 7T MR scanner in combination with histochemical and immunofluorescence analysis. We found alterations in the metabolic profile, as well as remarkable histo-morphological changes such as an increase of hippocampal volume, alterations in number and morphology of astrocytes, neurons, and their processes in the selective vulnerable brain area of animals treated with a Met-enriched diet. Results of both methodologies suggest that the mild hHcy induced by Met-enriched diet alters volume, histo-morphological pattern, and metabolic profile of hippocampal brain area, which might eventually endorse the neurodegenerative processes.
Collapse
Affiliation(s)
- Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Petra Hnilicova
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Barbara Tothova
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Jan Lehotsky
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence: ; Tel.: +421-43-2633-821
| |
Collapse
|
30
|
Pierre WC, Akakpo L, Londono I, Pouliot P, Chemtob S, Lesage F, Lodygensky GA. Assessing therapeutic response non-invasively in a neonatal rat model of acute inflammatory white matter injury using high-field MRI. Brain Behav Immun 2019; 81:348-360. [PMID: 31247289 DOI: 10.1016/j.bbi.2019.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/20/2019] [Accepted: 06/22/2019] [Indexed: 12/19/2022] Open
Abstract
Perinatal infection and inflammatory episodes in preterm infants are associated with diffuse white matter injury (WMI) and adverse neurological outcomes. Inflammation-induced WMI was previously shown to be linked with later hippocampal atrophy as well as learning and memory impairments in preterm infants. Early evaluation of injury load and therapeutic response with non-invasive tools such as multimodal magnetic resonance imaging (MRI) would greatly improve the search of new therapeutic approaches in preterm infants. Our aim was to evaluate the potential of multimodal MRI to detect the response of interleukin-1 receptor antagonist (IL-1Ra) treatment, known for its neuroprotective properties, during the acute phase of injury on a model of neonatal WMI. Rat pups at postnatal day 3 (P3) received intracerebral injection of lipopolysaccharide with systemic IL-1Ra therapy. 24 h later (P4), rats were imaged with multimodal MRI to assess microstructure by diffusion tensor imaging (DTI) and neurochemical profile of the hippocampus with 1H-magnetic resonance spectroscopy. Astrocyte and microglial activation, apoptosis and the mRNA expression of pro-inflammatory and necroptotic markers were assessed. During the acute phase of injury, neonatal LPS exposure altered the concentration of hippocampus metabolites related to neuronal integrity, neurotransmission and membrane integrity and induced diffusivity restriction. Just 24 h after initiation of therapy, early indication of IL-1Ra neuroprotective effect could be detected in vivo by non-invasive spectroscopy and DTI, and confirmed with immunohistochemical evaluation and mRNA expression of inflammatory markers and cell death. In conclusion, multimodal MRI, particularly DTI, can detect not only injury but also the acute therapeutic effect of IL-1Ra suggesting that MRI could be a useful non-invasive tool to follow, at early time points, the therapeutic response in preterm infants.
Collapse
Affiliation(s)
- Wyston C Pierre
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada
| | - Luis Akakpo
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; École Polytechnique de Montréal, Montreal, QC, Canada
| | - Irène Londono
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Gregory A Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada; Montreal Heart Institute, Montreal, QC, Canada.
| |
Collapse
|
31
|
Yasmin A, Pitkänen A, Jokivarsi K, Poutiainen P, Gröhn O, Immonen R. MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex - A 6-Months Multimodal Imaging Follow-Up Study. Front Neurosci 2019; 13:863. [PMID: 31474824 PMCID: PMC6707062 DOI: 10.3389/fnins.2019.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Amna Yasmin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
32
|
Kinder HA, Baker EW, Wang S, Fleischer CC, Howerth EW, Duberstein KJ, Mao H, Platt SR, West FD. Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model. J Neurotrauma 2019; 36:2930-2942. [PMID: 31084386 DOI: 10.1089/neu.2018.6303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in children. Pediatric TBI patients often suffer from crippling cognitive, emotional, and motor function deficits that have negative lifelong effects. The objective of this study was to longitudinally assess TBI pathophysiology using multi-parametric magnetic resonance imaging (MRI), gait analysis, and histological approaches in a pediatric piglet model. TBI was produced by controlled cortical impact in Landrace piglets. MRI data, including from proton magnetic resonance spectroscopy (MRS), were collected 24 hours and 12 weeks post-TBI, and gait analysis was performed at multiple time-points over 12 weeks post-TBI. A subset of animals was sacrificed 24 hours, 1 week, 4 weeks, and 12 weeks post-TBI for histological analysis. MRI results demonstrated that TBI led to a significant brain lesion and midline shift as well as microscopic tissue damage with altered brain diffusivity, decreased white matter integrity, and reduced cerebral blood flow. MRS showed a range of neurochemical changes after TBI. Histological analysis revealed neuronal loss, astrogliosis/astrocytosis, and microglia activation. Further, gait analysis showed transient impairments in cadence, cycle time, % stance, step length, and stride length, as well as long-term impairments in weight distribution after TBI. Taken together, this study illustrates the distinct time course of TBI pathoanatomic and functional responses up to 12 weeks post-TBI in a piglet TBI model. The study of TBI injury and recovery mechanisms, as well as the testing of therapeutics in this translational model, are likely to be more predictive of human responses and clinical outcomes compared to traditional small animal models.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Silun Wang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
33
|
Gupte R, Christian S, Keselman P, Habiger J, Brooks WM, Harris JL. Evaluation of taurine neuroprotection in aged rats with traumatic brain injury. Brain Imaging Behav 2019; 13:461-471. [PMID: 29656312 PMCID: PMC6186512 DOI: 10.1007/s11682-018-9865-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite higher rates of hospitalization and mortality following traumatic brain injury (TBI) in patients over 65 years old, older patients remain underrepresented in drug development studies. Worse outcomes in older individuals compared to younger adults could be attributed to exacerbated injury mechanisms including oxidative stress, inflammation, blood-brain barrier disruption, and bioenergetic dysfunction. Accordingly, pleiotropic treatments are attractive candidates for neuroprotection. Taurine, an endogenous amino acid with antioxidant, anti-inflammatory, anti-apoptotic, osmolytic, and neuromodulator effects, is neuroprotective in adult rats with TBI. However, its effects in the aged brain have not been evaluated. We subjected aged male rats to a unilateral controlled cortical impact injury to the sensorimotor cortex, and randomized them into four treatment groups: saline or 25 mg/kg, 50 mg/kg, or 200 mg/kg i.p. taurine. Treatments were administered 20 min post-injury and daily for 7 days. We assessed sensorimotor function on post-TBI days 1-14 and tissue loss on day 14 using T2-weighted magnetic resonance imaging. Experimenters were blinded to the treatment group for the duration of the study. We did not observe neuroprotective effects of taurine on functional impairment or tissue loss in aged rats after TBI. These findings in aged rats are in contrast to previous reports of taurine neuroprotection in younger animals. Advanced age is an important variable for drug development studies in TBI, and further research is required to better understand how aging may influence mechanisms of taurine neuroprotection.
Collapse
Affiliation(s)
- Raeesa Gupte
- Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-3519,
| | - Sarah Christian
- Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-9070,
| | - Paul Keselman
- Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-9079,
| | - Joshua Habiger
- Department of Biostatistics, University of Kansas Medical Center, KS 66160, USA, 405-744-9657,
| | - William M. Brooks
- Department of Neurology, Director, Hoglund Brain Imaging Center, Director, University of Kansas Alzheimer’s Disease Center Neuroimaging Core, University of Kansas Medical Center, KS 66160, USA, 913-588-9075,
| | - Janna L. Harris
- Department of Anatomy & Cell Biology, Director, Animal Magnetic Resonance Imaging Core, Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-9076,
| |
Collapse
|
34
|
Lawrence TP, Steel A, Ezra M, Speirs M, Pretorius PM, Douaud G, Sotiropoulos S, Cadoux-Hudson T, Emir UE, Voets NL. MRS and DTI evidence of progressive posterior cingulate cortex and corpus callosum injury in the hyper-acute phase after Traumatic Brain Injury. Brain Inj 2019; 33:854-868. [PMID: 30848964 PMCID: PMC6619394 DOI: 10.1080/02699052.2019.1584332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The posterior cingulate cortex (PCC) and corpus callosum (CC) are susceptible to trauma, but injury often evades detection. PCC Metabolic disruption may predict CC white matter tract injury and the secondary cascade responsible for progression. While the time frame for the secondary cascade remains unclear in humans, the first 24 h (hyper-acute phase) are crucial for life-saving interventions. Objectives: To test whether Magnetic Resonance Imaging (MRI) markers are detectable in the hyper-acute phase and progress after traumatic brain injury (TBI) and whether alterations in these parameters reflect injury severity. Methods: Spectroscopic and diffusion-weighted MRI data were collected in 18 patients with TBI (within 24 h and repeated 7–15 days following injury) and 18 healthy controls (scanned once). Results: Within 24 h of TBI N-acetylaspartate was reduced (F = 11.43, p = 0.002) and choline increased (F = 10.67, p = 0.003), the latter driven by moderate-severe injury (F = 5.54, p = 0.03). Alterations in fractional anisotropy (FA) and axial diffusivity (AD) progressed between the two time-points in the splenium of the CC (p = 0.029 and p = 0.013). Gradual reductions in FA correlated with progressive increases in choline (p = 0.029). Conclusions: Metabolic disruption and structural injury can be detected within hours of trauma. Metabolic and diffusion parameters allow identification of severity and provide evidence of injury progression.
Collapse
Affiliation(s)
- Tim P Lawrence
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Adam Steel
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,c Laboratory of Brain and Cognition , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Martyn Ezra
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Mhairi Speirs
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Pieter M Pretorius
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Gwenaelle Douaud
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Stamatios Sotiropoulos
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,d Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham , Nottingham , UK.,e National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre , Nottingham , UK
| | - Tom Cadoux-Hudson
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Uzay E Emir
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,f School of Health Sciences , Purdue University , West Lafayette , IN , USA
| | - Natalie L Voets
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| |
Collapse
|
35
|
Ellingson BM, Yao J, Raymond C, Chakhoyan A, Khatibi K, Salamon N, Villablanca JP, Wanner I, Real CR, Laiwalla A, McArthur DL, Monti MM, Hovda DA, Vespa PM. pH-weighted molecular MRI in human traumatic brain injury (TBI) using amine proton chemical exchange saturation transfer echoplanar imaging (CEST EPI). Neuroimage Clin 2019; 22:101736. [PMID: 30826686 PMCID: PMC6396390 DOI: 10.1016/j.nicl.2019.101736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 02/24/2019] [Indexed: 12/28/2022]
Abstract
Cerebral acidosis is a consequence of secondary injury mechanisms following traumatic brain injury (TBI), including excitotoxicity and ischemia, with potentially significant clinical implications. However, there remains an unmet clinical need for technology for non-invasive, high resolution pH imaging of human TBI for studying metabolic changes following injury. The current study examined 17 patients with TBI and 20 healthy controls using amine chemical exchange saturation transfer echoplanar imaging (CEST EPI), a novel pH-weighted molecular MR imaging technique, on a clinical 3T MR scanner. Results showed significantly elevated pH-weighted image contrast (MTRasym at 3 ppm) in areas of T2 hyperintensity or edema (P < 0.0001), and a strong negative correlation with Glasgow Coma Scale (GCS) at the time of the MRI exam (R2 = 0.4777, P = 0.0021), Glasgow Outcome Scale - Extended (GOSE) at 6 months from injury (R2 = 0.5334, P = 0.0107), and a non-linear correlation with the time from injury to MRI exam (R2 = 0.6317, P = 0.0004). This evidence suggests clinical feasibility and potential value of pH-weighted amine CEST EPI as a high-resolution imaging tool for identifying tissue most at risk for long-term damage due to cerebral acidosis.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jingwen Yao
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasra Khatibi
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J Pablo Villablanca
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ina Wanner
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Courtney R Real
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Azim Laiwalla
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David L McArthur
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin M Monti
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David A Hovda
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Paul M Vespa
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
Zhuang Z, Shen Z, Chen Y, Dai Z, Zhang X, Mao Y, Zhang B, Zeng H, Chen P, Wu R. Mapping the Changes of Glutamate Using Glutamate Chemical Exchange Saturation Transfer (GluCEST) Technique in a Traumatic Brain Injury Model: A Longitudinal Pilot Study. ACS Chem Neurosci 2019; 10:649-657. [PMID: 30346712 DOI: 10.1021/acschemneuro.8b00482] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glutamate excitoxicity plays a crucial role in the pathophysiology of traumatic brain injury (TBI) through the initiation of secondary injuries. Glutamate chemical exchange saturation transfer (GluCEST) MRI is a newly developed technique to noninvasively image glutamate in vivo with high sensitivity and spatial resolution. The aim of the present study was to use a rat model of TBI to map changes in brain glutamate distribution and explore the capability of GluCEST imaging for detecting secondary injuries. Sequential GluCEST imaging scans were performed in adult male Sprague-Dawley rats before TBI and at 1, 3, 7, and 14 days after TBI. GluCEST% increased and peaked on day 1 after TBI in the core lesion of injured cortex and peaked on day 3 in the ipsilateral hippocampus, as compared to baseline and controls. GluCEST% gradually declined to baseline by day 14 after TBI. A negative correlation between the GluCEST% of the ipsilateral hippocampus on day 3 and the time in the correct quadrant was observed in injured rats. Immunolabeling for glial fibrillary acidic protein showed significant astrocyte activation in the ipsilateral hippocampus of TBI rats. IL-6 and TNF-α in the core lesion peaked on day 1 postinjury, while those in the ipsilateral hippocampus peaked on day 3. These subsequently gradually declined to sham levels by day 14. It was concluded that GluCEST imaging has potential to be a novel neuroimaging approach for predicting cognitive outcome and to better understand neuroinflammation following TBI.
Collapse
Affiliation(s)
- Zerui Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Zhiwei Shen
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Yanzi Chen
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Zhuozhi Dai
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Xiaolei Zhang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Yifei Mao
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Bingna Zhang
- Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Haiyan Zeng
- Medical College of Shantou University, Shantou 515041, China
| | - Peidong Chen
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| |
Collapse
|
37
|
Tang S, Powell EM, Zhu W, Lo FS, Erzurumlu RS, Xu S. Altered Forebrain Functional Connectivity and Neurotransmission in a Kinase-Inactive Met Mouse Model of Autism. Mol Imaging 2019; 18:1536012118821034. [PMID: 30799683 PMCID: PMC6322103 DOI: 10.1177/1536012118821034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
MET, the gene encoding the tyrosine kinase receptor for hepatocyte growth factor, is a susceptibility gene for autism spectrum disorder (ASD). Genetically altered mice with a kinase-inactive Met offer a potential model for understanding neural circuit organization changes in autism. Here, we focus on the somatosensory thalamocortical circuitry because distinct somatosensory sensitivity phenotypes accompany ASD, and this system plays a major role in sensorimotor and social behaviors in mice. We employed resting-state functional magnetic resonance imaging and in vivo high-resolution proton MR spectroscopy to examine neuronal connectivity and neurotransmission of wild-type, heterozygous Met-Emx1, and fully inactive homozygous Met-Emx1 mice. Met-Emx1 brains showed impaired maturation of large-scale somatosensory network connectivity when compared with wild-type controls. Significant sex × genotype interaction in both network features and glutamate/gamma-aminobutyric acid (GABA) balance was observed. Female Met-Emx1 brains showed significant connectivity and glutamate/GABA balance changes in the somatosensory thalamocortical system when compared with wild-type brains. The glutamate/GABA ratio in the thalamus was correlated with the connectivity between the somatosensory cortex and the thalamus in heterozygous Met-Emx1 female brains. The findings support the hypothesis that aberrant functioning of the somatosensory thalamocortical system is at the core of the conspicuous somatosensory behavioral phenotypes observed in Met-Emx1 mice.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M. Powell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Metabolite differences between glutamate carboxypeptidase II gene knockout mice and their wild-type littermates after traumatic brain injury: a 7-tesla 1H-MRS study. BMC Neurosci 2018; 19:75. [PMID: 30458729 PMCID: PMC6245916 DOI: 10.1186/s12868-018-0473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a complex condition and remains a prominent public and medical health issue in individuals of all ages. A rapid increase in extracellular glutamate occurs after TBI, leading to glutamate-induced excitotoxicity, which causes neuronal damage and further functional impairments. Although inhibition of glutamate carboxypeptidase II (GCP II) is considered a potential approach for reducing glutamate-induced excitotoxicity after TBI, further detailed evidence regarding its efficacy is required. Therefore, in this study, we examined the differences in the metabolite status between wild-type (WT) and GCP II gene-knockout (KO) mice after TBI using proton magnetic resonance spectroscopy (1H-MRS) and T2-weighted magnetic resonance (MR) imaging with a 7-tesla imaging system, and brain water-content analysis. Results Evaluation of glutamate and N-acetylaspartate concentrations revealed a decrease in both levels in the ipsilateral hippocampus at 24 h post-TBI; however, the reduction in glutamate and N-acetylaspartate levels was less marked in GCP II-KO mice than in WT mice (p < 0.05). T2 MR data and brain water-content analysis demonstrated that the extent of cortical edema and brain swelling was less in KO than in WT mice after TBI (p < 0.05). Conclusion Using two non-invasive methods, 1H-MRS and T2 MR imaging, as well as in vitro brain-water content measurements, we demonstrated that the mechanism underlying the neuroprotective effects of GCP II-KO against brain swelling in TBI involves changes in glutamate and N-acetylaspartate levels. This knowledge may contribute towards the development of therapeutic strategies for TBI.
Collapse
|
39
|
Pérès EA, Etienne O, Grigis A, Boumezbeur F, Boussin FD, Le Bihan D. Longitudinal Study of Irradiation-Induced Brain Microstructural Alterations With S-Index, a Diffusion MRI Biomarker, and MR Spectroscopy. Int J Radiat Oncol Biol Phys 2018; 102:1244-1254. [DOI: 10.1016/j.ijrobp.2018.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/19/2017] [Accepted: 01/22/2018] [Indexed: 01/19/2023]
|
40
|
Blood-Based Glutamate Scavengers Reverse Traumatic Brain Injury-Induced Synaptic Plasticity Disruption by Decreasing Glutamate Level in Hippocampus Interstitial Fluid, but Not Cerebral Spinal Fluid, In Vivo. Neurotox Res 2018; 35:360-372. [DOI: 10.1007/s12640-018-9961-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
|
41
|
McDonald WS, Jones EE, Wojciak JM, Drake RR, Sabbadini RA, Harris NG. Matrix-Assisted Laser Desorption Ionization Mapping of Lysophosphatidic Acid Changes after Traumatic Brain Injury and the Relationship to Cellular Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1779-1793. [PMID: 30037420 PMCID: PMC6099387 DOI: 10.1016/j.ajpath.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) levels increase in the cerebrospinal fluid and blood within 24 hours after traumatic brain injury (TBI), indicating it may be a biomarker for subsequent cellular pathology. However, no data exist that document this association after TBI. We, therefore, acquired matrix-assisted laser desorption ionization imaging mass spectrometry data of LPA, major LPA metabolites, and hemoglobin from adult rat brains at 1 and 3 hours after controlled cortical impact injury. Data were semiquantitatively assessed by signal intensity analysis normalized to naïve rat brains acquired concurrently. Gray and white matter pathology was assessed on adjacent sections using immunohistochemistry for cell death, axonal injury, and intracellular LPA, to determine the spatiotemporal patterning of LPA corresponding to pathology. The results revealed significant increases in LPA and LPA precursors at 1 hour after injury and robust enhancement in LPA diffusively throughout the brain at 3 hours after injury. Voxel-wise analysis of LPA by matrix-assisted laser desorption ionization and β-amyloid precursor protein by immunohistochemistry in adjacent sections showed significant association, raising the possibility that LPA is linked to secondary axonal injury. Total LPA and metabolites were also present in remotely injured areas, including cerebellum and brain stem, and in particular thalamus, where intracellular LPA is associated with cell death. LPA may be a useful biomarker of cellular pathology after TBI.
Collapse
Affiliation(s)
- Whitney S McDonald
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth E Jones
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Richard R Drake
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
42
|
Zhang P, Zhu S, Zhao M, Dai Y, Zhang L, Ding S, Zhao P, Li J. Integration of 1H NMR- and UPLC-Q-TOF/MS-based plasma metabonomics study to identify diffuse axonal injury biomarkers in rat. Brain Res Bull 2018; 140:19-27. [DOI: 10.1016/j.brainresbull.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
43
|
Watve A, Gupta M, Khushu S, Rana P. Longitudinal changes in gray matter regions after cranial radiation and comparative analysis with whole body radiation: a DTI study. Int J Radiat Biol 2018; 94:532-541. [PMID: 29659316 DOI: 10.1080/09553002.2018.1466064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Radiation-induced white matter changes are well known and vastly studied. However, radiation-induced gray matter alterations are still a research question. In the present study, these changes were assessed in a longitudinal manner using Diffusion Tensor Imaging (DTI) and further compared for cranial and whole body radiation exposure. MATERIALS AND METHODS Male mice (C57BL/6) were irradiated with cranial or whole body radiation followed by DTI study at 7T animal MRI system during predose, subacute and early delayed phases of radiation sickness. Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained from brain's gray matter regions. RESULTS Decreased FA with increased MD was observed prominently in animals exposed to cranial radiation showing most changes at 8 months post irradiation. However, whole body radiation induced FA changes were mostly observed at 1 month post irradiation as compared to controls. CONCLUSIONS The differential response after whole body and cranial irradiation observed in the study depicts that radiation exposure of 5 Gy could induce permanent alterations in gray matter regions prominently as observed in Caudoputamen region at all the time points. Thus, our study has bolstered the role of DTI to probe microstructural changes in gray matter regions of brain after radiation exposure.
Collapse
Affiliation(s)
- Apurva Watve
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Mamta Gupta
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Subash Khushu
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Poonam Rana
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| |
Collapse
|
44
|
Abstract
During the acute time period following traumatic brain injury (TBI), noninvasive brain imaging tools such as magnetic resonance imaging (MRI) can provide important information about the clinical and pathological features of the injury and may help predict long-term outcomes. In addition to standard imaging approaches, several quantitative MRI techniques including relaxometry and diffusion MRI have been identified as promising reporters of cellular alterations after TBI and may provide greater sensitivity and specificity for identifying brain abnormalities especially in mild TBI. However, for these imaging tools to be useful, it is crucial to define their relationship with the neurophysiological response to brain injury. Recently, a model of controlled cortical impact (CCI) has been developed in the ferret which has many advantages compared with rodent models (e.g., gyrencephalic cortex and high white matter volume). The objective of this study was to evaluate quantitative MRI metrics in the ferret CCI model, including T2 values and diffusion tensor imaging (DTI) metrics, during the acute time period. Longitudinal quantitative comparisons of in vivo MRI and DTI metrics were evaluated to identify abnormalities and characterize their spatial patterns in the ferret brain. Ex vivo MRI and DTI maps were then compared with histological staining for glial and neuronal abnormalities. The main findings of this article describe T2, diffusivity, and anisotropy markers of tissue change during the acute time period following mild TBI, and ex vivo analyses suggest that MRI and DTI markers are sensitive to subtle cellular alterations in this model. This was confirmed by comparison with immunohistochemistry, also showing altered markers in regions of MRI and DTI change.
Collapse
|
45
|
España LY, Lee RM, Ling JM, Jeromin A, Mayer AR, Meier TB. Serial Assessment of Gray Matter Abnormalities after Sport-Related Concussion. J Neurotrauma 2017; 34:3143-3152. [DOI: 10.1089/neu.2017.5002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lezlie Y. España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan M. Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
46
|
Menshchikov PE, Semenova NA, Akhadov TA, Bozhko OV, Varfolomeev SD. An Increase in Cerebral γ-Amino Butyric Acid Concentration in Children with Mild Traumatic Brain Injury in the Acute Phase: 1H MRS Study. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917060161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Singh K, Trivedi R, Verma A, D'souza MM, Koundal S, Rana P, Baishya B, Khushu S. Altered metabolites of the rat hippocampus after mild and moderate traumatic brain injury - a combined in vivo and in vitro 1 H-MRS study. NMR IN BIOMEDICINE 2017; 30:e3764. [PMID: 28759166 DOI: 10.1002/nbm.3764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 05/13/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Traumatic brain injury (TBI) has been shown to affect hippocampus-associated learning, memory and higher cognitive functions, which may be a consequence of metabolic alterations. Hippocampus-associated disorders may vary depending on the severity of injury [mild TBI (miTBI) and moderate TBI (moTBI)] and time since injury. The underlying hippocampal metabolic irregularities may provide an insight into the pathological process following TBI. In this study, in vivo and in vitro proton magnetic resonance spectroscopy (1 H-MRS) data were acquired from the hippocampus region of controls and TBI groups (miTBI and moTBI) at D0 (pre-injury), 4 h, Day 1 and Day 5 post-injury (PI). In vitro MRS results indicated trauma-induced changes in both miTBI and moTBI; however, in vivo MRS showed metabolic alterations in moTBI only. miTBI and moTBI showed elevated levels of osmolytes indicating injury-induced edema. Altered levels of citric acid cycle intermediates, glutamine/glutamate and amino acid metabolism indicated injury-induced aberrant bioenergetics, excitotoxicity and oxidative stress. An overall similar pattern of pathological process was observed in both miTBI and moTBI, with the distinction of depleted N-acetylaspartate levels (indicating neuronal loss) at 4 h and Day 1 and enhanced lactate production (indicating heightened energy depletion leading to the commencement of the anaerobic pathway) at Day 5 in moTBI. To the best of our knowledge, this is the first study to investigate the hippocampus metabolic profile in miTBI and moTBI simultaneously using in vivo and in vitro MRS.
Collapse
Affiliation(s)
- Kavita Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Richa Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ajay Verma
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Maria M D'souza
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sunil Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bikash Baishya
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
48
|
Li J, Zhao C, Rao JS, Yang FX, Wang ZJ, Lei JF, Yang ZY, Li XG. Structural and metabolic changes in the traumatically injured rat brain: high-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 2017; 59:1203-1212. [PMID: 28856389 DOI: 10.1007/s00234-017-1915-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. METHODS Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. RESULTS Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1H MRS parameters were observed between day 1 and day 3. CONCLUSION Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair.
Collapse
Affiliation(s)
- Jing Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fei-Xiang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhan-Jing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing, 100069, China
| | - Jian-Feng Lei
- Medical Experiment and Test Center, Capital Medical University, Beijing, 100069, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China. .,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
49
|
Wright DK, Johnston LA, Kershaw J, Ordidge R, O'Brien TJ, Shultz SR. Changes in Apparent Fiber Density and Track-Weighted Imaging Metrics in White Matter following Experimental Traumatic Brain Injury. J Neurotrauma 2017; 34:2109-2118. [DOI: 10.1089/neu.2016.4730] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- David K. Wright
- Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Leigh A. Johnston
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Electrical & Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Jeff Kershaw
- Applied MRI Research, National Institute of Radiological Sciences, QST, Chiba, Japan
| | - Roger Ordidge
- Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J. O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R. Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Tang S, Xu S, Fourney WL, Leiste UH, Proctor JL, Fiskum G, Gullapalli RP. Central Nervous System Changes Induced by Underbody Blast-Induced Hyperacceleration: An in Vivo Diffusion Tensor Imaging and Magnetic Resonance Spectroscopy Study. J Neurotrauma 2017; 34:1972-1980. [DOI: 10.1089/neu.2016.4650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
- Core for Translational Research in Imaging at Maryland, University of Maryland, Baltimore, Maryland
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
- Core for Translational Research in Imaging at Maryland, University of Maryland, Baltimore, Maryland
| | - William L. Fourney
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland
- Center of Energetics Concepts Development, University of Maryland, College Park, Maryland
| | - Ulrich H. Leiste
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland
- Center of Energetics Concepts Development, University of Maryland, College Park, Maryland
| | - Julie L. Proctor
- Department of Anesthesiology, University of Maryland, Baltimore, Maryland
- Shock, Trauma, and Anesthesiology Research Center, University of Maryland, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore, Maryland
- Shock, Trauma, and Anesthesiology Research Center, University of Maryland, Baltimore, Maryland
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
- Core for Translational Research in Imaging at Maryland, University of Maryland, Baltimore, Maryland
| |
Collapse
|