1
|
Chen Y, He S, Zeng A, He S, Jin X, Li C, Mei W, Lu Q. Inhibitory Effect of β-Sitosterol on the Ang II-Induced Proliferation of A7r5 Aortic Smooth Muscle Cells. Anal Cell Pathol (Amst) 2023; 2023:2677020. [PMID: 38028434 PMCID: PMC10645495 DOI: 10.1155/2023/2677020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To explore the effects of β-sitosterol on VSMC proliferation. Materials and Methods A7r5 cells were pretreated with 2 µM angiotensin II (Ang II) for 24 hr to establish an excessive VSMC proliferation model, followed by treatment with β-sitosterol for 24 hr. Cells were divided into five groups: control, Ang II, and Ang II + β-sitosterol (2, 4, 8 µM). CCK-8 assay, flow cytometry, and Ad-mCherry-GFP-LC3B assay analyzed cell proliferation, cell cycle, cell apoptosis, and autophagic flux. Additionally, the expression of proteins was detected by the western blotting. Results β-Sitosterol effectively inhibited Ang II-induced A7r5 cell proliferation (IC50 : 6.841 µM at 24 hr). It achieved this by arresting cell cycle progression, promoting apoptosis, inhibiting autophagy, and suppressing the contractile-synthetic phenotypic switch. Mechanistically, β-sitosterol downregulated PCNA, Cyclin D1, and Bcl-2, while upregulating pro-caspase 3, cleaved-caspase 3, and Bax to induce cell cycle arrest and apoptosis. Additionally, it suppressed the contractile-synthetic phenotypic transformation by downregulating OPN and upregulating α-SMA. The Ad-mCherry-GFP-LC3B Assay and western blotting revealed β-sitosterol's autophagy inhibitory effects by downregulating LC3, ULK1, and Beclin-1 while upregulating P62 expression. Discussion and Conclusion. This study found for the first time that β-sitosterol could inhibit the proliferation of A7r5 cells induced by Ang II. β-Sitosterol treatment may be recommended as a therapeutic strategy to prevent the cardiovascular diseases.
Collapse
Affiliation(s)
- Yuankun Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shumiao He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Zeng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Siqing He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunmei Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| | - Wenjie Mei
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qun Lu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280 East Outer Ring Road, Panyu District, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| |
Collapse
|
2
|
Robinson S, Winer JL, Kitase Y, Brigman JL, Jantzie LL. Neonatal administration of erythropoietin attenuates cognitive deficits in adult rats following placental insufficiency. J Neurosci Res 2022; 100:2112-2126. [PMID: 33611820 PMCID: PMC10097461 DOI: 10.1002/jnr.24815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023]
Abstract
Preterm birth is a principal cause of neurological disability later in life, including cognitive and behavioral deficits. Notably, cognitive impairment has greater impact on quality of life than physical disability. Survivors of preterm birth commonly have deficits of executive function. Difficulties with tasks and planning complexity correlate positively with increasing disability. To overcome these barriers for children born preterm, preclinical and clinical studies have emphasized the importance of neurorestoration. Erythropoietin (EPO) is a endogenous cytokine with multiple beneficial mechanisms of action following perinatal brain injury. While most preclinical investigations have focused on pathology and molecular mechanisms, translational studies of repair using clinically viable biobehavioral biomarkers are still lacking. Here, using an established model of encephalopathy of prematurity secondary to placental insufficiency, we tested the hypothesis that administration of EPO in the neonatal period would attenuate deficits in recognition memory and cognitive flexibility in adult rats of both sexes. We assessed cognition and executive function in two ways. First, using the classic test of novel object recognition and second, using a touchscreen platform. Touchscreen testing allows for rigorous testing of cognition and executive function in preclinical and clinical scenarios. Data show that adult rats exhibit deficits in recognition memory and cognitive flexibility following in utero placental insufficiency. Notably, neonatal treatment of EPO attenuates these deficits in adulthood and facilitates functional repair. Together, these data validate EPO neurorestoration using a clinically relevant outcome measure and support the concept that postnatal treatment following in utero injury can improve cognition and executive function through adulthood.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jesse L Winer
- Division of Pediatric Neurosurgery, Oregon Health and Science University, Portland, OR, USA
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan L Brigman
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lauren L Jantzie
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Celorrio M, Rhodes J, Shumilov K, Moritz J, Xiao S, Anabayan I, Sauerbeck A, Kummer T, Friess S. Recombinant human erythropoietin induces neuroprotection, activates MAPK/CREB pathway, and rescues fear memory after traumatic brain injury with delayed hypoxemia in mice. Brain Res 2022; 1795:148074. [PMID: 36075467 PMCID: PMC10515732 DOI: 10.1016/j.brainres.2022.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Therapeutic interventions targeting secondary insults, such as delayed hypoxemia, provide a unique opportunity for treatment in severe traumatic brain injury (TBI). Erythropoietin (EPO) is a hypoxia-responsive cytokine with important roles in neurodevelopment, neuroprotection and neuromodulation. We hypothesized that recombinant human erythropoietin (rhEPO) administration would mitigate injury in a combined injury model of TBI and delayed hypoxemia. Utilizing a clinically relevant murine model of TBI and delayed hypoxemia, we characterized how ongoing rhEPO administration influenced neurogenesis, neuroprotection, synaptic density and, behavioral outcomes early after TBI, and the impact on long-lasting outcomes 6 months after injury. We employed novel object recognition (NOR) and fear conditioning to assess long-term memory. At 1-month post-injury, we observed a significant increase in cued-fear memory response in the rhEPO-injured mice compared with vehicle-injured mice. This was associated with neuroprotection and neurogenesis in the hippocampus and mitogen-activated protein kinase (MAPK)/cAMP response element-binding protein (CREB) signaling activation and increased of excitatory synaptic density in the amygdala. Early rhEPO treatment after injury reduced neurodegeneration and increased excitatory synaptic density in the hippocampus and amygdala at 6 months post-injury. However at 6 months post-injury (4 months after discontinuation of rhEPO), we did not observe changes in behavioral assessments nor MAPK/CREB pathway activation. In summary, these data demonstrate that ongoing rhEPO treatment initiated at a clinically feasible time point improves neurological, cognitive, and histological outcomes after TBI in the setting of secondary hypoxemic insults.
Collapse
Affiliation(s)
- Marta Celorrio
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - James Rhodes
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kirill Shumilov
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jennie Moritz
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sophia Xiao
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Ilakkia Anabayan
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Andrew Sauerbeck
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Terrance Kummer
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stuart Friess
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Feng Y, Ju Y, Yan Z, Ji M, Yang M, Wu Q, Wang L, Sun G. Protective role of wogonin following traumatic brain injury by reducing oxidative stress and apoptosis via the PI3K/Nrf2/HO‑1 pathway. Int J Mol Med 2022; 49:53. [PMID: 35179214 PMCID: PMC8904077 DOI: 10.3892/ijmm.2022.5109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) is usually caused by accidental injuries and traffic accidents, with a very high mortality rate. Treatment and management following TBI are essential to reduce patient injury and help improve long‑term prognosis. Wogonin is a flavonoid compound with an antioxidant effect extracted from Scutellaria baicalensis Georgi. However, the function and mechanism of wogonin in protecting brain injury remain to be elucidated. The present study established a TBI model of Sprague‑Dawley rats and treated them with wogonin following trauma. The results showed that wogonin treatment significantly reduced neurobehavioral disorders, brain edema and hippocampal neuron damage caused by TBI. It was found that in TBI rats, administration of wogonin increased the levels of antioxidant factors glutathione, superoxide dismutase and catalase in the CA1 region of the hippocampus and significantly inhibited the production of malondialdehyde and reactive oxygen species. western blotting data showed that wogonin exerted antioxidant activity by downregulating the level of NOX2 protein. In inhibiting cell apoptosis, wogonin upregulated the expression of Bcl‑2 protein in the hippocampal CA1 region of TBI rats and inhibited caspase‑3 and Bax proteins. Additionally, wogonin inhibited the progression of injury following TBI through the PI3K/Akt/nuclear factor‑erythroid factor 2‑related factor 2 (Nrf2)/heme oxygenase‑1 (HO‑1) signaling pathway. Wogonin increased the expression of phosphorylated Akt, Nrf2 and HO‑1 in the hippocampus of TBI rats. Following the administration of PI3K inhibitor LY294002, the upregulation of these proteins by wogonin was partly reversed. In addition, LY294002 partially reversed the regulation of wogonin on NOX2, caspase‑3, Bax and Bcl‑2 proteins. Therefore, wogonin exerts antioxidant and anti‑apoptotic properties to prevent hippocampal damage following TBI, which is accomplished through the PI3K/Akt/Nrf2/HO‑1 pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yaru Ju
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Mingjun Ji
- Department of Critical Care Medical, Linxi County People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Ming Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Qiang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liqun Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
5
|
Effect of erythropoietin administration on the expression of brain-derived neurotrophic factor, stromal cell-derived Factor-1, and neuron-specific enolase in traumatic brain injury: A literature review. Ann Med Surg (Lond) 2021; 69:102666. [PMID: 34429948 PMCID: PMC8371185 DOI: 10.1016/j.amsu.2021.102666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and lifelong disability around the world that predominantly affects young and middle-aged people. Erythropoietin (EPO) is a promising therapeutic agent for a variety of neurological injuries including TBI due to its neuroprotective effects. Here we review the impact of exogenous erythropoietin administration on the expression of brain-derived neurotrophic factor (BDNF), stromal cell-derived factor-1 (SDF-1), and neuron-specific enolase (NSE) levels in cerebrospinal fluid after TBI as biomarkers for neuron regeneration and survival to predict TBI outcome.
Collapse
|
6
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Schober ME, Requena DF, Maschek JA, Cox J, Parra L, Lolofie A. Effects of controlled cortical impact and docosahexaenoic acid on rat pup fatty acid profiles. Behav Brain Res 2020; 378:112295. [PMID: 31618622 PMCID: PMC6897326 DOI: 10.1016/j.bbr.2019.112295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, particularly in those under four years old. During this period, rapid brain growth demands higher Docosahexaenoic Acid (DHA) intake. DHA is an essential fatty acid and brain cell component derived almost entirely from the diet. DHA improved neurologic outcomes and decreased inflammation after controlled cortical impact (CCI) in 17-day old (P17) rats, our established model of pediatric TBI. In adult rodents, TBI decreases brain DHA. We hypothesized that CCI would decrease rat brain DHA at post injury day (PID) 60, blunted by 0.1% DHA diet. We quantitated fatty acids using Gas Chromatography-Mass Spectrometry. We provided 0.1% DHA before CCI to ensure high DHA in dam milk. We compared brain DHA in rats after 60 days of regular (REG) or DHA diet to SHAM pups on REG diet. Brain DHA decreased in REGCCI, not in DHACCI, relative to SHAMREG. In a subsequent experiment, we gave rat pups DHA or vehicle intraperitoneally after CCI followed by DHA or REG diet for 60 days. REG increased brain Docosapentaenoic Acid (n-6 DPA, a brain DHA deficiency marker) relative to SHAMDHA and DHACCI pups (p < 0.001, diet effect). DHA diet nearly doubled DHA and decreased n-6 DPA in blood but did not increase brain DHA content (p < 0.0001, diet effect). We concluded that CCI or craniotomy alone induces a mild DHA deficit as shown by increased brain DPA.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care, Salt Lake City, UT, 84132, United States.
| | - Daniela F Requena
- Department of Pediatrics, Division of Critical Care, Salt Lake City, UT, 84132, United States.
| | - J Alan Maschek
- Metabolomics, Mass Spectrometry and Proteomics Core of the University of Utah, Salt Lake City, UT, 84132, United States.
| | - James Cox
- Department of Biochemistry, Salt Lake City, UT, 84132, United States; Diabetes and Metabolism Research Center, Salt Lake City, UT, 84132, United States; Metabolomics, Mass Spectrometry and Proteomics Core of the University of Utah, Salt Lake City, UT, 84132, United States.
| | - Leonardo Parra
- Department of Biology, Howard Hughes Medical Institute, Salt Lake City, UT, 84132, United States.
| | - Alyssa Lolofie
- Department of Pediatrics, Division of Critical Care, Salt Lake City, UT, 84132, United States.
| |
Collapse
|
8
|
Zhang C, Wang Y, Jin J, Li K. Erythropoietin protects propofol induced neuronal injury in developing rats by regulating TLR4/NF-κB signaling pathway abstract. Neurosci Lett 2019; 712:134517. [DOI: 10.1016/j.neulet.2019.134517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
|
9
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Schober ME, Requena DF, Casper TC, Velhorst AK, Lolofie A, McFarlane KE, Otto TE, Terry C, Gensel JC. Docosahexaenoic acid decreased neuroinflammation in rat pups after controlled cortical impact. Exp Neurol 2019; 320:112971. [PMID: 31247195 DOI: 10.1016/j.expneurol.2019.112971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children, yet specific therapies to treat TBI are lacking. Therapies that decrease the inflammatory response and enhance a reparative immune action may decrease oxidative damage and improve outcomes after TBI. Docosahexaenoic acid (DHA) modulates the immune response to injury in many organs. DHA given in the diet before injury decreased rat pup cognitive impairment, oxidative stress and white matter injury in our developmental TBI model using controlled cortical impact (CCI). Little is known about DHA effects on neuroinflammation in the developing brain. Further, it is not known if DHA given after developmental TBI exerts neuroprotective effects. We hypothesized that acute DHA treatment would decrease oxidative stress and improve cognitive outcome, associated with decreased pro-inflammatory activation of microglia, the brain's resident macrophages. METHODS 17-day-old rat pups received intraperitoneal DHA or vehicle after CCI or SHAM surgery followed by DHA diet or continuation of REG diet to create DHACCI, REGCCI, SHAMDHA and SHAMREG groups. We measured brain nitrates/nitrites (NOx) at post injury day (PID) 1 to assess oxidative stress. We tested memory using Novel Object Recognition (NOR) at PID14. At PID 3 and 7, we measured reactivity of microglial activation markers Iba1, CD68 and CD206 and astrocyte marker GFAP in the injured cortex. At PID3, 7 and 30 we measured mRNA levels of inflammation-related genes and transcription factors in flow-sorted brain cells. RESULTS DHA decreased oxidative stress at PID1 and pro-inflammatory microglial activation at PID3. CCI increased mRNA levels of two interferon regulatory family transcription factors, blunted by DHA, particularly in microglia-enriched cell populations at PID7. CCI increased mRNA levels of genes associated with "pro- " and "anti-" inflammatory activity at PID3, 7 and 30. Most notably within the microglia-enriched population, DHA blunted increased mRNA levels of pro-inflammatory genes at PID 3 and 7 and of anti-inflammatory genes at PID 30. Particularly in microglia, we observed parallel activation of pro-inflammatory and anti-inflammatory genes. DHA improved performance on NOR at PID14 after CCI. CONCLUSIONS DHA decreased oxidative stress and histologic and mRNA markers of microglial pro-inflammatory activation in rat pup brain acutely after CCI associated with improved short term cognitive function. DHA administration after CCI has neuroprotective effects, which may result in part from modulation of microglial activation toward a less inflammatory profile in the first week after CCI. Future and ongoing studies will focus on phagocytic function and reactive oxygen species production in microglia and macrophages to test functional effects of DHA on neuroinflammation in our model. Given its favorable safety profile in children, DHA is a promising candidate therapy for pediatric TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Daniela F Requena
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States
| | - T Charles Casper
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Amy K Velhorst
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Alyssa Lolofie
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - Katelyn E McFarlane
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Taylor E Otto
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Cynthia Terry
- Department of Pediatrics, Division of Critical Care University of Utah, Salt Lake City, UT 84132, United States.
| | - John C Gensel
- Department of Physiology and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
11
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Huh JW, Raghupathi R. Therapeutic strategies to target acute and long-term sequelae of pediatric traumatic brain injury. Neuropharmacology 2018; 145:153-159. [PMID: 29933010 DOI: 10.1016/j.neuropharm.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Pediatric traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality in children. Experimental and clinical studies demonstrate that the developmental age, the type of injury (diffuse vs. focal) and sex may play important roles in the response of the developing brain to a traumatic injury. Advancements in acute neurosurgical interventions and neurocritical care have improved and led to a decrease in mortality rates over the past decades. However, survivors are left with life-long behavioral deficits underscoring the need to better define the cellular mechanisms underlying these functional changes. A better understanding of these mechanisms some of which begin in the acute post-traumatic period may likely lead to targeted treatment strategies. Key considerations in designing pre-clinical experiments to test therapeutic strategies in pediatric TBI include the use of age-appropriate and pathologically-relevant models, functional outcomes that are tested as animals age into adolescence and beyond, sex as a biological variable and the recognition that doses and dosing strategies that have been demonstrated to be effective in animal models of adult TBI may not be effective in the developing brain. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Robinson S, Winer JL, Chan LAS, Oppong AY, Yellowhair TR, Maxwell JR, Andrews N, Yang Y, Sillerud LO, Meehan WP, Mannix R, Brigman JL, Jantzie LL. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats. Front Neurol 2018; 9:451. [PMID: 29971038 PMCID: PMC6018393 DOI: 10.3389/fneur.2018.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023] Open
Abstract
Survivors of infant traumatic brain injury (TBI) are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d) to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12) controlled-cortical impact (CCI) model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI). Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jesse L Winer
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lindsay A S Chan
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Akosua Y Oppong
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - Nicholas Andrews
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Laurel O Sillerud
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - William P Meehan
- Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rebekah Mannix
- Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
14
|
Schober ME, Requena DF, Rodesch CK. EPO improved neurologic outcome in rat pups late after traumatic brain injury. Brain Dev 2018; 40:367-375. [PMID: 29429559 PMCID: PMC5878733 DOI: 10.1016/j.braindev.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 11/25/2022]
Abstract
UNLABELLED In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. METHODS Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. RESULTS Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. CONCLUSIONS Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care, University of Utah, Salt Lake City, UT 84132, United States.
| | - Daniela F Requena
- Department of Pediatrics, Division of Critical Care, University of Utah, Salt Lake City, UT, United States 84132
| | - Christopher K Rodesch
- Core Facilities and Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States 84132
| |
Collapse
|
15
|
Liu WC, Wen L, Xie T, Wang H, Gong JB, Yang XF. Therapeutic effect of erythropoietin in patients with traumatic brain injury: a meta-analysis of randomized controlled trials. J Neurosurg 2017; 127:8-15. [DOI: 10.3171/2016.4.jns152909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEErythropoietin (EPO) exerts a neuroprotective effect in animal models of traumatic brain injury (TBI). However, its effectiveness in human patients with TBI is unclear. In this study, the authors conducted the first meta-analysis to assess the effectiveness and safety of EPO in patients with TBI.METHODSIn December 2015, a systematic search was performed of PubMed, Web of Science, MEDLINE, Embase, the Cochrane Library databases, and Google Scholar. Only English-language publications of randomized controlled trials (RCTs) using EPO in patients with TBI were selected for analysis. The assessed outcomes included mortality, favorable neurological outcome, hospital stay, and associated adverse effects. Continuous variables were presented as mean difference (MD) with a 95% confidence interval (CI). Dichotomous variables were presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Statistical heterogeneity was examined using both I2 and chi-square tests.RESULTSOf the 346 studies identified in the search, 5 RCTs involving 915 patients met the inclusion criteria. The overall results demonstrated that EPO significantly reduced mortality (RR 0.69, 95% CI 0.49–0.96, p = 0.03) and shortened the hospitalization time (MD −7.59, 95% CI −9.71 to −5.46, p < 0.0001) for patients with TBI. Pooled results of favorable outcome (RR 1.00, 95% CI 0.88–1.15, p = 0.97) and deep vein thrombosis (DVT; RD 0.00, 95% CI −0.05 to 0.05, p = 1.00) did not show a significant difference.CONCLUSIONSThe authors suggested that EPO is beneficial for patients with TBI in terms of reducing mortality and shortening hospitalization time without increasing the risk of DVT. However, its effect on improving favorable neurological outcomes did not reach statistical significance. Therefore, more well-designed RCTs are necessary to ascertain the optimum dosage and time window of EPO treatment for patients with TBI.
Collapse
Affiliation(s)
- Wen-Chao Liu
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Liang Wen
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Tao Xie
- 2Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wang
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Jiang-Biao Gong
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| | - Xiao-Feng Yang
- 1Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University; and
| |
Collapse
|
16
|
Erythropoietin ameliorates diabetes-associated cognitive dysfunction in vitro and in vivo. Sci Rep 2017; 7:2801. [PMID: 28584284 PMCID: PMC5459814 DOI: 10.1038/s41598-017-03137-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023] Open
Abstract
Several studies indicate that erythropoietin (EPO) has remarkable neuroprotective effects in various central nervous system disorders, while little is known about the effects of EPO in diabetes-associated cognitive dysfunction. Therefore, the present study aimed to investigate whether EPO ameliorates diabetes-associated cognitive dysfunction in vivo and in vitro. We investigated the protective effects of EPO on high-glucose (HG)-induced PC12 cell death and oxidative stress. The effects of EPO (300 U/kg administered three times a week for 4 weeks) on diabetes-associated cognitive decline were investigated in diabetic rats. EPO significantly increased cell viability, increased the activity of superoxide dismutase, decreased the production of malondialdehyde and reactive oxygen species, and decreased the apoptosis rate. Additionally, LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, abolished the protective effects of EPO in HG-treated PC12 cells. In diabetic rats, EPO prevented deficits in spatial learning and memory in the Morris water maze test. The results of real-time PCR and Western blotting showed that EPO upregulated EPO receptor, PI3K, and phosphorylated Akt2 relative to unphosphorylated Akt2 (p-Akt2/Akt2) and downregulated glycogen synthase kinase-3β (GSK-3β). These studies demonstrate that EPO is an effective neuroprotective agent in the context of diabetes-associated cognitive dysfunction and show that this effect involves the PI3K/Akt/GSK-3β pathway.
Collapse
|
17
|
Xu C, Fu F, Li X, Zhang S. Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci 2017; 127:1124-1135. [PMID: 28464695 DOI: 10.1080/00207454.2017.1325884] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs), which are regarded as promising candidates for cell replacement therapies, are able to regulate immune responses after traumatic brain injury (TBI). Secondary immune response following the mechanical injury is the essential factor leading to the necrosis and apoptosis of neural cells during and after the cerebral edema has subsided and there is lack of efficient agent that can mitigate such neuroinflammation in the clinical application. By means of three molecular pathways (prostaglandin E2 (PGE2), tumor-necrosis-factor-inducible gene 6 protein (TSG-6), and progesterone receptor (PR) and glucocorticoid receptors (GR)), MSCs induce the activation of macrophages/microglia and drive them polarize into the M2 phenotypes, which inhibits the release of pro-inflammatory cytokines and promotes tissue repair and nerve regeneration. The regulation of MSCs and the polarization of macrophages/microglia are dynamically changing based on the inflammatory environment. Under the stimulation of platelet lysate (PL), MSCs also promote the release of pro-inflammatory cytokines. Meanwhile, the statue of macrophages/microglia exerts significant effects on the survival, proliferation, differentiation and activation of MSCs by changing the niche of cells. They form positive feedback loops in maintaining the homeostasis after TBI to relieving the secondary injury and promoting tissue repair. MSC therapies have obtained great achievements in several central nervous system disease clinical trials, which will accelerate the application of MSCs in TBI treatment.
Collapse
Affiliation(s)
- Chao Xu
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| | - Feng Fu
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| | - Xiaohong Li
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| | - Sai Zhang
- a Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital , Logistics University of Chinese People's Armed Police Forces , Tianjin 300162 , China
| |
Collapse
|
18
|
Kalemci O, Aydin HE, Kizmazoglu C, Kaya I, Yılmaz H, Arda NM. Effects of Quercetin and Mannitol on Erythropoietin Levels in Rats Following Acute Severe Traumatic Brain Injury. J Korean Neurosurg Soc 2017; 60:355-361. [PMID: 28490163 PMCID: PMC5426445 DOI: 10.3340/jkns.2016.0505.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Objective The aim of this study to investigate the normal values of erythropoietin (EPO) and neuroprotective effects of quercetin and mannitol on EPO and hematocrit levels after acute severe traumatic brain injury (TBI) in rat model. Methods A weight-drop impact acceleration model of TBI was used on 40 male Wistar rats. The animals were divided into sham (group I), TBI (group II), TBI+quercetin (50 mg/kg intravenously) (group III), and TBI+mannitol (1 mg/kg intravenously) (group IV) groups. The malondialdehyde, glutathione peroxidase, catalase, EPO, and hematocrit levels were measured 1 and 4 hour after injury. Two-way repeated measures analysis of variance and Tukey’s test were used for statistical analysis. Results The malondialdehyde levels decreased significantly after administration of quercetin and mannitol compared with those in group II. Catalase and glutathione peroxidase levels increased significantly in groups III and IV. Serum EPO levels decreased significantly after mannitol but not after quercetin administration. Serum hematocrit levels did not change significantly after quercetin and mannitol administration 1 hour after trauma. However, mannitol administration decreased serum hematocrit levels significantly after 4 hour. Conclusion This study suggests that quercetin may be a good alternative treatment for TBI, as it did not decrease the EPO levels.
Collapse
Affiliation(s)
- Orhan Kalemci
- Department of Neurosurgery, School of Medicine and Hospital, Dokuz Eylul University, Izmir, Turkey
| | - Hasan Emre Aydin
- Department of Pharmacology, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Neurosurgery, School of Medicine and Hospital, Dumlupınar University, Kutahya, Turkey
| | - Ceren Kizmazoglu
- Department of Neurosurgery, School of Medicine and Hospital, Dokuz Eylul University, Izmir, Turkey
| | - Ismail Kaya
- Department of Neurosurgery, Kilis State Hospital, Kilis, Turkey
| | - Hulya Yılmaz
- Department of Biostatistics and Medical Informatics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuri M Arda
- Department of Neurosurgery, School of Medicine and Hospital, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
19
|
Heinrich R, Günther V, Miljus N. Erythropoietin-Mediated Neuroprotection in Insects Suggests a Prevertebrate Evolution of Erythropoietin-Like Signaling. VITAMINS AND HORMONES 2017. [PMID: 28629517 DOI: 10.1016/bs.vh.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytokine erythropoietin (Epo) mediates protective and regenerative functions in mammalian nervous systems via activation of poorly characterized receptors that differ from the "classical" homodimeric Epo receptor expressed on erythroid progenitor cells. Epo genes have been identified in vertebrate species ranging from human to fish, suggesting that Epo signaling evolved earlier than the vertebrate lineage. Studies on insects (Locusta migratoria, Chorthippus biguttulus, Tribolium castaneum) revealed Epo-mediated neuroprotection and neuroregeneration. Recombinant human Epo (rhEpo) prevents apoptosis by binding to a janus kinase-associated receptor, stimulation of STAT transcription factors, and generation of factors that prevent the activation of proapoptotic caspases. Insect neurons were also protected by a neuroprotective but nonerythropoietic Epo splice variant, suggesting similarity with mammalian neuroprotective but not with homodimeric "classical" Epo receptors. Additionally, rhEpo promotes the regeneration of neurites in primary cultured insect brain neurons and after nerve crush in an in vivo preparation. In contrast to neuroprotective and regenerative effects shared with mammalian species, no evidence for a role of Epo signaling in the regulation of neuro- or gliogenesis was found in insects. Similar structural and functional characteristics of the Epo binding receptors, partly shared transduction pathways that prevent apoptosis and the functional implication in neuroprotective and neuroregenerative processes in both mammalian and insect species, suggest that Epo-like signaling was already established in their last common ancestor. Originally functioning as a tissue-protective response to unfavorable physiological situations, cell injury, and pathogen invasion, Epo was later adapted as a humoral regulator of erythropoiesis in the vertebrate lineage.
Collapse
Affiliation(s)
- Ralf Heinrich
- Institute for Zoology and Anthropology, Georg-August-University Goettingen, Goettingen, Germany.
| | - Verena Günther
- Institute for Zoology and Anthropology, Georg-August-University Goettingen, Goettingen, Germany
| | - Natasa Miljus
- Institute for Zoology and Anthropology, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Wassink G, Davidson JO, Dhillon SK, Fraser M, Galinsky R, Bennet L, Gunn AJ. Partial white and grey matter protection with prolonged infusion of recombinant human erythropoietin after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 2017; 37:1080-1094. [PMID: 27207167 PMCID: PMC5363482 DOI: 10.1177/0271678x16650455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perinatal asphyxia in preterm infants remains a significant contributor to abnormal long-term neurodevelopmental outcomes. Recombinant human erythropoietin has potent non-haematopoietic neuroprotective properties, but there is limited evidence for protection in the preterm brain. Preterm (0.7 gestation) fetal sheep received sham asphyxia (sham occlusion) or asphyxia induced by umbilical cord occlusion for 25 min, followed by an intravenous infusion of vehicle (occlusion-vehicle) or recombinant human erythropoietin (occlusion-Epo, 5000 international units by slow push, then 832.5 IU/h), starting 30 min after asphyxia and continued until 72 h. Recombinant human erythropoietin reduced neuronal loss and numbers of caspase-3-positive cells in the striatal caudate nucleus, CA3 and dentate gyrus of the hippocampus, and thalamic medial nucleus ( P < 0.05 vs. occlusion-vehicle). In the white matter tracts, recombinant human erythropoietin increased total, but not immature/mature oligodendrocytes ( P < 0.05 vs. occlusion-vehicle), with increased cell proliferation and reduced induction of activated caspase-3, microglia and astrocytes ( P < 0.05). Finally, occlusion-Epo reduced seizure burden, with more rapid recovery of electroencephalogram power, spectral edge frequency, and carotid blood flow. In summary, prolonged infusion of recombinant human erythropoietin after severe asphyxia in preterm fetal sheep was partially neuroprotective and improved electrophysiological and cerebrovascular recovery, in association with reduced apoptosis and inflammation.
Collapse
Affiliation(s)
- Guido Wassink
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand.,2 The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Laura Bennet
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- 1 Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Miljus N, Massih B, Weis MA, Rison JV, Bonnas CB, Sillaber I, Ehrenreich H, Geurten BRH, Heinrich R. Neuroprotection and endocytosis: erythropoietin receptors in insect nervous systems. J Neurochem 2017; 141:63-74. [DOI: 10.1111/jnc.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Natasa Miljus
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Bita Massih
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Marissa A. Weis
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Jan Vincent Rison
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | | | | | - Hannelore Ehrenreich
- Clinical Neuroscience; Max Planck Institute of Experimental Medicine; Goettingen Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB); Goettingen Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology; Institute for Zoology; University of Goettingen; Goettingen Germany
| |
Collapse
|
22
|
Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects. Mediators Inflamm 2016; 2016:1346390. [PMID: 27990061 PMCID: PMC5136666 DOI: 10.1155/2016/1346390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.
Collapse
|
23
|
Gatto R, Chauhan M, Chauhan N. Anti-edema effects of rhEpo in experimental traumatic brain injury. Restor Neurol Neurosci 2016; 33:927-41. [PMID: 26484701 DOI: 10.3233/rnn-150577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is one of the leading causes of disability and death which begins with the formation of edema as the persistent primary causative factor in TBI. Although medical management of cerebral edema by hypothermia, ventriculostomy, mannitol or hypertonic saline have been effective in treating edema, many of these therapies end up with some neurologic deficits, necessitating novel treatment options for treating post-TBI edema. This study investigated edema reducing effects of recombinant human Erythropoietin (rhEPO) in reducing acute brain edema in the CCI mouse model of TBI. METHODS Anti-edema effects of rhEpo in reducing acute brain edema after injury in the CCI mouse model of TBI were assessed by T2 weighted magnetic resonance imaging (T2wMRI) as the accurate detector of brain edema in correlation with Western blot analysis of cerebral aquaporin 4 (AQP4) index as the critical marker of edema. RESULTS Results show that rhEpo treatment significantly reduced brain edema with concomitant reduction in AQP4 immunoexpression in the CCI mouse model of TBI. CONCLUSION Current results emphasize clinical utility of rhEpo in treating post-TBI edema.
Collapse
Affiliation(s)
- Rodolfo Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima Chauhan
- Neuroscience Research, R&D, Jesse Brown VA Medical Center, Chicago, IL, USA.,Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Robinson S, Winer JL, Berkner J, Chan LAS, Denson JL, Maxwell JR, Yang Y, Sillerud LO, Tasker RC, Meehan WP, Mannix R, Jantzie LL. Imaging and serum biomarkers reflecting the functional efficacy of extended erythropoietin treatment in rats following infantile traumatic brain injury. J Neurosurg Pediatr 2016; 17:739-55. [PMID: 26894518 PMCID: PMC5369240 DOI: 10.3171/2015.10.peds15554] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a leading cause of death and severe morbidity for otherwise healthy full-term infants around the world. Currently, the primary treatment for infant TBI is supportive, as no targeted therapies exist to actively promote recovery. The developing infant brain, in particular, has a unique response to injury and the potential for repair, both of which vary with maturation. Targeted interventions and objective measures of therapeutic efficacy are needed in this special population. The authors hypothesized that MRI and serum biomarkers can be used to quantify outcomes following infantile TBI in a preclinical rat model and that the potential efficacy of the neuro-reparative agent erythropoietin (EPO) in promoting recovery can be tested using these biomarkers as surrogates for functional outcomes. METHODS With institutional approval, a controlled cortical impact (CCI) was delivered to postnatal Day (P)12 rats of both sexes (76 rats). On postinjury Day (PID)1, the 49 CCI rats designated for chronic studies were randomized to EPO (3000 U/kg/dose, CCI-EPO, 24 rats) or vehicle (CCI-veh, 25 rats) administered intraperitoneally on PID1-4, 6, and 8. Acute injury (PID3) was evaluated with an immunoassay of injured cortex and serum, and chronic injury (PID13-28) was evaluated with digitized gait analyses, MRI, and serum immunoassay. The CCI-veh and CCI-EPO rats were compared with shams (49 rats) primarily using 2-way ANOVA with Bonferroni post hoc correction. RESULTS Following CCI, there was 4.8% mortality and 55% of injured rats exhibited convulsions. Of the injured rats designated for chronic analyses, 8.1% developed leptomeningeal cyst-like lesions verified with MRI and were excluded from further study. On PID3, Western blot showed that EPO receptor expression was increased in the injured cortex (p = 0.008). These Western blots also showed elevated ipsilateral cortex calpain degradation products for αII-spectrin (αII-SDPs; p < 0.001), potassium chloride cotransporter 2 (KCC2-DPs; p = 0.037), and glial fibrillary acidic protein (GFAP-DPs; p = 0.002), as well as serum GFAP (serum GFAP-DPs; p = 0.001). In injured rats multiplex electrochemiluminescence analyses on PID3 revealed elevated serum tumor necrosis factor alpha (TNFα p = 0.01) and chemokine (CXC) ligand 1 (CXCL1). Chronically, that is, in PID13-16 CCI-veh rats, as compared with sham rats, gait deficits were demonstrated (p = 0.033) but then were reversed (p = 0.022) with EPO treatment. Diffusion tensor MRI of the ipsilateral and contralateral cortex and white matter in PID16-23 CCI-veh rats showed widespread injury and significant abnormalities of functional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD); MD, AD, and RD improved after EPO treatment. Chronically, P13-P28 CCI-veh rats also had elevated serum CXCL1 levels, which normalized in CCI-EPO rats. CONCLUSIONS Efficient translation of emerging neuro-reparative interventions dictates the use of age-appropriate preclinical models with human clinical trial-compatible biomarkers. In the present study, the authors showed that CCI produced chronic gait deficits in P12 rats that resolved with EPO treatment and that chronic imaging and serum biomarkers correlated with this improvement.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Biomarkers/blood
- Brain Injuries, Traumatic/blood
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/diagnostic imaging
- Brain Injuries, Traumatic/drug therapy
- Calpain/metabolism
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cytokines/blood
- Diffusion Magnetic Resonance Imaging
- Disease Models, Animal
- Epoetin Alfa/metabolism
- Erythropoietin/therapeutic use
- Female
- Gait Disorders, Neurologic/drug therapy
- Gait Disorders, Neurologic/etiology
- Gene Expression Regulation, Developmental/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Image Processing, Computer-Assisted
- Male
- Rats
- Receptors, Erythropoietin/metabolism
- Statistics, Nonparametric
- Symporters
- Time Factors
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Shenandoah Robinson
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- F. M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse L. Winer
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Justin Berkner
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Emergency Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lindsay A. S. Chan
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse L. Denson
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Yirong Yang
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Laurel O. Sillerud
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Robert C. Tasker
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - William P. Meehan
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebekah Mannix
- Brain Injury Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Emergency Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren L. Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
25
|
Schober ME, Requena DF, Abdullah OM, Casper TC, Beachy J, Malleske D, Pauly JR. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury. J Neurotrauma 2016; 33:390-402. [PMID: 26247583 PMCID: PMC4761828 DOI: 10.1089/neu.2015.3945] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.
Collapse
Affiliation(s)
- Michelle E Schober
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Daniela F Requena
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Osama M Abdullah
- 2 Department of Bioengineering, University of Utah , Salt Lake City, Utah
| | - T Charles Casper
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | - Joanna Beachy
- 3 Department of Pediatrics, Division of Neonatology, University of Utah , Salt Lake City, Utah
| | - Daniel Malleske
- 3 Department of Pediatrics, Division of Neonatology, University of Utah , Salt Lake City, Utah
| | - James R Pauly
- 4 College of Pharmacy and Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
26
|
Tunc Ata M, Turgut G, Akbulut M, Kocyigit A, Karabulut A, Senol H, Turgut S. Effect of Erythropoietin and Stem Cells on Traumatic Brain Injury. World Neurosurg 2016; 89:355-61. [PMID: 26850972 DOI: 10.1016/j.wneu.2016.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To investigate the healing effects of erythropoietin (EPO) and stem cells (SCs) in traumatic brain injury (TBI). METHODS Twenty-nine Wistar albino rats were used and separated into the following groups: control (C), EPO, SC, and SC+EPO. Group C received a TBI only, with no treatment. In the EPO group, 1000 U/kg EPO was given intraperitoneally at 30 minutes after TBI. In SC group, immediately after formation of TBI, 3 × 10,000 CD34(+) stem cells were injected into the affected area. In the SC+EPO group, half an hour after TBI and the injection of stem cells, 1000 U/kg EPO was injected. Before and after injury, trauma coordination performance was measured by the rotarod and inclined plane tests. RESULTS Seven weeks after trauma, rat brains were examined by radiology and histology. Rotarod performance test did not change remarkably, even after the injury. Compared with group C, the SC+EPO group was found to have significant differences in the inclined plane test results. CONCLUSIONS Separately given, SCs and EPO have a positive effect on TBI, and our findings suggest that their coadministration is even more powerful.
Collapse
Affiliation(s)
- Melek Tunc Ata
- Department of Physiology, Pamukkale University, Denizli, Turkey.
| | - Günfer Turgut
- Department of Physiology, Pamukkale University, Denizli, Turkey
| | - Metin Akbulut
- Department of Pathology, Pamukkale University, Denizli, Turkey
| | - Ali Kocyigit
- Department of Radiology, Pamukkale University, Denizli, Turkey
| | - Aysun Karabulut
- Department of Obstetrics and Gynecology, Pamukkale University, Denizli, Turkey
| | - Hande Senol
- Department of Biostatistics, Pamukkale University, Denizli, Turkey
| | - Sebahat Turgut
- Department of Physiology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
27
|
Yu N, Liu J, Yi G, Ye F, Xiao J, Guo F. DNA methylation is necessary for erythropoietin to improve spatial learning and memory in SAMP8 mice. Exp Gerontol 2015; 69:111-5. [PMID: 26072265 DOI: 10.1016/j.exger.2015.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/24/2015] [Accepted: 06/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To reveal the role of Dnmts in the improvement of spatial learning and memory induced by erythropoietin (EPO) in SAMP8 mice. METHODS The Morris water maze (MWM) was used to assess spatial learning and memory. Mice were administered by intraperitoneal (i.p.) injection of recombinant human EPO and hippocamppi infusion (IH) of 5-aza-2'-deoxycytidine (5-AZA). The expression of genes Dnmt1, Dnmt3a and Dnmt3b in the hippocampus was detected by real-time qPCR. The level of proteins DNMT1, DNMT3A and DNMT3B was measured by Western blotting. RESULTS Spatial learning and memory in SAMP8 were promoted after i.p. injection of EPO (5000IU/kg/day) and expression of Dnmt3b mRNA and DNMT3B proteins in the hippocampus increased. The improved memory by EPO was blocked after IH 5-AZA. CONCLUSION DNA methylation is necessary for EPO to enhance spatial learning and memory in SAMP8 mice.
Collapse
Affiliation(s)
- Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Gang Yi
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Fang Ye
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Jun Xiao
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Fuqiang Guo
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Rangarajan V, Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol 2014; 51:481-8. [PMID: 25266611 PMCID: PMC4180944 DOI: 10.1016/j.pediatrneurol.2014.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND In the last two decades, there has been considerable evolution in understanding the role of erythropoietin in neuroprotection. Erythropoietin has both paracrine and autocrine functions in the brain. Erythropoietin binding results in neurogenesis, oligodendrogenesis, and angiogenesis. Erythropoietin and its receptor are upregulated by exposure to hypoxia and proinflammatory cytokines after brain injury. While erythropoietin aids in recovery of locally injured neuronal cells, it provides negative feedback to glial cells in the penumbra, thereby limiting extension of injury. This forms the rationale for use of recombinant erythropoietin and erythropoietin mimetics in neonatal and adult injury models of stroke, traumatic brain injury, spinal cord injury, intracerebral hemorrhage, and neonatal hypoxic ischemia. METHOD Review of published literature (Pubmed, Medline, and Google scholar). RESULTS Preclinical neuroprotective data are reviewed, and the rationale for proceeding to clinical trials is discussed. Results from phase I/II trials are presented, as are updates on ongoing and upcoming clinical trials of erythropoietin neuroprotection in neonatal populations. CONCLUSIONS The scientific rationale and preclinical data for erythropoietin neuroprotection are promising. Phase II and III clinical trials are currently in process to determine the safety and efficacy of neuroprotective dosing of erythropoietin for extreme prematurity and hypoxic-ischemic encephalopathy in neonates.
Collapse
Affiliation(s)
- Vijayeta Rangarajan
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington.
| |
Collapse
|
29
|
Caravagna C, Kinkead R, Soliz J. Post-natal hypoxic activity of the central respiratory command is improved in transgenic mice overexpressing Epo in the brain. Respir Physiol Neurobiol 2014; 200:64-71. [PMID: 24914467 DOI: 10.1016/j.resp.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022]
Abstract
Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| | - Richard Kinkead
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| | - Jorge Soliz
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| |
Collapse
|