1
|
Aleem M, Verma P, Manda K. Conceptualization and standardization of a non-invasive closed head injury model using directed shockwave to mice. Exp Neurol 2025; 384:115051. [PMID: 39536962 DOI: 10.1016/j.expneurol.2024.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with closed head injury (CHI) being one of the most common forms of TBI. Preclinical modeling of TBI is challenging due to confounding factors like craniectomy and poorly controlled injury severity. This study proposes a non-invasive CHI model using directed shockwaves. The mice heads were exposed to the shockwave and accommodated together following the implantation of RFID tags for automated neurocognitive assessment. Following a 13-days paradigm, mice underwent a digital gait analysis and subsequent classical behavioral test paradigms for affective, cognitive, and locomotor functions. Qualitative and quantitative histopathological assessment was carried out for shockwave pulses-dependent changes in terms of lesion volume, neuronal death, dendritic complexity, and spine density. Studies showed shockwave pulses-dependent differences in survivability, righting reflex, neural damage, and death. Shockwave-exposed mice showed significantly impaired learning and cognitive flexibility. Interestingly, exposed mice showed locomotor hyperactivity and risk-taking behavior (lack of anxiety) along with depression-like phenotypes. Our result suggests that the shockwave-based CHI models result in the clinically relevant phenotype and are precisely controlled for reproducibility.
Collapse
Affiliation(s)
- Mohd Aleem
- Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India
| | - Princy Verma
- Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India
| | - Kailash Manda
- Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India.
| |
Collapse
|
2
|
Song YM, Qian Y, Su WQ, Liu XH, Huang JH, Gong ZT, Luo HL, Gao C, Jiang RC. Differences in pathological changes between two rat models of severe traumatic brain injury. Neural Regen Res 2019; 14:1796-1804. [PMID: 31169198 PMCID: PMC6585550 DOI: 10.4103/1673-5374.257534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/10/2019] [Indexed: 01/11/2023] Open
Abstract
The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans, while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters. In this study, we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences. The severe controlled cortical impact model was produced by an electronic controlled cortical impact device, while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube. Body temperature and mortality were recorded, and neurological deficits were assessed with the modified neurological severity score. Brain edema and blood-brain barrier damage were evaluated by assessing brain water content and Evans blue extravasation. In addition, a cytokine array kit was used to detect inflammatory cytokines. Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining. Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations. More severe motor dysfunction was observed in the severe controlled cortical impact model, while more severe cognitive dysfunction was observed in the severe free weight drop model. Brain edema, inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group. The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage, with higher mortality and lower repeatability compared with the severe controlled cortical impact group. Severe brainstem damage was not found in the severe controlled cortical impact model. These results indicate that the severe controlled cortical impact model is relatively more stable, more reproducible, and shows obvious cerebral pathological changes at an earlier stage. Therefore, the severe controlled cortical impact model is likely more suitable for studies on severe focal traumatic brain injury, while the severe free weight drop model may be more apt for studies on diffuse axonal injury. All experimental procedures were approved by the Ethics Committee of Animal Experiments of Tianjin Medical University, China (approval No. IRB2012-028-02) in February 2012.
Collapse
Affiliation(s)
- Yi-Ming Song
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Wan-Qiang Su
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Xuan-Hui Liu
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Jin-Hao Huang
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Zhi-Tao Gong
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Hong-Liang Luo
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
3
|
Combined Blockade of Interleukin-1α and -1β Signaling Protects Mice from Cognitive Dysfunction after Traumatic Brain Injury. eNeuro 2018; 5:eN-NWR-0385-17. [PMID: 29662944 PMCID: PMC5898697 DOI: 10.1523/eneuro.0385-17.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
Diffuse activation of interleukin-1 inflammatory cytokine signaling after traumatic brain injury (TBI) elicits progressive neurodegeneration and neuropsychiatric dysfunction, and thus represents a potential opportunity for therapeutic intervention. Although interleukin (IL)-1α and IL-1β both activate the common type 1 IL-1 receptor (IL-1RI), they manifest distinct injury-specific roles in some models of neurodegeneration. Despite its potential relevance to treating patients with TBI, however, the individual contributions of IL-1α and IL-1β to TBI-pathology have not been previously investigated. To address this need, we applied genetic and pharmacologic approaches in mice to dissect the individual contributions of IL-1α, IL-β, and IL-1RI signaling to the pathophysiology of fluid percussion–mediated TBI, a model of mixed focal and diffuse TBI. IL-1RI ablation conferred a greater protective effect on brain cytokine expression and cognitive function after TBI than did individual IL-1α or IL-1β ablation. This protective effect was recapitulated by treatment with the drug anakinra, a recombinant naturally occurring IL-1RI antagonist. Our data thus suggest that broad targeting of IL-1RI signaling is more likely to reduce neuroinflammation and preserve cognitive function after TBI than are approaches that individually target IL-1α or IL-1β signaling.
Collapse
|
4
|
Liu Z, Pouli D, Sood D, Sundarakrishnan A, Hui Mingalone CK, Arendt LM, Alonzo C, Quinn KP, Kuperwasser C, Zeng L, Schnelldorfer T, Kaplan DL, Georgakoudi I. Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials 2016; 116:34-47. [PMID: 27914265 DOI: 10.1016/j.biomaterials.2016.11.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/12/2016] [Accepted: 11/24/2016] [Indexed: 01/30/2023]
Abstract
Fiber-like structures are prevalent in biological tissues, yet quantitative approaches to assess their three-dimensional (3D) organization are lacking. We develop 3D directional variance, as a quantitative biomarker of truly 3D fibrillar organization by extending the directional statistics formalism developed for describing circular data distributions (i.e. when 0° and 360° are equivalent) to axial ones (i.e. when 0° and 180° are equivalent). Significant advantages of this analysis include its time efficiency, sensitivity and ability to provide quantitative readouts of organization over different size scales of a given data set. We establish a broad range of applications for this method by characterizing collagen fibers, neuronal axons and fibroblasts in the context of cancer diagnostics, traumatic brain injury and cell-matrix interactions in developing engineered tissues. This method opens possibilities for unraveling in a sensitive, and quantitative manner the organization of essential fiber-like structures in tissues and ultimately its impact on tissue function.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dimitra Pouli
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Disha Sood
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | | | - Carrie K Hui Mingalone
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Lisa M Arendt
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Carlo Alonzo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Li Zeng
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
5
|
Takase H, Washida K, Hayakawa K, Arai K, Wang X, Lo EH, Lok J. Oligodendrogenesis after traumatic brain injury. Behav Brain Res 2016; 340:205-211. [PMID: 27829126 DOI: 10.1016/j.bbr.2016.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023]
Abstract
White matter injury is an important contributor to long term motor and cognitive dysfunction after traumatic brain injury. During brain trauma, acceleration, deceleration, torsion, and compression forces often cause direct damage to the axon tracts, and pathways that are triggered by the initial injury can trigger molecular events that result in secondary axon degeneration. White matter injury is often associated with altered mental status, memory deficits, motor or autonomic dysfunction, and contribute to the development of chronic neurodegenerative diseases. The presence and proper functioning of oligodendrocyte precursor cells offer the potential for repair and recovery of injured white matter. The process of the proliferation, maturation of oligodendrocyte precursor cells and their migration to the site of injury to replace injured or lost oligodendrocytes is know as oligodendrogenesis. The process of oligodendrogenesis, as well as the interaction of oligodendrocyte precursor cells with other elements of the neurovascular unit, will be discussed in this review.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuo Washida
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Division of Neurology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
6
|
Lucke-Wold BP, Turner RC, Logsdon AF, Nguyen L, Bailes JE, Lee JM, Robson MJ, Omalu BI, Huber JD, Rosen CL. Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy. J Neurosurg 2016; 124:687-702. [PMID: 26381255 DOI: 10.3171/2015.3.jns141802] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration. METHODS The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors' clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler. RESULTS The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase-3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy. CONCLUSIONS Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine
- The Center for Neuroscience, West Virginia University School of Medicine
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine
- The Center for Neuroscience, West Virginia University School of Medicine
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Linda Nguyen
- The Center for Neuroscience, West Virginia University School of Medicine
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - John M Lee
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Matthew J Robson
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Bennet I Omalu
- Department of Medical Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, California
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine
- The Center for Neuroscience, West Virginia University School of Medicine
| |
Collapse
|
7
|
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability for people under 45 years of age. Clinical TBI is often the result of disparate forces resulting in heterogeneous injuries. Preclinical modeling of TBI is a vital tool for studying the complex cascade of metabolic, cellular, and molecular post-TBI events collectively termed secondary injury. Preclinical models also provide an important platform for studying therapeutic interventions. However, modeling TBI in the preclinical setting is challenging, and most models replicate only certain aspects of clinical TBI. This chapter details the most widely used models of preclinical TBI, including the controlled cortical impact, fluid percussion, blast, and closed head models. Each of these models replicates particular critical aspects of clinical TBI. Prior to selecting a preclinical TBI model, it is important to address what aspect of human TBI is being sought to evaluate.
Collapse
|
8
|
Neuroprotective efficacy of decompressive craniectomy after controlled cortical impact injury in rats: An MRI study. Brain Res 2015; 1622:339-49. [DOI: 10.1016/j.brainres.2015.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/27/2015] [Accepted: 06/24/2015] [Indexed: 11/23/2022]
|
9
|
Zhang Z, Saraswati M, Koehler RC, Robertson C, Kannan S. A New Rabbit Model of Pediatric Traumatic Brain Injury. J Neurotrauma 2015; 32:1369-79. [PMID: 25758339 PMCID: PMC4543485 DOI: 10.1089/neu.2014.3701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability in childhood, resulting in numerous physical, behavioral, and cognitive sequelae, which can influence development through the lifespan. The mechanisms by which TBI influences normal development and maturation remain largely unknown. Pediatric rodent models of TBI often do not demonstrate the spectrum of motor and cognitive deficits seen in patients. To address this problem, we developed a New Zealand white rabbit model of pediatric TBI that better mimics the neurological injury seen after TBI in children. On postnatal Day 5-7 (P5-7), rabbits were injured by a controlled cortical impact (6-mm impactor tip; 5.5 m/sec, 2-mm depth, 50-msec duration). Rabbits from the same litter served as naïve (no injury) and sham (craniotomy alone) controls. Functional abilities and activity levels were measured 1 and 5 d after injury. Maturation level was monitored daily. We performed cognitive tests during P14-24 and sacrificed the animals at 1, 3, 7, and 21 d after injury to evaluate lesion volume and microglia. TBI kits exhibited delayed achievement of normal developmental milestones. They also demonstrated significant cognitive deficits, with lower percentage of correct alternation rate in the T-maze (n=9-15/group; p<0.001) and less discrimination between novel and old objects (p<0.001). Lesion volume increased from 16% at Day 3 to 30% at Day 7 after injury, indicating ongoing secondary injury. Activated microglia were noted at the injury site and also in white matter regions of the ipsilateral and contralateral hemispheres. The neurologic and histologic changes in this model are comparable to those reported clinically. Thus, this rabbit model provides a novel platform for evaluating neuroprotective therapies in pediatric TBI.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Courtney Robertson
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
10
|
Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury. Compr Physiol 2015; 5:1147-60. [PMID: 26140712 PMCID: PMC4573402 DOI: 10.1002/cphy.c140057] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
11
|
Bruce ED, Konda S, Dean DD, Wang EW, Huang JH, Little DM. Neuroimaging and traumatic brain injury: State of the field and voids in translational knowledge. Mol Cell Neurosci 2015; 66:103-13. [DOI: 10.1016/j.mcn.2015.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/07/2023] Open
|
12
|
Petraglia AL, Dashnaw ML, Turner RC, Bailes JE. Models of Mild Traumatic Brain Injury. Neurosurgery 2014; 75 Suppl 4:S34-49. [DOI: 10.1227/neu.0000000000000472] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Turner RC, VanGilder RL, Naser ZJ, Lucke-Wold BP, Bailes JE, Matsumoto RR, Huber JD, Rosen CL. Elucidating the severity of preclinical traumatic brain injury models: a role for functional assessment? Neurosurgery 2014; 74:382-94; discussion 394. [PMID: 24448183 PMCID: PMC4890645 DOI: 10.1227/neu.0000000000000292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Concussion remains a symptom-based diagnosis clinically, yet preclinical studies investigating traumatic brain injury, of which concussion is believed to represent a "mild" form, emphasize histological end points with functional assessments often minimized or ignored all together. Recently, clinical studies have identified the importance of cognitive and neuropsychiatric symptoms, in addition to somatic concerns, following concussion. How these findings may translate to preclinical studies is unclear at present. OBJECTIVE To address the contrasting end points used clinically compared with those in preclinical studies and the potential role of functional assessments in a commonly used model of diffuse axonal injury (DAI). METHODS Animals were subjected to DAI by the use of the impact-acceleration model. Functional and behavioral assessments were conducted during 1 week following DAI before the completion of the histological assessment at 1 week post-DAI. RESULTS We show, despite the suggestion that this model represents concussive injury, no functional impairments as determined by using the common measures of motor, sensorimotor, cognitive, and neuropsychiatric function following injury over the course of 1 week. The lack of functional deficits is in sharp contrast to neuropathological findings indicating neural degeneration, astrocyte reactivity, and microglial activation. CONCLUSION Future studies are needed to identify functional assessments, neurophysiologic techniques, and imaging assessments more apt to distinguish differences following so-called "mild" traumatic brain injury in preclinical models and determine whether these models are truly studying concussive or subconcussive injury. These studies are needed not only to understand the mechanism of injury and production of subsequent deficits, but also to rigorously evaluate potential therapeutic agents.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Reyna L. VanGilder
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Nursing, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Zachary J. Naser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Julian E. Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, Illinois
- Department of Neurosurgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Rae R. Matsumoto
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
14
|
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5:454-71. [PMID: 24493632 DOI: 10.1007/s12975-014-0327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/09/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA,
| | | | | | | | | | | |
Collapse
|