1
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
2
|
Markov AG, Livanova AA, Fedorova AA, Kravtsova VV, Krivoi II. Chronic Ouabain Targets Pore-Forming Claudin-2 and Ameliorates Radiation-Induced Damage to the Rat Intestinal Tissue Barrier. Int J Mol Sci 2023; 25:278. [PMID: 38203449 PMCID: PMC10778734 DOI: 10.3390/ijms25010278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to total-body X-ray irradiation (10 Gy) or a sham irradiation. Isolated tissues were examined 72 h post-irradiation. Electrophysiological characteristics and paracellular permeability for sodium fluorescein were measured in an Ussing chamber. Histological analysis and Western blotting were also performed. In the jejunum tissue, ouabain exposure did not prevent disturbances in transepithelial resistance, paracellular permeability, histological characteristics, as well as changes in the expression of claudin-1, -3, -4, tricellulin, and caspase-3 induced by IR. However, ouabain prevented overexpression of occludin and the pore-forming claudin-2. In the colon tissue, ouabain prevented electrophysiological disturbances and claudin-2 overexpression. These observations may reveal a mechanism by which circulating ouabain maintains tight junction integrity under IR-induced intestinal dysfunction.
Collapse
Affiliation(s)
- Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.L.); (A.A.F.); (V.V.K.); (I.I.K.)
| | | | | | | | | |
Collapse
|
3
|
Nguyen LD, Wei Z, Silva MC, Barberán-Soler S, Zhang J, Rabinovsky R, Muratore CR, Stricker JMS, Hortman C, Young-Pearse TL, Haggarty SJ, Krichevsky AM. Small molecule regulators of microRNAs identified by high-throughput screen coupled with high-throughput sequencing. Nat Commun 2023; 14:7575. [PMID: 37989753 PMCID: PMC10663445 DOI: 10.1038/s41467-023-43293-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023] Open
Abstract
MicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval. We explore a different approach by screening a biodiverse library of small molecule compounds for their ability to modulate hundreds of miRNAs in human induced pluripotent stem cell-derived neurons. We demonstrate the utility of the screen by identifying cardiac glycosides as potent inducers of miR-132, a key neuroprotective miRNA downregulated in Alzheimer's disease and other tauopathies. Coordinately, cardiac glycosides downregulate known miR-132 targets, including Tau, and protect rodent and human neurons against various toxic insults. More generally, our dataset of 1370 drug-like compounds and their effects on the miRNome provides a valuable resource for further miRNA-based drug discovery.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Jiarui Zhang
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christina R Muratore
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan M S Stricker
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Tracy L Young-Pearse
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Zhang M, Hao Z, Wu J, Teng Z, Qiu W, Cheng J. Curcumin ameliorates traumatic brain injury via C1ql3-mediated microglia M2 polarization. Tissue Cell 2023; 84:102164. [PMID: 37478644 DOI: 10.1016/j.tice.2023.102164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE Curcumin can regulate the polarization of microglia and alleviate traumatic brain injury (TBI). However, its detailed action mechanism on downregulating Complement 1q-like-3 protein (C1ql3) in TBI is less reported. The purpose of this study is to explore the role and mechanism of curcumin-regulated C1ql3 in TBI. METHOD GSE23639 dataset was used to acquire gene data for microglia. C57BL/6 J wild-type (WT) mice were subjected to establish a controlled cortical impact model of TBI. The effects of curcumin (200 mg/kg) on the brain injury, inflammatory cytokine levels, microglia polarization, and C1ql3 protein expression in mice and BV-2 cells were detected by H&E staining, qRT-PCR, immunofluorescence, and Western blot, respectively. The effects of curcumin (5, 10, 20 μmol/L) and lipopolysaccharides (LPS, 1 µg/mL) on the viability of BV-2 cells were determined by MTT assay. After the transfection of C1ql3 overexpression plasmid, C1ql3 expression, IL-1β and IL-6 levels, and the number of CD16+/32+ and CD206+ cells were determined by qRT-PCR, ELISA and flow cytometry, respectively. RESULT C1ql3 expression was down-regulated in microglia after the curcumin treatment. Curcumin treatment could alleviate the TBI-induced brain injury in mice, reduce IL-1β and IL-6 levels, promote M2 polarization of microglia, and decrease C1ql3 protein expression. For BV-2 cells, curcumin treatment had no significant toxic effect on cell viability, but reversed the effect of LPS on cells, while C1ql3 overexpression counteracted the effect of curcumin. CONCLUSION Curcumin induces M2 microglia polarization through down-regulating C1ql3 expression, which may become a new treatment method for TBI. AVAILABILITY OF DATA AND MATERIALS The analyzed data sets generated during the study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Gongshu, Hangzhou City, Zhejiang 310015, PR China
| | - Zelin Hao
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Gongshu, Hangzhou City, Zhejiang 310015, PR China
| | - Jianyue Wu
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Gongshu, Hangzhou City, Zhejiang 310015, PR China
| | - Zhenfei Teng
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Gongshu, Hangzhou City, Zhejiang 310015, PR China
| | - Wusi Qiu
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Gongshu, Hangzhou City, Zhejiang 310015, PR China
| | - Jun Cheng
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Gongshu, Hangzhou City, Zhejiang 310015, PR China.
| |
Collapse
|
5
|
Krichevsky A, Nguyen L, Wei Z, Silva M, Barberán-Soler S, Rabinovsky R, Muratore C, Stricker J, Hortman C, Young-Pearse T, Haggarty S. Small Molecule Regulators of microRNAs Identified by High-Throughput Screen Coupled with High-Throughput Sequencing. RESEARCH SQUARE 2023:rs.3.rs-2617979. [PMID: 36993255 PMCID: PMC10055534 DOI: 10.21203/rs.3.rs-2617979/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval. We explore a different approach by screening a biodiverse library of small molecule compounds for their ability to modulate hundreds of miRNAs in human induced pluripotent stem cell-derived neurons. We demonstrate the utility of the screen by identifying cardiac glycosides as potent inducers of miR-132, a key miRNA downregulated in Alzheimer's disease and other tauopathies. Coordinately, cardiac glycosides downregulate known miR-132 targets, including Tau, and protect rodent and human neurons against various toxic insults. More generally, our dataset of 1370 drug-like compounds and their effects on the miRNome provide a valuable resource for further miRNA-based drug discovery.
Collapse
Affiliation(s)
| | - Lien Nguyen
- Brigham and Women's Hospital and Harvard Medical School
| | - Zhiyun Wei
- Brigham and Women's Hospital and Harvard Medical School
| | - M Silva
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Rosalia Rabinovsky
- 1. Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abdelmissih S, Sayed WM, Rashed LA, Kamel MM, Eshra MA, Attallah MI, El-Naggar RAR. The extent of involvement of ouabain, hippocampal expression of Na+/K+-ATPase, and corticosterone/melatonin receptors ratio in modifying stress-induced behavior differs according to the stressor in context. Braz J Med Biol Res 2022; 55:e11938. [PMID: 35857994 PMCID: PMC9296128 DOI: 10.1590/1414-431x2022e11938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to assess the effect of two types of stressors,
regarding the extent of involvement of ouabain (OUA), hippocampal
sodium/potassium ATPase (NKA) expression, and the hippocampal
corticosterone receptors (CR)/melatonin receptors
(MR) expression ratio, on the behavioral and cardiovascular
responses and on the hippocampal cornu ammonis zone 3 (CA3) and dentate gyrus
(DG). Thirty adult male Wistar albino rats aged 7-8 months were exposed to
either chronic immobilization or a disturbed dark/light cycle and treated with
either ouabain or vehicle. In the immobilized group, in the absence of
hippocampal corticosterone (CORT) changes, rats were non-responsive to stress,
despite experiencing increased pulse rate, downregulated hippocampal
sodium/potassium pump, and enhanced hippocampal CR/MR
expression ratio. Prolonged darkness precipitated a reduced upright attack
posture, with elevated CORT against hippocampal MR
downregulation. Both immobilization and, to a lesser extent, prolonged darkness
stress resulted in histopathological and ultrastructural neurodegenerative
changes in the hippocampus. OUA administration did not change the behavioral
resilience in restrained rats, despite persistence of the underlying biochemical
derangements, added to decreased CORT. On the contrary, with exposure to short
photoperiods, OUA reverted the behavior towards a combative reduction of
inactivity, with unvaried CR/MR and CORT, while ameliorating
hippocampal neuro-regeneration, with co-existing NKA and
MR repressions. Therefore, the extent of OUA, hippocampal
NKA expression, and CR/MR expression, and
subsequent behavioral and cardiac responses and hippocampal histopathology,
differ according to the type of stressor, whether immobilization or prolonged
darkness.
Collapse
Affiliation(s)
- S Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - W M Sayed
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - L A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - M M Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt.,Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - M A Eshra
- Department of Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - M I Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - R A-R El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
7
|
Mázala-de-Oliveira T, de Figueiredo CS, de Rezende Corrêa G, da Silva MS, Miranda RL, de Azevedo MA, Cossenza M, Dos Santos AA, Giestal-de-Araujo E. Ouabain-Na +/K +-ATPase Signaling Regulates Retinal Neuroinflammation and ROS Production Preventing Neuronal Death by an Autophagy-Dependent Mechanism Following Optic Nerve Axotomy In Vitro. Neurochem Res 2022; 47:723-738. [PMID: 34783975 DOI: 10.1007/s11064-021-03481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Ouabain is a classic Na+K+ATPase ligand and it has been described to have neuroprotective effects on neurons and glial cells at nanomolar concentrations. In the present work, the neuroprotective and immunomodulatory potential of ouabain was evaluated in neonatal rat retinal cells using an optic nerve axotomy model in vitro. After axotomy, cultured retinal cells were treated with ouabain (3 nM) at different periods. The levels of important inflammatory receptors in the retina such as TNFR1/2, TLR4, and CD14 were analyzed. We observed that TNFR1, TLR4, and CD14 were decreased in all tested periods (15 min, 45 min, 24 h, and 48 h). On the other hand, TNFR2 was increased after 24 h, suggesting an anti-inflammatory potential for ouabain. Moreover, we showed that ouabain also decreased Iba-1 (microglial marker) density. Subsequently, analyses of retrograde labeling of retinal ganglion cells (RGC) were performed after 48 h and showed that ouabain-induced RGC survival depends on autophagy. Using an autophagy inhibitor (3-methyladenine), we observed a complete blockage of the ouabain effect. Western blot analyses showed that ouabain increases the levels of autophagy proteins (LC3 and Beclin-1) coupled to p-CREB transcription factor and leads to autophagosome formation. Additionally, we found that the ratio of cleaved/pro-caspase-3 did not change after ouabain treatment; however, p-JNK density was enhanced. Also, ouabain decreased reactive oxygen species production immediately after axotomy. Taken together, our results suggest that ouabain controls neuroinflammation in the retina following optic nerve axotomy and promotes RGC neuroprotection through activation of the autophagy pathway.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Gustavo de Rezende Corrêa
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Mayra Santos da Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Renan Lyra Miranda
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Mariana Almeida de Azevedo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Aline Araujo Dos Santos
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
8
|
Chronic Ouabain Prevents Na,K-ATPase Dysfunction and Targets AMPK and IL-6 in Disused Rat Soleus Muscle. Int J Mol Sci 2021; 22:ijms22083920. [PMID: 33920198 PMCID: PMC8069997 DOI: 10.3390/ijms22083920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Sustained sarcolemma depolarization due to loss of the Na,K-ATPase function is characteristic for skeletal muscle motor dysfunction. Ouabain, a specific ligand of the Na,K-ATPase, has a circulating endogenous analogue. We hypothesized that the Na,K-ATPase targeted by the elevated level of circulating ouabain modulates skeletal muscle electrogenesis and prevents its disuse-induced disturbances. Isolated soleus muscles from rats intraperitoneally injected with ouabain alone or subsequently exposed to muscle disuse by 6-h hindlimb suspension (HS) were studied. Conventional electrophysiology, Western blotting, and confocal microscopy with cytochemistry were used. Acutely applied 10 nM ouabain hyperpolarized the membrane. However, a single injection of ouabain (1 µg/kg) prior HS was unable to prevent the HS-induced membrane depolarization. Chronic administration of ouabain for four days did not change the α1 and α2 Na,K-ATPase protein content, however it partially prevented the HS-induced loss of the Na,K-ATPase electrogenic activity and sarcolemma depolarization. These changes were associated with increased phosphorylation levels of AMP-activated protein kinase (AMPK), its substrate acetyl-CoA carboxylase and p70 protein, accompanied with increased mRNA expression of interleikin-6 (IL-6) and IL-6 receptor. Considering the role of AMPK in regulation of the Na,K-ATPase, we suggest an IL-6/AMPK contribution to prevent the effects of chronic ouabain under skeletal muscle disuse.
Collapse
|
9
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
10
|
Wang Y, Shi Z, Zhang Y, Yan J, Yu W, Chen L. Oligomer β-amyloid Induces Hyperactivation of Ras to Impede NMDA Receptor-Dependent Long-Term Potentiation in Hippocampal CA1 of Mice. Front Pharmacol 2020; 11:595360. [PMID: 33536910 PMCID: PMC7848859 DOI: 10.3389/fphar.2020.595360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022] Open
Abstract
The activity of Ras, a small GTPase protein, is increased in brains with Alzheimer’s disease. The objective of this study was to determine the influence of oligomeric Aβ1-42 on the activation of Ras, and the involvement of the Ras hyperactivity in Aβ1-42-induced deficits in spatial cognition and hippocampal synaptic plasticity. Herein, we show that intracerebroventricular injection of Aβ1-42 in mice (Aβ-mice) enhanced hippocampal Ras activation and expression, while 60 min incubation of hippocampal slices in Aβ1-42 (Aβ-slices) only elevated Ras activity. Aβ-mice showed deficits in spatial cognition and NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) in hippocampal CA1, but basal synaptic transmission was enhanced. The above effects of Aβ1-42 were corrected by the Ras inhibitor farnesylthiosalicylic acid (FTS). ERK2 phosphorylation increased, and Src phosphorylation decreased in Aβ-mice and Aβ1-42-slices. Both were corrected by FTS. In CA1 pyramidal cells of Aβ1-42-slices, the response of AMPA receptor and phosphorylation of GluR1 were enhanced with dependence on Ras activation rather than ERK signaling. In contrast, NMDA receptor (NMDAR) function and GluN2A/2B phosphorylation were downregulated in Aβ1-42-slices, which was recovered by application of FTS or the Src activator ouabain, and mimicked in control slices treated with the Src inhibitor PP2. The administration of PP2 impaired the spatial cognition and LTP induction in control mice and FTS-treated Aβ-mice. The treatment of Aβ-mice with ouabain rescued Aβ-impaired spatial cognition and LTP. Overall, the results indicate that the oligomeric Aβ1-42 hyperactivates Ras and thereby causes the downregulation of Src which impedes NMDAR-dependent LTP induction resulting in cognitive deficits.
Collapse
Affiliation(s)
- Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhaochun Shi
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Medicine, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of Education Ministry, Guizhou Medical University, Guizhou, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Ivanova MA, Kokorina AD, Timofeeva PD, Karelina TV, Abushik PA, Stepanenko JD, Sibarov DA, Antonov SM. Calcium Export from Neurons and Multi-Kinase Signaling Cascades Contribute to Ouabain Neuroprotection in Hyperhomocysteinemia. Biomolecules 2020; 10:biom10081104. [PMID: 32722349 PMCID: PMC7464744 DOI: 10.3390/biom10081104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022] Open
Abstract
Pathological homocysteine (HCY) accumulation in the human plasma, known as hyperhomocysteinemia, exacerbates neurodegenerative diseases because, in the brain, this amino acid acts as a persistent N-methyl-d-aspartate receptor agonist. We studied the effects of 0.1–1 nM ouabain on intracellular Ca2+ signaling, mitochondrial inner membrane voltage (φmit), and cell viability in primary cultures of rat cortical neurons in glutamate and HCY neurotoxic insults. In addition, apoptosis-related protein expression and the involvement of some kinases in ouabain-mediated effects were evaluated. In short insults, HCY was less potent than glutamate as a neurotoxic agent and induced a 20% loss of φmit, whereas glutamate caused a 70% decrease of this value. Subnanomolar ouabain exhibited immediate and postponed neuroprotective effects on neurons. (1) Ouabain rapidly reduced the Ca2+ overload of neurons and loss of φmit evoked by glutamate and HCY that rescued neurons in short insults. (2) In prolonged 24 h excitotoxic insults, ouabain prevented neuronal apoptosis, triggering proteinkinase A and proteinkinase C dependent intracellular neuroprotective cascades for HCY, but not for glutamate. We, therefore, demonstrated here the role of PKC and PKA involving pathways in neuronal survival caused by ouabain in hyperhomocysteinemia, which suggests existence of different appropriate pharmacological treatment for hyperhomocysteinemia and glutamate excitotoxicity.
Collapse
|
12
|
Circulating Ouabain Modulates Expression of Claudins in Rat Intestine and Cerebral Blood Vessels. Int J Mol Sci 2020; 21:ijms21145067. [PMID: 32709081 PMCID: PMC7404321 DOI: 10.3390/ijms21145067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of exogenous low ouabain concentrations to affect claudin expression and therefore epithelial barrier properties was demonstrated previously in cultured cell studies. We hypothesized that chronic elevation of circulating ouabain in vivo can affect the expression of claudins and tight junction permeability in different tissues. We tested this hypothesis in rats intraperitoneally injected with ouabain (1 μg/kg) for 4 days. Rat jejunum, colon and brain frontal lobes, which are variable in the expressed claudins and tight junction permeability, were examined. Moreover, the porcine jejunum cell line IPEC-J2 was studied. In IPEC-J2-cells, ouabain (10 nM, 19 days of incubation) stimulated epithelial barrier formation, increased transepithelial resistance and the level of cSrc-kinase activation by phosphorylation, accompanied with an increased expression of claudin-1, -5 and down-regulation of claudin-12; the expression of claudin-3, -4, -8 and tricellulin was not changed. In the jejunum, chronic ouabain increased the expression of claudin-1, -3 and -5 without an effect on claudin-2 and -4 expression. In the colon, only down-regulation of claudin-3 was observed. Chronic ouabain protected the intestine transepithelial resistance against functional injury induced by lipopolysaccharide treatment or by modeled acute microgravity; this regulation was most pronounced in the jejunum. Claudin-1 was also up-regulated in cerebral blood vessels. This was associated with reduction of claudin-3 expression while the expression of claudin-5 and occludin was not affected. Altogether, our results confirm that circulating ouabain can functionally and tissue-specifically affect barrier properties of epithelial and endothelial tissues via Na,K-ATPase-mediated modulation of claudins expression.
Collapse
|
13
|
Akkuratov EE, Westin L, Vazquez-Juarez E, de Marothy M, Melnikova AK, Blom H, Lindskog M, Brismar H, Aperia A. Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor. Mol Neurobiol 2020; 57:4018-4030. [PMID: 32651756 PMCID: PMC7467916 DOI: 10.1007/s12035-020-01984-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 μM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor–dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.
Collapse
Affiliation(s)
- Evgeny E Akkuratov
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden
| | - Linda Westin
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| | - Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Minttu de Marothy
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain. Int J Mol Sci 2020; 21:ijms21082875. [PMID: 32326025 PMCID: PMC7215781 DOI: 10.3390/ijms21082875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
While the role of circulating ouabain-like compounds in the cardiovascular and central nervous systems, kidney and other tissues in health and disease is well documented, little is known about its effects in skeletal muscle. In this study, rats were intraperitoneally injected with ouabain (0.1-10 µg/kg for 4 days) alone or with subsequent injections of lipopolysaccharide (1 mg/kg). Some rats were also subjected to disuse for 6 h by hindlimb suspension. In the diaphragm muscle, chronic ouabain (1 µg/kg) hyperpolarized resting potential of extrajunctional membrane due to specific increase in electrogenic transport activity of the 2 Na,K-ATPase isozyme and without changes in 1 and 2 Na,K-ATPase protein content. Ouabain (10-20 nM), acutely applied to isolated intact diaphragm muscle from not injected rats, hyperpolarized the membrane to a similar extent. Chronic ouabain administration prevented lipopolysaccharide-induced (diaphragm muscle) or disuse-induced (soleus muscle) depolarization of the extrajunctional membrane. No stimulation of the 1 Na,K-ATPase activity in human red blood cells, purified lamb kidney and Torpedo membrane preparations by low ouabain concentrations was observed. Our results suggest that skeletal muscle electrogenesis is subjected to regulation by circulating ouabain via the 2 Na,K-ATPase isozyme that could be important for adaptation of this tissue to functional impairment.
Collapse
|
15
|
Leibovich H, Buzaglo N, Tsuriel S, Peretz L, Caspi Y, Katz B, Lev S, Lichtstein D, Binshtok AM. Abnormal Reinnervation of Denervated Areas Following Nerve Injury Facilitates Neuropathic Pain. Cells 2020; 9:cells9041007. [PMID: 32325693 PMCID: PMC7226396 DOI: 10.3390/cells9041007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/23/2023] Open
Abstract
An injury to peripheral nerves leads to skin denervation, which often is followed by increased pain sensitivity of the denervated areas and the development of neuropathic pain. Changes in innervation patterns during the reinnervation process of the denervated skin could contribute to the development of neuropathic pain. Here, we examined the changes in the innervation pattern during reinnervation and correlated them with the symptoms of neuropathic pain. Using a multispectral labeling technique—PainBow, which we developed, we characterized dorsal root ganglion (DRG) neurons innervating distinct areas of the rats’ paw. We then used spared nerve injury, causing partial denervation of the paw, and examined the changes in innervation patterns of the denervated areas during the development of allodynia and hyperalgesia. We found that, differently from normal conditions, during the development of neuropathic pain, these areas were mainly innervated by large, non-nociceptive neurons. Moreover, we found that the development of neuropathic pain is correlated with an overall decrease in the number of DRG neurons innervating these areas. Importantly, treatment with ouabain facilitated reinnervation and alleviated neuropathic pain. Our results suggest that local changes in peripheral innervation following denervation contribute to neuropathic pain development. The reversal of these changes decreases neuropathic pain.
Collapse
Affiliation(s)
- Hodaya Leibovich
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
| | - Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Shlomo Tsuriel
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
| | - Liat Peretz
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Alexander M. Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-675-7349
| |
Collapse
|
16
|
Xu SY, Liu M, Gao Y, Cao Y, Bao JG, Lin YY, Wang Y, Luo QZ, Jiang JY, Zhong CL. Acute histopathological responses and long-term behavioral outcomes in mice with graded controlled cortical impact injury. Neural Regen Res 2019; 14:997-1003. [PMID: 30762011 PMCID: PMC6404507 DOI: 10.4103/1673-5374.250579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. Mice were subjected to injury at three severities using a Pin-Point™-controlled cortical impact device to establish secondary brain injury mouse models. Twenty-four hours after injury, hematoxylin-eosin staining, Fluoro-Jade B histofluorescence, and immunohistochemistry were performed for brain slices. Compared to the uninjured side, we observed differences of histopathological findings, neuronal degeneration, and glial cell number in the CA2 and CA3 regions of the hippocampus on the injured side. The Morris water maze task and beam-walking test verified long-term (14–28 days) spatial learning/memory and motor balance. To conclude, the histopathological responses were positively correlated with the degree of damage, as were the long-term behavioral manifestations after controlled cortical impact. All animal procedures were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University School of Medicine.
Collapse
Affiliation(s)
- Si-Yi Xu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Cao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Gang Bao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Ying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Zhong Luo
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Long Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Song HL, Demirev AV, Kim NY, Kim DH, Yoon SY. Ouabain activates transcription factor EB and exerts neuroprotection in models of Alzheimer's disease. Mol Cell Neurosci 2018; 95:13-24. [PMID: 30594669 DOI: 10.1016/j.mcn.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022] Open
Abstract
The number of neurofibrillary tangles containing abnormal hyperphosphorylated tau protein correlates with the degree of dementia in Alzheimer's disease (AD). In addition, autophagosome accumulation and disturbance of autophagy, the process by which toxic aggregate proteins are degraded in the cytosol, are also found in AD models. These indicate that regulation of the autophagy-lysosome system may be a potential therapeutic target for AD. Activation of transcription factor EB (TFEB), a master regulator of autophagy-lysosome system gene transcription, reduces the amount of tau in APP mice. Here, to identify potential therapeutic compounds for AD, we performed two types of screening to determine pharmacologically active compounds that increase 1) neuronal viability in okadaic acid-induced tau hyperphosphorylation-related neurodegeneration models and 2) nuclear localization of TFEB in high-contents screening. Ouabain, a cardiac glycoside, was discovered as a common hit compound in both screenings. It also exhibited a significant protective effect in tau transgenic fly and mouse models in vivo. This work demonstrates that ouabain enhances activation of TFEB through inhibition of the mTOR pathway and induces downstream autophagy-lysosomal gene expression and cellular restorative properties. Therefore, therapeutic approaches using ouabain reduce the accumulation of abnormal toxic tau in vitro and in vivo.
Collapse
Affiliation(s)
- Ha-Lim Song
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute for Innovation in Neurodegenerative Diseases, ADEL, Inc., Seoul, Republic of Korea
| | - Atanas Vladimirov Demirev
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Na-Young Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute for Innovation in Neurodegenerative Diseases, ADEL, Inc., Seoul, Republic of Korea
| | - Dong-Hou Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Seung-Yong Yoon
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute for Innovation in Neurodegenerative Diseases, ADEL, Inc., Seoul, Republic of Korea.
| |
Collapse
|
18
|
|
19
|
Burlaka I, Nilsson LM, Scott L, Holtbäck U, Eklöf AC, Fogo AB, Brismar H, Aperia A. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. Kidney Int 2016; 90:135-48. [PMID: 27217195 PMCID: PMC6101029 DOI: 10.1016/j.kint.2016.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023]
Abstract
There is a great need for treatment that arrests progression of chronic kidney disease. Increased albumin in urine leads to apoptosis and fibrosis of podocytes and tubular cells and is a major cause of functional deterioration. There have been many attempts to target fibrosis, but because of the lack of appropriate agents, few have targeted apoptosis. Our group has described an ouabain-activated Na,K-ATPase/IP3R signalosome, which protects from apoptosis. Here we show that albumin uptake in primary rat renal epithelial cells is accompanied by a time- and dose-dependent mitochondrial accumulation of the apoptotic factor Bax, down-regulation of the antiapoptotic factor Bcl-xL and mitochondrial membrane depolarization. Ouabain opposes these effects and protects from apoptosis in albumin-exposed proximal tubule cells and podocytes. The efficacy of ouabain as an antiapoptotic and kidney-protective therapeutic tool was then tested in rats with passive Heymann nephritis, a model of proteinuric chronic kidney disease. Chronic ouabain treatment preserved renal function, protected from renal cortical apoptosis, up-regulated Bax, down-regulated Bcl-xL, and rescued from glomerular tubular disconnection and podocyte loss. Thus we have identified a novel clinically feasible therapeutic tool, which has the potential to protect from apoptosis and rescue from loss of functional tissue in chronic proteinuric kidney disease.
Collapse
Affiliation(s)
- Ievgeniia Burlaka
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Ulla Holtbäck
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ann-Christine Eklöf
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
20
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
21
|
Aperia A, Akkuratov EE, Fontana JM, Brismar H. Na+-K+-ATPase, a new class of plasma membrane receptors. Am J Physiol Cell Physiol 2016; 310:C491-5. [PMID: 26791490 DOI: 10.1152/ajpcell.00359.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)-K(+)-ATPase (NKA) differs from most other ion transporters, not only in its capacity to maintain a steep electrochemical gradient across the plasma membrane, but also as a receptor for a family of cardiotonic steroids, to which ouabain belongs. Studies from many groups, performed during the last 15 years, have demonstrated that ouabain, a member of the cardiotonic steroid family, can activate a network of signaling molecules, and that NKA will also serve as a signal transducer that can provide a feedback loop between NKA and the mitochondria. This brief review summarizes the current knowledge and controversies with regard to the understanding of NKA signaling.
Collapse
Affiliation(s)
- Anita Aperia
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Evgeny E Akkuratov
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Jacopo Maria Fontana
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
22
|
Low-dose Exogenous Ouabain Alleviates Cardiac Lipotoxicity Through Suppressing Expression of CD36. J Cardiovasc Pharmacol 2016; 67:39-46. [DOI: 10.1097/fjc.0000000000000311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zhao M, Liang F, Xu H, Yan W, Zhang J. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol Med Rep 2015; 13:13-20. [PMID: 26572258 PMCID: PMC4686104 DOI: 10.3892/mmr.2015.4551] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/21/2015] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) leads to permanent neurological impairment, and methylene blue (MB) exerts central nervous system neuroprotective effects. However, only one previous study has investigated the effectiveness of MB in a controlled cortical impact injury model of TBI. In addition, the specific mechanisms underlying the effect of MB against TBI remain to be elucidated. Therefore, the present study investigated the neuroprotective effect of MB on TBI and the possible mechanisms involved. In a mouse model of TBI, the animals were randomly divided into sham, vehicle (normal saline) or MB groups. The treatment time-points were 24 and 72 h (acute phase of TBI), and 14 days (chronic phase of TBI) post-TBI. The brain water content (BWC), and levels of neuronal death, and autophagy were determined during the acute phase, and neurological deficit, injury volume and microglial activation were assessed at all time-points. The injured hemisphere BWC was significantly increased 24 h post-TBI, and this was attenuated following treatment with MB. There was a significantly higher number of surviving neurons in the MB group, compared with the Vehicle group at 24 and 72 h post-TBI. In the acute phase, the MB-treated animals exhibited significantly upregulated expression of Beclin 1 and increased LC3-II to LC3-I ratios, compared with the vehicle group, indicating an increased rate of autophagy. Neurological functional deficits, measured using the modified neurological severity score, were significantly lower in the acute phase in the MB-treated animals and cerebral lesion volumes in the MB-treated animals were significantly lower, compared with the other groups at all time-points. Microglia were activated 24 h after TBI, peaked at 72 h and persisted until 14 days after TBI. Although the number of Iba-1-positive cells in the vehicle and MB groups 24 h post-TBI were not significantly different, marked microglial inhibition was observed in the MB group 72 h and 14 days after-TBI. These results indicated that MB exerts a neuroprotective effect by increasing autophagy, decreasing brain edema and inhibiting microglial activation.
Collapse
Affiliation(s)
- Mingfei Zhao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Hangdi Xu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
24
|
de Rezende Corrêa G, Soares VHP, de Araújo-Martins L, Dos Santos AA, Giestal-de-Araujo E. Ouabain and BDNF Crosstalk on Ganglion Cell Survival in Mixed Retinal Cell Cultures. Cell Mol Neurobiol 2015; 35:651-60. [PMID: 25651946 DOI: 10.1007/s10571-015-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known and well-studied neurotrophin. Most biological effects of BDNF are mediated by the activation of TrkB receptors. This neurotrophin regulates several neuronal functions as cell proliferation, viability, and differentiation. Ouabain is a steroid that binds to the Na(+)/K(+) ATPase, inducing the activation of several intracellular signaling pathways. Previous data from our group described that ouabain treatment increases retinal ganglion cells survival (RGC). The aim of the present study was to evaluate, if this cardiac glycoside can have a synergistic effect with BDNF, the classical trophic factor for retinal ganglion cells, as well as investigate the intracellular signaling pathways involved. Our work demonstrated that the activation of Src, PLC, and PKCδ participates in the signaling cascade mediated by 50 ng/mL BDNF, since their selective inhibitors completely blocked the trophic effect of BDNF. We also demonstrated a synergistic effect on RGC survival when we concomitantly used ouabain (0.75 nM) and BDNF (10 ng/mL). Moreover, the signaling pathways involved in this synergistic effect include Src, PLC, PKCδ, and JNK. Our results suggest that the synergism between ouabain and BDNF occurs through the activation of the Src pathway, JNK, PLC, and PKCδ.
Collapse
Affiliation(s)
- Gustavo de Rezende Corrêa
- Departamento de Neurobiologia, Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro, CEP 24020-140, Brazil,
| | | | | | | | | |
Collapse
|
25
|
Gao Y, Xu S, Cui Z, Zhang M, Lin Y, Cai L, Wang Z, Luo X, Zheng Y, Wang Y, Luo Q, Jiang J, Neale JH, Zhong C. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury. J Neurochem 2015; 134:340-53. [PMID: 25872793 DOI: 10.1111/jnc.13123] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Yang Gao
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Siyi Xu
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Zhenwen Cui
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Mingkun Zhang
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Yingying Lin
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Lei Cai
- Shanghai Research Center for Model Organisms; Shanghai China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms; Shanghai China
| | - Xingguang Luo
- Department of Psychiatry; Yale University School of Medicine; West Haven Connecticut USA
| | - Yan Zheng
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Yong Wang
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Qizhong Luo
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Jiyao Jiang
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Joseph H. Neale
- Department of Biology; Georgetown University; Washington DC USA
| | - Chunlong Zhong
- Department of Neurosurgery; Ren Ji Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|