1
|
Flores-Sandoval C, MacKenzie HM, McIntyre A, Sait M, Teasell R, Bateman EA. Mortality and discharge disposition among older adults with moderate to severe traumatic brain injury. Arch Gerontol Geriatr 2024; 125:105488. [PMID: 38776698 DOI: 10.1016/j.archger.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE This study examined the research on older adults with a moderate to severe traumatic brain injury (TBI), with a focus on mortality and discharge disposition. METHOD Systematic searches were conducted in MEDLINE, CINAHL, EMBASE and PsycINFO for studies up to April 2022 in accordance with PRISMA guidelines. RESULTS 64 studies, published from 1992 to 2022, met the inclusion criteria. Mortality was higher for older adults ≥60 years old than for their younger counterparts; with a dramatic increase for those ≥80 yr, with rates as high as 93 %. Similar findings were reported regarding mortality in intensive care, surgical mortality, and mortality post-hospital discharge; with an 80 % rate at 1-year post-discharge. Up to 68.4 % of older adults were discharged home; when compared to younger adults, those ≥65 years were less likely to be discharged home (50-51 %), compared to those <64 years (77 %). Older adults were also more likely to be discharged to long-term care (up to 31.6 %), skilled nursing facilities (up to 46.1 %), inpatient rehabilitation (up to 26.9 %), and palliative or hospice care (up to 58 %). CONCLUSION Given their vulnerability, optimizing outcomes for older adults with moderate-severe TBI across the healthcare continuum is critical.
Collapse
Affiliation(s)
| | - Heather M MacKenzie
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Parkwood Institute, St. Joseph's Health Care London, London, Ontario, Canada
| | - Amanda McIntyre
- Arthur Labatt Family School of Nursing, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Muskan Sait
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; University College Cork, Ireland
| | - Robert Teasell
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Parkwood Institute, St. Joseph's Health Care London, London, Ontario, Canada.
| | - Emma A Bateman
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Parkwood Institute, St. Joseph's Health Care London, London, Ontario, Canada
| |
Collapse
|
2
|
Kawakita K, Shishido H, Kuroda Y. Review of Temperature Management in Traumatic Brain Injuries. J Clin Med 2024; 13:2144. [PMID: 38610909 PMCID: PMC11012999 DOI: 10.3390/jcm13072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Therapeutic hypothermia (TH) for severe traumatic brain injury has seen restricted application due to the outcomes of randomized controlled trials (RCTs) conducted since 2000. In contrast with earlier RCTs, recent trials have implemented active normothermia management in control groups, ensuring comparable intensities of non-temperature-related therapeutic interventions, such as neurointensive care. This change in approach may be a contributing factor to the inability to establish the efficacy of TH. Currently, an active temperature management method using temperature control devices is termed "targeted temperature management (TTM)". One of the goals of TTM for severe traumatic brain injury is the regulation of increased intracranial pressure, employing TTM as a methodology for intracranial pressure management. Additionally, fever in traumatic brain injury has been acknowledged as contributing to poor prognosis, underscoring the importance of proactively preventing fever. TTM is also employed for the preemptive prevention of fever in severe traumatic brain injury. As an integral component of current neurointensive care, it is crucial to precisely delineate the targets of TTM and to potentially apply them in the treatment of severe traumatic brain injury.
Collapse
Affiliation(s)
- Kenya Kawakita
- Emergency Medical Center, Kagawa University Hospital, Miki 761-0793, Japan;
| | - Hajime Shishido
- Emergency Medical Center, Kagawa University Hospital, Miki 761-0793, Japan;
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Miki 760-0793, Japan;
| |
Collapse
|
3
|
The Association Between D-dimer Levels and Long-Term Neurological Outcomes of Patients with Traumatic Brain Injury: An Analysis of a Nationwide Observational Neurotrauma Database in Japan. Neurocrit Care 2021; 36:483-491. [PMID: 34462882 DOI: 10.1007/s12028-021-01329-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND We evaluated the association between D-dimer (DD) levels and long-term neurological prognoses among patients with isolated traumatic brain injury. METHODS Using data from multiple centers in the Japanese Neurotrauma Data Bank, we conducted an observational retrospective cohort study. Patients with isolated traumatic brain injury (head Abbreviated Injury Scale score > 2; any other Abbreviated Injury Scale score < 3) who were registered in the Japanese Neurotrauma Data Bank from 2015 to 2017 were recruited. We excluded patients younger than age 16 years and those who developed cardiac arrest at hospital admission. We also excluded patients with unknown Glasgow Outcome Scale (GOS) scores at 6 months after injury and those with unknown DD levels. The primary outcome was the association of DD levels with GOS scores at 6 months. We defined GOS scores 1 to 3 as poor and GOS scores 4 and 5 as good. The secondary outcome was the association of DD levels with mortality at 6 months after injury. We conducted multivariate logistic regression analyses to calculate the adjusted odds ratios of DD levels at hospital admission and GOS scores at 6 months as tertiles with 95% confidence intervals (CIs). A total of 293 patients were enrolled (median age 67 years; interquartile range 51-79 years). The median DD level was 27.1 mg/L (interquartile range 9.7-70.8 mg/L), and 58.0% (n = 170) had poor GOS scores at 6 months. RESULTS The multivariable logistic regression analysis indicated that the adjusted odds ratios were 2.52 (95% CI 1.10-5.77) for middle DD levels with poor GOS scores at 6 months and 5.81 (95% CI 2.37-14.2) for high DD levels with poor GOS scores at 6 months. CONCLUSIONS We revealed an association between DD levels and poor long-term neurological outcomes among patients with isolated traumatic brain injury.
Collapse
|
4
|
Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, Petervari E, Balasko M, Habon T, Rumbus Z, Tenk J, Rostas I, Weinberg J, Romanovsky AA, Garami A. Therapeutic Whole-Body Hypothermia Reduces Death in Severe Traumatic Brain Injury if the Cooling Index Is Sufficiently High: Meta-Analyses of the Effect of Single Cooling Parameters and Their Integrated Measure. J Neurotrauma 2018; 35:2407-2417. [PMID: 29681213 DOI: 10.1089/neu.2018.5649] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Poto
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged, Szeged, Hungary
| | - Imre Szabo
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Margit Solymar
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Erika Petervari
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Marta Balasko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Tamas Habon
- Department of Cardiology and Angiology, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Judit Tenk
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Ildiko Rostas
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Jordan Weinberg
- Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
5
|
Park YS, Kogeichi Y, Shida Y, Nakase H. Efficacy of the All-in-One Therapeutic Strategy for Severe Traumatic Brain Injury: Preliminary Outcome and Limitation. Korean J Neurotrauma 2018; 14:6-13. [PMID: 29774192 PMCID: PMC5949525 DOI: 10.13004/kjnt.2018.14.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/04/2022] Open
Abstract
Objective Despite recent advances in medicine, no significant improvement has been achieved in therapeutic outcomes for severe traumatic brain injury (TBI). In the treatment of severe multiple traumas, accurate judgment and prompt action corresponding to rapid pathophysiological changes are required. Therefore, we developed the “All-in-One” therapeutic strategy for severe TBI. In this report, we present the therapeutic concept and discuss its efficacy and limitations. Methods From April 2007 to December 2015, 439 patients diagnosed as having traumatic intracranial injuries were treated at our institution. Among them, 158 patients were treated surgically. The “All-in-One” therapeutic strategy was adopted to enforce all selectable treatments for these patients at the initial stages. The outline of this strategy is as follows: first, prompt trepanation surgery in the emergency room (ER); second, extensive decompression craniotomy (DC) in the operating room (OR); and finally, combined mild hypothermia and moderate barbiturate (H-B) therapy for 3 to 5 days. We performed these approaches on a regular basis rather than stepwise rule. If necessary, internal ecompression surgery and external ventricular drainage were performed in cases in which intracranial pressure could not be controlled. Results Trepanation surgery in the ER was performed in 97 cases; among these cases, 46 had hematoma removal surgery and also underwent DC in the OR. Craniotomy was not enforced unless the consciousness level and pupil findings did not improve after previous treatments. H-B therapy was administered in 56 cases. Internal decompression surgery, including evacuation of traumatic intracerebral hematoma, was additionally performed in 12 cases. Three months after injury, the Glasgow Outcome Scale (GOS) score yielded the following results: good recovery in 25 cases (16%), mild disability in 28 (18%), severe disability in 33 (21%), persistent vegetative state in 9 (6%), and death in 63 (40%). Furthermore, 27 (36%) of the 76 most severe patients who had an abnormal response of bilateral eye pupils were life-saving. Because many cases of a GOS score of ≤5 are included in this study, this result must be satisfactory. Conclusion This therapeutic strategy without any lose in the appropriate treatment timing can improve the outcomes of the most severe TBI cases. We think that the breakthrough in the treatment of severe TBI will depend on the shift in the treatment policy.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Yohei Kogeichi
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Yoichi Shida
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| |
Collapse
|
6
|
Choudhary RC, Jia X. Hypothalamic or Extrahypothalamic Modulation and Targeted Temperature Management After Brain Injury. Ther Hypothermia Temp Manag 2017; 7:125-133. [PMID: 28467285 PMCID: PMC5610405 DOI: 10.1089/ther.2017.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeted temperature management (TTM) has been recognized to protect tissue function and positively influence neurological outcomes after brain injury. While shivering during hypothermia nullifies the beneficial effect of TTM, traditionally, antishivering drugs or paralyzing agents have been used to reduce the shivering. The hypothalamic area of the brain helps in controlling cerebral temperature and body temperature through interactions between different brain areas. Thus, modulation of different brain areas either pharmacologically or by electrical stimulation may contribute in TTM; although, very few studies have shown that TTM might be achieved by activation and inhibition of neurons in the hypothalamic region. Recent studies have investigated potential pharmacological methods of inducing hypothermia for TTM by aiming to maintain the TTM and reduce the shivering effect without using antiparalytic drugs. Better survival and neurological outcome after brain injury have been reported after pharmacologically induced TTM. This review discusses the mechanisms and modulation of the hypothalamus with other brain areas that are involved in inducing hypothermia through which TTM may be achieved and provides therapeutic strategies for TTM after brain injury.
Collapse
Affiliation(s)
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Meta-Analysis of Therapeutic Hypothermia for Traumatic Brain Injury in Adult and Pediatric Patients. Crit Care Med 2017; 45:575-583. [PMID: 27941370 DOI: 10.1097/ccm.0000000000002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Therapeutic hypothermia has been used to attenuate the effects of traumatic brain injuries. However, the required degree of hypothermia, length of its use, and its timing are uncertain. We undertook a comprehensive meta-analysis to quantify benefits of hypothermia therapy for traumatic brain injuries in adults and children by analyzing mortality rates, neurologic outcomes, and adverse effects. DATA SOURCES Electronic databases PubMed, Google Scholar, Web of Science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov and manual searches of studies were conducted for relevant publications up until February 2016. STUDY SELECTION Forty-one studies in adults (n = 3,109; age range, 18-81 yr) and eight studies in children (n = 454; age range, 3 mo to 18 yr) met eligibility criteria. DATA EXTRACTION Baseline patient characteristics, enrollment time, methodology of cooling, target temperature, duration of hypothermia, and rewarming protocols were extracted. DATA SYNTHESIS Risk ratios with 95% CIs were calculated. Compared with adults who were kept normothermic, those who underwent therapeutic hypothermia were associated with 18% reduction in mortality (risk ratio, 0.82; 95% CI, 0.70-0.96; p = 0.01) and a 35% improvement in neurologic outcome (risk ratio, 1.35; 95% CI, 1.18-1.54; p < 0.00001). The optimal management strategy for adult patients included cooling patients to a minimum of 33°C for 72 hours, followed by spontaneous, natural rewarming. In contrast, adverse outcomes were observed in children who underwent hypothermic treatment with a 66% increase in mortality (risk ratio, 1.66; 95% CI, 1.06-2.59; p = 0.03) and a marginal deterioration of neurologic outcome (risk ratio, 0.90; 95% CI, 0.80-1.01; p = 0.06). CONCLUSIONS Therapeutic hypothermia is likely a beneficial treatment following traumatic brain injuries in adults but cannot be recommended in children.
Collapse
|
8
|
Kobayashi S, Morita A. The History of Neuroscience and Neurosurgery in Japan. ACTA ACUST UNITED AC 2017. [DOI: 10.17795/inj867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shigeaki Kobayashi
- Medical Research and Education Center, Stroke and Brain Center, Aizawa Hospital, Matsumoto , Japan
| | - Akio Morita
- Medical Research and Education Center, Stroke and Brain Center, Aizawa Hospital, Matsumoto , Japan
| |
Collapse
|
9
|
Traumatic brain injury: physiological targets for clinical practice in the prehospital setting and on the Neuro-ICU. Curr Opin Anaesthesiol 2016; 28:517-24. [PMID: 26331713 DOI: 10.1097/aco.0000000000000233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Over many years, understanding of the pathophysiology in traumatic brain injury (TBI) has resulted in the development of core physiological targets and therapies to preserve cerebral oxygenation, and in doing so prevent secondary insult. The present review revisits the evidence for these targets and therapies. RECENT FINDINGS Achieving oxygen, carbon dioxide, blood pressure, temperature and glucose targets remain a key goal of therapy in TBI, as does the role of effective prehospital care. Physician led air ambulance teams reduce mortality. Normobaric hyperoxia is dangerous to the injured brain; as are both high and low carbon dioxide levels. Hypotension is life threatening and higher targets have now been suggested in TBI. Both therapeutic normothermia and hypothermia have a role in specific groups of patients with TBI. Although consensus has not been reached on the optimal intravenous fluid for resuscitation in TBI, vigilant goal-directed fluid administration may improve outcome. Osmotherapeutic agents such as hypertonic sodium lactate solutions may also have a role alongside conventional agents. SUMMARY Maintaining physiological targets in several areas remains part of protocol led care in the acute phase of TBI management. As evidence accumulates however, the target values and therefore therapies may be set to change.
Collapse
|
10
|
Yokobori S, Yokota H. Targeted temperature management in traumatic brain injury. J Intensive Care 2016; 4:28. [PMID: 27123304 PMCID: PMC4847250 DOI: 10.1186/s40560-016-0137-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is recognized as the significant cause of mortality and morbidity in the world. To reduce unfavorable outcome in TBI patients, many researches have made much efforts for the innovation of TBI treatment. With the results from several basic and clinical studies, targeted temperature management (TTM) including therapeutic hypothermia (TH) have been recognized as the candidate of neuroprotective treatment. However, their evidences are not yet proven in larger randomized controlled trials (RCTs). The main aim of this review is thus to clarify specific pathophysiology which TTM will be effective in TBI. Historically, there were several clinical trials which compare TH and normothermia. Recently, two RCTs were able to demonstrate the significant beneficial effects of TTM in one specific pathology, patients with mass evacuated lesions. These suggested that TTM might be effective especially for the ischemic-reperfusional pathophysiology of TBI, like as acute subdural hematoma which needs to be evacuated. Also, the latest preliminary report of European multicenter trial suggested the promising efficacy of reduction of intracranial pressure in TBI. Conclusively, TTM is still in the center of neuroprotective treatments in TBI. This therapy is expected to mitigate ischemic and reperfusional pathophysiology and to reduce intracranial pressure in TBI. Further results from ongoing clinical RCTs are waited.
Collapse
Affiliation(s)
- Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo 113-8603 Japan
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo 113-8603 Japan
| |
Collapse
|
11
|
Miyata K, Ohnishi H, Maekawa K, Mikami T, Akiyama Y, Iihoshi S, Wanibuchi M, Mikuni N, Uemura S, Tanno K, Narimatsu E, Asai Y. Therapeutic temperature modulation in severe or moderate traumatic brain injury: a propensity score analysis of data from the Nationwide Japan Neurotrauma Data Bank. J Neurosurg 2015; 124:527-37. [PMID: 26381247 DOI: 10.3171/2015.3.jns141895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In patients with severe traumatic brain injury (TBI), a randomized controlled trial revealed that outcomes did not significantly improve after therapeutic hypothermia (TH) or normothermia (TN). However, avoiding pyrexia, which is often associated with intracranial disorders, might improve clinical outcomes. The objective of this study was to compare neurological outcomes among patients with moderate and severe TBI after therapeutic temperature modulation (TTM) in the absence of other interventions. METHODS Data from 1091 patients were obtained from the Japan Neurotrauma Data Bank Project 2009, a cohort observational study. Patients with cardiac arrest, those with a Glasgow Coma Scale score of 3 and dilated fixed pupils, and those whose cause of death was injury to another area of the body were excluded, leaving 687 patients aged 16 years or older in this study. The patients were divided into 2 groups: the TTM group underwent TN (213 patients) or TH (82 patients), and the control group (392 patients) did not receive TTM. The primary end point for this study was the rate of poor outcome at hospital discharge, and the secondary end point was in-hospital death. Out of the 208 total items in the database, 29 variables that could potentially affect outcome were matched using the propensity score (PS) method in order to reduce selection bias and balance the baseline characteristics. RESULTS From each group, 141 patients were extracted using the PS-matching process. Among the patients in the TTM group, 29 had undergone TH and 112 had undergone TN. In a log-rank test using Kaplan-Meier survival curves, no significant differences in patient outcome or death were observed between the 2 groups (poor outcome, p = 0.83; death, p = 0.18). A Cox proportional-hazards regression analysis established the HR for poor outcome and mortality at 1.03 (95% CI 0.78-1.36, p = 0.83) and 1.34 (95% CI 0.87-2.07, p = 0.18), respectively. CONCLUSIONS There was no clear improvement in neurological outcomes after TTM in patients with moderate or severe TBI. To elucidate the role of TTM in patients with these injuries, a prospective study is needed with long-term follow-up using specific target temperatures.
Collapse
Affiliation(s)
- Kei Miyata
- Departments of 1 Emergency Medicine.,Neurosurgery, and.,Japan Neurotrauma Data Bank Committee, Japan Society of Neurotraumatology, Tokyo, Japan
| | | | - Kunihiko Maekawa
- Emergency and Critical Care Center, Hokkaido University Hospital, Sapporo; and
| | | | | | | | | | | | | | | | - Eichi Narimatsu
- Departments of 1 Emergency Medicine.,Japan Neurotrauma Data Bank Committee, Japan Society of Neurotraumatology, Tokyo, Japan
| | - Yasufumi Asai
- Departments of 1 Emergency Medicine.,Japan Neurotrauma Data Bank Committee, Japan Society of Neurotraumatology, Tokyo, Japan
| |
Collapse
|
12
|
Kim DK, Hyun DK. Therapeutic Hypothermia in Traumatic Brain injury; Review of History, Pathophysiology and Current Studies. Korean J Crit Care Med 2015. [DOI: 10.4266/kjccm.2015.30.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Suehiro E, Koizumi H, Fujisawa H, Fujita M, Kaneko T, Oda Y, Yamashita S, Tsuruta R, Maekawa T, Suzuki M. Diverse effects of hypothermia therapy in patients with severe traumatic brain injury based on the computed tomography classification of the traumatic coma data bank. J Neurotrauma 2014; 32:353-8. [PMID: 25233298 DOI: 10.1089/neu.2014.3584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A multicenter randomized controlled trial of patients with severe traumatic brain injury who received therapeutic hypothermia or fever control was performed from 2002 to 2008 in Japan (BHYPO). There was no difference in the therapeutic effect on traumatic brain injury between the two groups. The efficacy of hypothermia treatment and the objective of the treatment were reexamined based on a secondary analysis of the BHYPO trial in 135 patients (88 treated with therapeutic hypothermia and 47 with fever control). This analysis was performed to examine clinical outcomes according to the CT classification of the Traumatic Coma Data Bank on admission. Clinical outcomes were evaluated with the Glasgow Outcome Scale and mortality at 6 months after injury. Good recovery and moderate disability were defined as favorable outcomes. Favorable outcomes in young patients (≤50 years old) with evacuated mass lesions significantly increased from 33.3% with fever control to 77.8% with therapeutic hypothermia. Patients with diffuse injury III who were treated with therapeutic hypothermia, however, had significantly higher mortality than patients treated with fever control. It was difficult to control intracranial pressure with hypothermia for patients with diffuse injury III, but hypothermia was effective for young patients with an evacuated mass lesion.
Collapse
Affiliation(s)
- Eiichi Suehiro
- 1 Department of Neurosurgery, Yamaguchi University School of Medicine , Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Suehiro E, Koizumi H, Fujiyama Y, Suzuki M. Recent advances and future directions of hypothermia therapy for traumatic brain injury. Neurol Med Chir (Tokyo) 2014; 54:863-9. [PMID: 25367589 PMCID: PMC4533346 DOI: 10.2176/nmc.st.2014-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For severe traumatic brain injury (TBI) patients, no effective treatment method replacing hypothermia therapy has emerged, and hypothermia therapy still plays the major role. To increase its efficacy, first, early introduction is important. Since there are diverse pathologies of severe TBI, it is necessary to appropriately control the temperature in the hypothermia maintenance and rewarming phases by monitoring relative to the pathology. Currently, hypothermia is considered appropriate for severe TBI patients requiring craniotomy for removal of hematoma, while induced normothermia is appropriate for severe TBI patients with diffuse brain injury. Induced normothermia is expected to exhibit a cerebroprotective effect equivalent to hypothermia, as well as reduce the complexity of whole-body management and systemic complications. According to the Japan Neurotrauma Data Bank of the Japan Society of Neurotraumatology, the brain temperature was controlled in 43.9% of severe TBI patients (induced normothermia: 32.2%, hypothermia: 11.7%) in Japan. Brain temperature management was performed mainly in young patients, and the outcome on discharge was favorable in patients who received brain temperature management. Particularly, patients who need craniotomy for removal of hematoma were a good indication of therapeutic hypothermia. Improvement of therapeutic outcomes with widespread temperature management in TBI patients is expected.
Collapse
Affiliation(s)
- Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | | | | | | |
Collapse
|
15
|
Sandestig A, Romner B, Grände PO. Therapeutic Hypothermia in Children and Adults with Severe Traumatic Brain Injury. Ther Hypothermia Temp Manag 2014; 4:10-20. [PMID: 24660099 PMCID: PMC3949439 DOI: 10.1089/ther.2013.0024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Great expectations have been raised about neuroprotection of therapeutic hypothermia in patients with traumatic brain injury (TBI) by analogy with its effects after heart arrest, neonatal asphyxia, and drowning in cold water. The aim of this study is to review our present knowledge of the effect of therapeutic hypothermia on outcome in children and adults with severe TBI. A literature search for relevant articles in English published from year 2000 up to December 2013 found 19 studies. No signs of improvement in outcome from hypothermia were seen in the five pediatric studies. Varied results were reported in 14 studies on adult patients, 2 of which reported a tendency of higher mortality and worse neurological outcome, 4 reported lower mortality, and 9 reported favorable neurological outcome with hypothermia. The quality of several trials was low. The best-performed randomized studies showed no improvement in outcome by hypothermia-some even indicated worse outcome. TBI patients may suffer from hypothermia-induced pulmonary and coagulation side effects, from side effects of vasopressors when re-establishing the hypothermia-induced lowered blood pressure, and from a rebound increase in intracranial pressure (ICP) during and after rewarming. The difference between body temperature and temperature set by the biological thermostat may cause stress-induced worsening of the circulation and oxygenation in injured areas of the brain. These mechanisms may counteract neuroprotective effects of therapeutic hypothermia. We conclude that we still lack scientific support as a first-tier therapy for the use of therapeutic hypothermia in TBI patients for both adults and children, but it may still be an option as a second-tier therapy for refractory intracranial hypertension.
Collapse
Affiliation(s)
- Anna Sandestig
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bertil Romner
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Institution of Clinical Science in Lund, Lund University Hospital, and Lund University, Lund, Sweden
| | - Per-Olof Grände
- Department of Anesthesia and Intensive Care, Institution of Clinical Science in Lund, Lund University Hospital, and Lund University, Lund, Sweden
| |
Collapse
|
16
|
Algattas H, Huang JH. Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 2013; 15:309-41. [PMID: 24381049 PMCID: PMC3907812 DOI: 10.3390/ijms15010309] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022] Open
Abstract
Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways.
Collapse
Affiliation(s)
- Hanna Algattas
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 441, Rochester, NY 14642, USA.
| | - Jason H Huang
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 441, Rochester, NY 14642, USA.
| |
Collapse
|