1
|
Radabaugh HL, Harris NG, Wanner IB, Burns MP, McCabe JT, Korotcov AV, Dardzinski BJ, Zhou J, Koehler RC, Wan J, Allende Labastida J, Moghadas B, Bibic A, Febo M, Kobeissy FH, Zhu J, Rubenstein R, Hou J, Bose PK, Apiliogullari S, Beattie MS, Bresnahan JC, Rosi S, Huie JR, Ferguson AR, Wang KKW. Translational Outcomes Project in Neurotrauma (TOP-NT) Pre-Clinical Consortium Study: A Synopsis. J Neurotrauma 2025. [PMID: 39841551 DOI: 10.1089/neu.2023.0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury (TBI) has long been a leading cause of death and disability, yet research has failed to successfully translate findings from the pre-clinical, animal setting into the clinic. One factor that contributes significantly to this struggle is the heterogeneity observed in the clinical setting where patients present with injuries of varying types, severities, and comorbidities. Modeling this highly varied population in the laboratory remains challenging. Given feasibility constraints, individual laboratories often focus on single injury types and are limited to an abridged set of outcome measures. Furthermore, laboratories tend to use different injury or outcome methodologies from one another, making it difficult to compare studies and identify which pre-clinical findings may be best suited for clinical translation. The NINDS-funded Translational Outcomes Project in Neurotrauma (TOP-NT) is a multi-site consortium designed to address the reproducibility, rigor, and transparency of pre-clinical development and validation of clinically relevant biomarkers for TBI. The current overview article provides a detailed description of the infrastructure and strategic approach undertaken by the consortium. We outline the TOP-NT strategy to address three goals: (1) selection and cross-center validation of biomarker tools, (2) development and population of a data infrastructure to allow for the sharing and reuse of pre-clinical, animal research following findable, accessible, interoperable, and reusable data guidelines, and (3) demonstration of feasibility, reproducibility, and transparency in conducting a multi-center, pre-clinical research trial for TBI biomarker development. The synthesized scientific analysis and results of the TOP-NT efforts will be the topic of future articles.
Collapse
Affiliation(s)
| | - Neil G Harris
- University of California Los Angeles, Los Angeles, California, USA
| | - Ina B Wanner
- University of California Los Angeles, Los Angeles, California, USA
| | | | - Joseph T McCabe
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | - Jinyuan Zhou
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jieru Wan
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Adnan Bibic
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Marcelo Febo
- University of Florida, Gainesville, Florida, USA
| | | | - Jiepei Zhu
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | - Jiamei Hou
- University of Florida and Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Prodip K Bose
- University of Florida and Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | | | - Michael S Beattie
- University of California San Francisco, San Francisco, California, USA
| | | | - Susanna Rosi
- University of California San Francisco, San Francisco, California, USA
- Altos Labs, Redwood City, California, USA
| | - J Russell Huie
- University of California San Francisco, San Francisco, California, USA
| | - Adam R Ferguson
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
2
|
Radabaugh HL, Ferguson AR, Bramlett HM, Dietrich WD. Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation. Neurotherapeutics 2023; 20:1433-1445. [PMID: 37525025 PMCID: PMC10684440 DOI: 10.1007/s13311-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogeneity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are establishing the core framework needed for successfully addressing the translatability crisis of TBI.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Hunniford VT, Grudniewicz A, Fergusson DA, Montroy J, Grigor E, Lansdell C, Lalu MM. A systematic assessment of preclinical multilaboratory studies and a comparison to single laboratory studies. eLife 2023; 12:e76300. [PMID: 36892457 PMCID: PMC10168693 DOI: 10.7554/elife.76300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/08/2023] [Indexed: 03/10/2023] Open
Abstract
Background Multicentric approaches are widely used in clinical trials to assess the generalizability of findings, however, they are novel in laboratory-based experimentation. It is unclear how multilaboratory studies may differ in conduct and results from single lab studies. Here, we synthesized the characteristics of these studies and quantitatively compared their outcomes to those generated by single laboratory studies. Methods MEDLINE and Embase were systematically searched. Screening and data extractions were completed in duplicate by independent reviewers. Multilaboratory studies investigating interventions using in vivo animal models were included. Study characteristics were extracted. Systematic searches were then performed to identify single lab studies matched by intervention and disease. Difference in standardized mean differences (DSMD) was then calculated across studies to assess differences in effect estimates based on study design (>0 indicates larger effects in single lab studies). Results Sixteen multilaboratory studies met inclusion criteria and were matched to 100 single lab studies. The multicenter study design was applied across a diverse range of diseases, including stroke, traumatic brain injury, myocardial infarction, and diabetes. The median number of centers was four (range 2-6) and the median sample size was 111 (range 23-384) with rodents most frequently used. Multilaboratory studies adhered to practices that reduce the risk of bias significantly more often than single lab studies. Multilaboratory studies also demonstrated significantly smaller effect sizes than single lab studies (DSMD 0.72 [95% confidence interval 0.43-1]). Conclusions Multilaboratory studies demonstrate trends that have been well recognized in clinical research (i.e. smaller treatment effects with multicentric evaluation and greater rigor in study design). This approach may provide a method to robustly assess interventions and the generalizability of findings between laboratories. Funding uOttawa Junior Clinical Research Chair; The Ottawa Hospital Anesthesia Alternate Funds Association; Canadian Anesthesia Research Foundation; Government of Ontario Queen Elizabeth II Graduate Scholarship in Science and Technology.
Collapse
Affiliation(s)
- Victoria T Hunniford
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- Telfer School of Management, University of OttawaOttawaCanada
| | | | - Dean A Fergusson
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- Faculty of Medicine, University of OttawaOttawaCanada
- Department of Surgery, University of OttawaOttawaCanada
- School of Epidemiology and Public Health, University of OttawaOttawaCanada
| | - Joshua Montroy
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
| | - Emma Grigor
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- Faculty of Medicine, University of OttawaOttawaCanada
| | - Casey Lansdell
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research InstituteOttawaCanada
- School of Epidemiology and Public Health, University of OttawaOttawaCanada
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of OttawaOttawaCanada
- Regenerative Medicine Program, The Ottawa Hospital Research InstituteOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
4
|
Current Clinical Trials in Traumatic Brain Injury. Brain Sci 2022; 12:brainsci12050527. [PMID: 35624914 PMCID: PMC9138587 DOI: 10.3390/brainsci12050527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity, disability and mortality across all age groups globally. Currently, only palliative treatments exist, but these are suboptimal and do little to combat the progressive damage to the brain that occurs after a TBI. However, multiple experimental treatments are currently available that target the primary and secondary biochemical and cellular changes that occur after a TBI. Some of these drugs have progressed to clinical trials and are currently being evaluated for their therapeutic benefits in TBI patients. The aim of this study was to identify which drugs are currently being evaluated in clinical trials for TBI. A search of ClinicalTrials.gov was performed on 3 December 2021 and all clinical trials that mentioned “TBI” OR “traumatic brain injury” AND “drug” were searched, revealing 362 registered trials. Of the trials, 46 were excluded due to the drug not being mentioned, leaving 138 that were completed and 116 that were withdrawn. Although the studies included 267,298 TBI patients, the average number of patients per study was 865 with a range of 5–200,000. Of the completed studies, 125 different drugs were tested in TBI patients but only 7 drugs were used in more than three studies, including amantadine, botulinum toxin A and tranexamic acid (TXA). However, previous clinical studies using these seven drugs showed variable results. The current study concludes that clinical trials in TBI have to be carefully conducted so as to reduce variability across studies, since the severity of TBI and timing of therapeutic interventions were key aspects of trial success.
Collapse
|
5
|
Osier ND, Bramlett HM, Shear DA, Mondello S, Carlson SW, Dietrich WD, Deng-Bryant Y, Wang KKW, Hayes RL, Yang Z, Empey PE, Poloyac SM, Lafrenaye AD, Povlishock JT, Gilsdorf JS, Kochanek PM, Dixon CE. Kollidon VA64 Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2021; 38:2454-2472. [PMID: 33843262 DOI: 10.1089/neu.2021.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of plasmalemmal integrity may mediate cell death after traumatic brain injury (TBI). Prior studies in controlled cortical impact (CCI) indicated that the membrane resealing agent Kollidon VA64 improved histopathological and functional outcomes. Kollidon VA64 was therefore selected as the seventh therapy tested by the Operation Brain Trauma Therapy consortium, across three pre-clinical TBI rat models: parasagittal fluid percussion injury (FPI), CCI, and penetrating ballistic-like brain injury (PBBI). In each model, rats were randomized to one of four exposures (7-15/group): (1) sham; (2) TBI+vehicle; (3) TBI+Kollidon VA64 low-dose (0.4 g/kg); and (4) TBI+Kollidon VA64 high-dose (0.8 g/kg). A single intravenous VA64 bolus was given 15 min post-injury. Behavioral, histopathological, and serum biomarker outcomes were assessed over 21 days generating a 22-point scoring matrix per model. In FPI, low-dose VA64 produced zero points across behavior and histopathology. High-dose VA64 worsened motor performance compared with TBI-vehicle, producing -2.5 points. In CCI, low-dose VA64 produced intermediate benefit on beam balance and the Morris water maze (MWM), generating +3.5 points, whereas high-dose VA64 showed no effects on behavior or histopathology. In PBBI, neither dose altered behavior or histopathology. Regarding biomarkers, significant increases in glial fibrillary acidic protein (GFAP) levels were seen in TBI versus sham at 4 h and 24 h across models. Benefit of low-dose VA64 on GFAP was seen at 24 h only in FPI. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) was increased in TBI compared with vehicle across models at 4 h but not at 24 h, without treatment effects. Overall, low dose VA64 generated +4.5 points (+3.5 in CCI) whereas high dose generated -2.0 points. The modest/inconsistent benefit observed reduced enthusiasm to pursue further testing.
Collapse
Affiliation(s)
- Nicole D Osier
- Holistic Adult Health Division, University of Texas at Austin, School of Nursing, Austin, Texas, USA
- Department of Neurology, University of Texas at Austin, Dell Medical School, Austin Texas, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Program, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection Program, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, McKnight Brain Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, McKnight Brain Institute of the University of Florida, Gainesville, Florida, USA
| | - Philip E Empey
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- University of Texas Austin School of Pharmacy, Austin, Texas, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Program, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, and UPMC Children's Hospital of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Sayeed I, Stein DG. Response to Korley et al.: Progesterone Treatment Does Not Decrease Serum Levels of Biomarkers of Glial and Neuronal Cell Injury in Moderate and Severe TBI Subjects: A Secondary Analysis of the Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment (ProTECT) III Trial (DOI: 10.1089/neu.2020.7072). J Neurotrauma 2021; 38:2923-2926. [PMID: 34130480 DOI: 10.1089/neu.2021.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, Georgia, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Rink S, Manthou ME, Arnold J, Grigo M, Dicken P, Abdulla DSY, Bendella H, Nohroudi K, Angelov DN. Motor, sensitive, and vegetative recovery in rats with compressive spinal-cord injury after combined treatment with erythropoietin and whole-body vibration. Restor Neurol Neurosci 2021; 39:85-100. [PMID: 33612500 DOI: 10.3233/rnn-201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical therapy with whole body vibration (WBV) following compressive spinal cord injury (SCI) in rats restores density of perisomatic synapses, improves body weight support and leads to a better bladder function. The purpose of the study was to determine whether the combined treatment with WBV plus erythropoietin (EPO) would further improve motor, sensory and vegetative functions after SCI in rats. METHODS Severe compressive SCI at low thoracic level was followed by a single i.p. injection of 2,5μg (250 IU) human recombinant EPO. Physical therapy with WBV started on 14th day after injury and continued over a 12-week post injury period. Locomotor recovery, sensitivity tests and urinary bladder scores were analysed at 1, 3, 6, 9, and 12 weeks after SCI. The closing morphological measurements included lesion volume and numbers of axons in the preserved perilesional neural tissue bridges (PNTB). RESULTS Assessment of motor performance sensitivity and bladder function revealed no significant effects of EPO when compared to the control treatments. EPO treatment neither reduced the lesion volume, nor increased the number of axons in PNTB. CONCLUSIONS The combination of WBV + EPO exerts no positive effects on hind limbs motor performance and bladder function after compressive SCI in rats.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Maria Eleni Manthou
- Department of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Julia Arnold
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Merle Grigo
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Paulina Dicken
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Diana Saad Yousif Abdulla
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Network Genomic Medicine, Lung Cancer Group Cologne, University of Cologne, Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Klaus Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | |
Collapse
|
8
|
Bourgeois-Tardif S, De Beaumont L, Rivera JC, Chemtob S, Weil AG. Role of innate inflammation in traumatic brain injury. Neurol Sci 2021; 42:1287-1299. [PMID: 33464411 DOI: 10.1007/s10072-020-05002-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury is one of the leading causes of morbidity and mortality throughout the world. Its increasing incidence, in addition to its fundamental role in the development of neurodegenerative disease, proves especially concerning. Despite extensive preclinical and clinical studies, researchers have yet to identify a safe and effective neuroprotective strategy. Following brain trauma, secondary injury from molecular, metabolic, and cellular changes causes progressive cerebral tissue damage. Chronic neuroinflammation following traumatic brain injuries is a key player in the development of secondary injury. Targeting this phenomenon for development of effective neuroprotective therapies holds promise. This strategy warrants a concrete understanding of complex neuroinflammatory mechanisms. In this review, we discuss pathophysiological mechanisms such as the innate immune response, glial activation, blood-brain barrier disruption, activation of immune mediators, as well as biological markers of traumatic brain injury. We then review existing and emerging pharmacological therapies that target neuroinflammation to improve functional outcome.
Collapse
Affiliation(s)
- Sandrine Bourgeois-Tardif
- Department of Neuroscience, University of Montreal, Montreal, Canada
- Hopital du Sacre-Coeur de Montreal, Universite de Montreal - Psychology, Montreal, QC, Canada
| | - Louis De Beaumont
- Hopital du Sacre-Coeur de Montreal, Universite de Montreal - Psychology, Montreal, QC, Canada
| | - José Carlos Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175, Chemin Côte Ste-Catherine, Montreal, Quebec, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175, Chemin Côte Ste-Catherine, Montreal, Quebec, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montreal, Quebec, Canada
| | - Alexander G Weil
- Neurosurgery Service, Department of Surgery, University of Montreal, Montreal, Canada.
- Centre Hospitalier Universitaire Sainte-Justine, Centre de Recherche, Room 3.17.100_6, 3175, Côte Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada.
| |
Collapse
|
9
|
Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 2021; 35:524-538. [PMID: 33527472 PMCID: PMC9290810 DOI: 10.1111/fcp.12656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major health problem worldwide and is a leading cause of death and disability in individuals, contributing to devastating socioeconomic consequences. Despite numerous promising pharmacological strategies reported as neuroprotective in preclinical studies, the translation to clinical trials always failed, albeit the great diversity of therapeutic targets evaluated. In this review, first, we described epidemiologic features, causes, and primary and secondary injuries of TBI. Second, we outlined the current literature on animal models of TBI, and we described their goals, their advantages and disadvantages according to the species used, the type of injury induced, and their clinical relevance. Third, we defined the concept of neuroprotection and discussed its evolution. We also identified the reasons that might explain the failure of clinical translation. Then, we reviewed post‐TBI neuroprotective treatments with a focus on the following pleiotropic drugs, considered “low hanging fruit” with high probability of success: glitazones, glibenclamide, statins, erythropoietin, and progesterone, that were largely tested and demonstrated efficient in preclinical models of TBI. Finally, our review stresses the need to establish a close cooperation between basic researchers and clinicians to ensure the best clinical translation for neuroprotective strategies for TBI.
Collapse
Affiliation(s)
- Dominique Lerouet
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Catherine Marchand-Leroux
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valérie C Besson
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| |
Collapse
|
10
|
Radabaugh H, Bonnell J, Schwartz O, Sarkar D, Dietrich WD, Bramlett HM. Use of Machine Learning to Re-Assess Patterns of Multivariate Functional Recovery after Fluid Percussion Injury: Operation Brain Trauma Therapy. J Neurotrauma 2021; 38:1670-1678. [PMID: 33107380 DOI: 10.1089/neu.2020.7357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability. Yet, despite immense research efforts, treatment options remain elusive. Translational failures in TBI are often attributed to the heterogeneity of the TBI population and limited methods to capture these individual variabilities. Advances in machine learning (ML) have the potential to further personalized treatment strategies and better inform translational research. However, the use of ML has yet to be widely assessed in pre-clinical neurotrauma research, where data are strictly limited in subject number. To better establish ML's feasibility, we utilized the fluid percussion injury (FPI) portion of the rich, rat data set collected by Operation Brain Trauma Therapy (OBTT), which tested multiple pharmacological treatments. Previous work has provided confidence that both unsupervised and supervised ML techniques can uncover useful insights from this OBTT pre-clinical research data set. As a proof-of-concept, we aimed to better evaluate the multi-variate recovery profiles afforded by the administration of nine different experimental therapies. We assessed supervised pairwise classifiers trained on a pre-processed data set that incorporated metrics from four feature groups to determine their ability to correctly identify specific drug treatments. In all but one of the possible pairwise combinations of minocycline, levetiracetam, erythropoietin, nicotinamide, and amantadine, the baseline was outperformed by one or more supervised classifiers, the exception being nicotinamide versus amantadine. Further, when the same methods were employed to assess different doses of the same treatment, the ML classifiers had greater difficulty in understanding which treatment each sample received. Our data serve as a critical first step toward identifying optimal treatments for specific subgroups of samples that are dependent on factors such as types and severity of traumatic injuries, as well as informing the prediction of therapeutic combinations that may lead to greater treatment effects than individual therapies.
Collapse
Affiliation(s)
- Hannah Radabaugh
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jerry Bonnell
- Department of Computer Science, University of Miami College of Arts and Sciences, Miami, Florida, USA
| | - Odelia Schwartz
- Department of Computer Science, University of Miami College of Arts and Sciences, Miami, Florida, USA
| | - Dilip Sarkar
- Department of Computer Science, University of Miami College of Arts and Sciences, Miami, Florida, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
11
|
Jha RM, Mondello S, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Wang KKW, Yang Z, Hayes RL, Poloyac SM, Empey PE, Lafrenaye AD, Yan HQ, Carlson SW, Povlishock JT, Gilsdorf JS, Kochanek PM. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2020; 38:628-645. [PMID: 33203303 DOI: 10.1089/neu.2020.7421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-μg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 μg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Neurology, Neurobiology, and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Liu M, Wang AJ, Chen Y, Zhao G, Jiang Z, Wang X, Shi D, Zhang T, Sun B, He H, Williams Z, Hu K. Efficacy and safety of erythropoietin for traumatic brain injury. BMC Neurol 2020; 20:399. [PMID: 33138778 PMCID: PMC7604969 DOI: 10.1186/s12883-020-01958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies regarding the effects of erythropoietin (EPO) for treating traumatic brain injury (TBI) have been inconsistent. This study conducts a meta-analysis of randomized controlled trials (RCTs) to assess the safety and efficacy of EPO for TBI patients at various follow-up time points. METHODS A literature search was performed using PubMed, Web of Science, MEDLINE, Embase, Google Scholar and the Cochrane Library for RCTs studying EPO in TBI patients published through March 2019. Non-English manuscripts and non-human studies were excluded. The assessed outcomes include mortality, neurological recovery and associated adverse effects. Dichotomous variables are presented as risk ratios (RR) with a 95% confidence interval (CI). RESULTS A total of seven RCTs involving 1197 TBI patients (611 treated with EPO, 586 treated with placebo) were included in this study. Compared to the placebo arm, treatment with EPO did not improve acute hospital mortality or short-term mortality. However, there was a significant improvement in mid-term (6 months) follow-up survival rates. EPO administration was not associated with neurological function improvement. Regarding adverse effects, EPO treatment did not increase the incidence of thromboembolic events or other associated adverse events. CONCLUSIONS This meta-analysis indicates a slight mortality benefit for TBI patients treated with EPO at mid-term follow-up. EPO does not improve in-hospital mortality, nor does it increase adverse events including thrombotic, cardiovascular and other associated complications. Our analysis did not demonstrate a significant beneficial effect of EPO intervention on the recovery of neurological function. Future RCTs are required to further characterize the use of EPO in TBI.
Collapse
Affiliation(s)
- Motao Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Amy J Wang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gexin Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhifeng Jiang
- Department of Neurosurgery, Ji Zhong Energy Fengfeng Group General hospital, Handan City, 056200, China
| | - Xinbang Wang
- Department of Neurosurgery, The PLA Navy Anqing Hospital, Anqing City, 246000, China
| | - Dongliang Shi
- Department of Neurosurgery, No.904th Hospital of The People's Liberation Army Joint Logistics Support Force, Wuxi, 214000, China
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing-an District Central Hospital, Shanghai, 200437, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, 200438, China.
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, 02114, USA
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Second Ruijin Street, Shanghai, 200025, China. .,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Radabaugh HL, Bonnell J, Dietrich WD, Bramlett HM, Schwartz O, Sarkar D. Development and Evaluation of Machine Learning Models for Recovery Prediction after Treatment for Traumatic Brain Injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2416-2420. [PMID: 33018494 DOI: 10.1109/embc44109.2020.9175658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability yet treatment strategies remain elusive. Advances in machine learning present exciting opportunities for developing personalized medicine and informing laboratory research. However, their feasibility has yet to be widely assessed in animal research where data are typically limited or in the TBI field where each patient presents with a unique injury. The Operation Brain Trauma Therapy (OBTT) has amassed an animal dataset that spans multiple types of injury, treatment strategies, behavioral assessments, histological measures, and biomarker screenings. This paper aims to analyze these data using supervised learning techniques for the first time by partitioning the dataset into acute input metrics (i.e. 7 days post-injury) and a defined recovery outcome (i.e. memory retention). Preprocessing is then applied to transform the raw OBTT dataset, e.g. developing a class attribute by histogram binning, eliminating borderline cases, and applying principal component analysis (PCA). We find that these steps are also useful in establishing a treatment ranking; Minocycline, a therapy with no significant findings in the OBTT analyses, yields the highest percentage recovery in our ranking. Furthermore, of the seven classifiers we have evaluated, Naïve Bayes achieves the best performance (67%) and yields significant improvement over our baseline model on the preprocessed dataset with borderline elimination. We also investigate the effect of testing on individual treatment groups to evaluate which groups are difficult to classify, and note the interpretive qualities of our model that can be clinically relevant.Clinical Relevance- These studies establish methods for better analyzing multivariate functional recovery and understanding which measures affect prognosis following traumatic brain injury.
Collapse
|
15
|
Human recombinant erythropoietin reduces sensorimotor dysfunction and cognitive impairment in rat models of chronic kidney disease. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello S, Wang KKW, Hayes RL, Lafrenaye A, Povlishock JT, Tortella FC, Poloyac SM, Empey P, Shear DA. Operation Brain Trauma Therapy: 2016 Update. Mil Med 2019; 183:303-312. [PMID: 29635589 DOI: 10.1093/milmed/usx184] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Operation brain trauma therapy (OBTT) is a multi-center, pre-clinical drug and biomarker screening consortium for traumatic brain injury (TBI). Therapies are screened across three rat models (parasagittal fluid percussion injury, controlled cortical impact [CCI], and penetrating ballistic-like brain injury). Operation brain trauma therapy seeks to define therapies that show efficacy across models that should have the best chance in randomized clinical trials (RCTs) and/or to define model-dependent therapeutic effects, including TBI protein biomarker responses, to guide precision medicine-based clinical trials in targeted pathologies. The results of the first five therapies tested by OBTT (nicotinamide, erythropoietin, cyclosporine [CsA], simvastatin, and levetiracetam) were published in the Journal of Neurotrauma. Operation brain trauma therapy now describes preliminary results on four additional therapies (glibenclamide, kollidon-VA64, AER-271, and amantadine). To date, levetiracetam was beneficial on cognitive outcome, histology, and/or biomarkers in two models. The second most successful drug, glibenclamide, improved motor function and histology in CCI. Other therapies showed model-dependent effects (amantadine and CsA). Critically, glial fibrillary acidic protein levels predicted treatment effects. Operation brain trauma therapy suggests that levetiracetam merits additional pre-clinical and clinical evaluation and that glibenclamide and amantadine merit testing in specific TBI phenotypes. Operation brain trauma therapy has established that rigorous, multi-center consortia could revolutionize TBI therapy and biomarker development.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136
| | - C Edward Dixon
- Safar Center for Resuscitation Research, Department of Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria 1, Messina 98125, Italy
| | - Kevin K W Wang
- Program for Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience, and Chemistry, University of Florida, P.O. Box 100256, Gainesville, FL 32611
| | - Ronald L Hayes
- Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc., 13400 Progress Blvd., Alachua, FL 32615
| | - Audrey Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298
| | - Frank C Tortella
- Department of the Army, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500
| | - Samuel M Poloyac
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261
| | - Philip Empey
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences and the Clinical Translational Science Institute, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500
| |
Collapse
|
18
|
Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya A. Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structure and synthesis of Erythropoietin: Erythropoietin (EPO) is a glycoprotein hormone.Recombinant Erythropoietin (Epoetin): Human recombinant erythropoietin is characterised as a factor which stimulates differentiation and proliferation of erythroid precursor cells, and as a tissue protective factor.Anti-ischemic effects of recombinant Erythropoietin: Erythropoietin is one of the most perspective humoral agents which are involved in the preconditioning phenomenon.Erythropoietin receptors and signal transduction pathways: Erythropoietin effects on cells through their interconnection with erythropoietin receptors, which triggers complex intracellular signal cascades, such as JAK2/STAT signaling pathway, phosphatidylinositol 3-kinase (PI3K), protein kinase C, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB signaling pathways.Mechanisms of the effect of Erythropoietin on hematopoietic and non-hematopoietic cells and tissues: In addition to regulation of haemopoiesis, erythropoietin mediates bone formation as it has an effect on hematopoietic stem cells and osteoblastic niche, and this illustrates connection between the processes of haematopoiesis and osteopoiesis which take place in the red bone marrow.The effect of Erythropoietin on mesenchymal stem cells and process of bone tissue formation: Erythropoietin promotes mesenchymal stem cells proliferation, migration and differentiation in osteogenic direction. The evidence of which is expression of bone phenotype by cells under the influence of EPO, including activation of bone specific transcription factors Runx2, osteocalcin and bone sialoprotein.Conclusion: Erythropoietin has a pleiotropic effect on various types of cells and tissues. But the mechanisms which are involved in the process of bone tissue restoration via erythropoietin are still poorly understood.
Collapse
|
19
|
Kassi AAY, Mahavadi AK, Clavijo A, Caliz D, Lee SW, Ahmed AI, Yokobori S, Hu Z, Spurlock MS, Wasserman JM, Rivera KN, Nodal S, Powell HR, Di L, Torres R, Leung LY, Rubiano AM, Bullock RM, Gajavelli S. Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Front Neurol 2019; 9:1097. [PMID: 30719019 PMCID: PMC6348935 DOI: 10.3389/fneur.2018.01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.
Collapse
Affiliation(s)
- Anelia A. Y. Kassi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil K. Mahavadi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angelica Clavijo
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Daniela Caliz
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Stephanie W. Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aminul I. Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, United Kingdom
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Markus S. Spurlock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joseph M Wasserman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karla N. Rivera
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Nodal
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry R. Powell
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Long Di
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rolando Torres
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andres Mariano Rubiano
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Ross M. Bullock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shyam Gajavelli
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
20
|
DeWitt DS, Hawkins BE, Dixon CE, Kochanek PM, Armstead W, Bass CR, Bramlett HM, Buki A, Dietrich WD, Ferguson AR, Hall ED, Hayes RL, Hinds SR, LaPlaca MC, Long JB, Meaney DF, Mondello S, Noble-Haeusslein LJ, Poloyac SM, Prough DS, Robertson CS, Saatman KE, Shultz SR, Shear DA, Smith DH, Valadka AB, VandeVord P, Zhang L. Pre-Clinical Testing of Therapies for Traumatic Brain Injury. J Neurotrauma 2018; 35:2737-2754. [PMID: 29756522 PMCID: PMC8349722 DOI: 10.1089/neu.2018.5778] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the large number of promising neuroprotective agents identified in experimental traumatic brain injury (TBI) studies, none has yet shown meaningful improvements in long-term outcome in clinical trials. To develop recommendations and guidelines for pre-clinical testing of pharmacological or biological therapies for TBI, the Moody Project for Translational Traumatic Brain Injury Research hosted a symposium attended by investigators with extensive experience in pre-clinical TBI testing. The symposium participants discussed issues related to pre-clinical TBI testing including experimental models, therapy and outcome selection, study design, data analysis, and dissemination. Consensus recommendations included the creation of a manual of standard operating procedures with sufficiently detailed descriptions of modeling and outcome measurement procedures to permit replication. The importance of the selection of clinically relevant outcome variables, especially related to behavior testing, was noted. Considering the heterogeneous nature of human TBI, evidence of therapeutic efficacy in multiple, diverse (e.g., diffuse vs. focused) rodent models and a species with a gyrencephalic brain prior to clinical testing was encouraged. Basing drug doses, times, and routes of administration on pharmacokinetic and pharmacodynamic data in the test species was recommended. Symposium participants agreed that the publication of negative results would reduce costly and unnecessary duplication of unsuccessful experiments. Although some of the recommendations are more relevant to multi-center, multi-investigator collaborations, most are applicable to pre-clinical therapy testing in general. The goal of these consensus guidelines is to increase the likelihood that therapies that improve outcomes in pre-clinical studies will also improve outcomes in TBI patients.
Collapse
Affiliation(s)
- Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - C. Edward Dixon
- Department of Neurological Surgery, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron R. Bass
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida
| | - Andras Buki
- Department of Neurosurgery, Medical University of Pécs, Pécs, Hungary
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, Kentucky
| | - Ronald L. Hayes
- University of Florida, Virginia Commonwealth University, Banyan Biomarkers, Inc., Alachua, Florida
| | - Sidney R. Hinds
- United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | - Joseph B. Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Linda J. Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | | | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | - Sandy R. Shultz
- Department of Medicine, Melbourne Brain Center, The University of Melbourne, Parkville, Victoria, Australia
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| |
Collapse
|
21
|
Zhang Y, Chopp M, Rex CS, Simmon VF, Sarraf ST, Zhang ZG, Mahmood A, Xiong Y. A Small Molecule Spinogenic Compound Enhances Functional Outcome and Dendritic Spine Plasticity in a Rat Model of Traumatic Brain Injury. J Neurotrauma 2018; 36:589-600. [PMID: 30014757 DOI: 10.1089/neu.2018.5790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tetra (ethylene glycol) derivative of benzothiazole aniline (SPG101) has been shown to improve dendritic spine density and cognitive memory in the triple transgenic mouse model of Alzheimer disease (AD) when administered intraperitoneally. The present study was designed to investigate the therapeutic effects of SPG101 on dendritic spine density and morphology and sensorimotor and cognitive functional recovery in a rat model of traumatic brain injury (TBI) induced by controlled cortical impact (CCI). Young adult male Wistar rats with CCI were randomly divided into the following two groups (n = 7/group): (1) Vehicle, and (2) SPG101. SPG101 (30 mg/kg) dissolved in vehicle (1% dimethyl sulfoxide in phosphate buffered saline) or Vehicle were intraperitoneally administered starting at 1 h post-injury and once daily for the next 34 days. Sensorimotor deficits were assessed using a modified neurological severity score and adhesive removal and foot fault tests. Cognitive function was measured by Morris water maze, novel object recognition (NOR), and three-chamber social recognition tests. The animals were sacrificed 35 days after injury, and their brains were processed for measurement of dendritic spine density and morphology using ballistic dye labeling. Compared with the vehicle treatment, SPG101 treatment initiated 1 h post-injury significantly improved sensorimotor functional recovery (days 7-35, p < 0.0001), spatial learning (days 32-35, p < 0.0001), NOR (days 14 and 35, p < 0.0001), social recognition (days 14 and 35, p < 0.0001). Further, treatment significantly increased dendritic spine density in the injured cortex (p < 0.05), decreased heterogeneous distribution of spine lengths in the injured cortex and hippocampus (p < 0.0001), modifications that are associated with the promotion of spine maturation in these brain regions. In summary, treatment with SPG101 initiated 1 h post-injury and continued for an additional 34 days improves both sensorimotor and cognitive functional recovery, indicating that SPG101 acts as a spinogenic agent and may have potential as a novel treatment of TBI.
Collapse
Affiliation(s)
- Yanlu Zhang
- 1 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| | - Michael Chopp
- 2 Department of Neurology, Henry Ford Hospital , Detroit, Michigan.,3 Department of Physics, Oakland University , Rochester, Michigan
| | | | | | | | - Zheng Gang Zhang
- 2 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Asim Mahmood
- 1 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| | - Ye Xiong
- 1 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
22
|
Yang Z, Zhu T, Mondello S, Akel M, Wong AT, Kothari IM, Lin F, Shear DA, Gilsdorf JS, Leung LY, Bramlett HM, Dixon CE, Dietrich WD, Hayes RL, Povlishock JT, Tortella FC, Kochanek PM, Wang KKW. Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. J Neurotrauma 2018; 36:348-359. [PMID: 29987972 DOI: 10.1089/neu.2017.5586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), markers of glial and neuronal cell body injury, respectively, have been previously selected by the Operation Brain Trauma Therapy (OBTT) pre-clinical therapy and biomarker screening consortium as drug development tools. However, traumatic axonal injury (TAI) also represents a major consequence and determinant of adverse outcomes after traumatic brain injury (TBI). Thus, biomarkers capable of assessing TAI are much needed. Neurofilaments (NFs) are found exclusively in axons. Here, we evaluated phospho-neurofilament-H (pNF-H) protein as a possible new TAI marker in serum and cerebrospinal fluid (CSF) across three rat TBI models in studies carried out by the OBTT consortium, namely, controlled cortical impact (CCI), parasagittal fluid percussion (FPI), and penetrating ballistics-like brain injury (PBBI). We indeed found that CSF and serum pNF-H levels are robustly elevated by 24 h post-injury in all three models. Further, in previous studies by OBTT, levetiracetam showed the most promising benefits, whereas nicotinamide showed limited benefit only at high dose (500 mg/kg). Thus, serum samples from the same repository collected by OBTT were evaluated. Treatment with 54 mg/kg intravenously of levetiracetam in the CCI model and 170 mg/kg in the PBBI model significantly attenuated pNF-H levels at 24 h post-injury as compared to respective vehicle groups. In contrast, nicotinamide (50 or 500 mg/kg) showed no reduction of pNF-H levels in CCI or PBBI models. Our current study suggests that pNF-H is a useful theranostic blood-based biomarker for TAI across different rodent TBI models. In addition, our data support levetiracetam as the most promising TBI drug candidate screened by OBTT to date.
Collapse
Affiliation(s)
- Zhihui Yang
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Tian Zhu
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Stefania Mondello
- 2 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,3 Department of Neurology, Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Miis Akel
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Aaron T Wong
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Isha M Kothari
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Fan Lin
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Janice S Gilsdorf
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lai Yee Leung
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Helen M Bramlett
- 5 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida.,6 Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - C Edward Dixon
- 7 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W Dalton Dietrich
- 5 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ronald L Hayes
- 8 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida
| | - John T Povlishock
- 9 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Patrick M Kochanek
- 10 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kevin K W Wang
- 1 Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Kochanek PM, Dixon CE, Mondello S, Wang KKK, Lafrenaye A, Bramlett HM, Dietrich WD, Hayes RL, Shear DA, Gilsdorf JS, Catania M, Poloyac SM, Empey PE, Jackson TC, Povlishock JT. Multi-Center Pre-clinical Consortia to Enhance Translation of Therapies and Biomarkers for Traumatic Brain Injury: Operation Brain Trauma Therapy and Beyond. Front Neurol 2018; 9:640. [PMID: 30131759 PMCID: PMC6090020 DOI: 10.3389/fneur.2018.00640] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Current approaches have failed to yield success in the translation of neuroprotective therapies from the pre-clinical to the clinical arena for traumatic brain injury (TBI). Numerous explanations have been put forth in both the pre-clinical and clinical arenas. Operation Brain Trauma Therapy (OBTT), a pre-clinical therapy and biomarker screening consortium has, to date, evaluated 10 therapies and assessed three serum biomarkers in nearly 1,500 animals across three rat models and a micro pig model of TBI. OBTT provides a unique platform to exploit heterogeneity of TBI and execute the research needed to identify effective injury specific therapies toward precision medicine. It also represents one of the first multi-center pre-clinical consortia for TBI, and through its work has yielded insight into the challenges and opportunities of this approach. In this review, important concepts related to consortium infrastructure, modeling, therapy selection, dosing and target engagement, outcomes, analytical approaches, reproducibility, and standardization will be discussed, with a focus on strategies to embellish and improve the chances for future success. We also address issues spanning the continuum of care. Linking the findings of optimized pre-clinical consortia to novel clinical trial designs has great potential to help address the barriers in translation and produce successes in both therapy and biomarker development across the field of TBI and beyond.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Oasi Research Institute (IRCCS), Troina, Italy
| | - Kevin K. K. Wang
- Program for Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, FL, United States
| | - Audrey Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Helen M. Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - W. Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ronald L. Hayes
- Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers Research, Banyan Biomarkers, Inc., Alachua, FL, United States
| | - Deborah A. Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice S. Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Samuel M. Poloyac
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Philip E. Empey
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences and the Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
24
|
Robinson S, Winer JL, Chan LAS, Oppong AY, Yellowhair TR, Maxwell JR, Andrews N, Yang Y, Sillerud LO, Meehan WP, Mannix R, Brigman JL, Jantzie LL. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats. Front Neurol 2018; 9:451. [PMID: 29971038 PMCID: PMC6018393 DOI: 10.3389/fneur.2018.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023] Open
Abstract
Survivors of infant traumatic brain injury (TBI) are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d) to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12) controlled-cortical impact (CCI) model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI). Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jesse L Winer
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lindsay A S Chan
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Akosua Y Oppong
- Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - Nicholas Andrews
- F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Laurel O Sillerud
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - William P Meehan
- Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rebekah Mannix
- Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
25
|
Davies M, Jacobs A, Brody DL, Friess SH. Delayed Hypoxemia after Traumatic Brain Injury Exacerbates Long-Term Behavioral Deficits. J Neurotrauma 2018; 35:790-801. [PMID: 29149808 PMCID: PMC5831743 DOI: 10.1089/neu.2017.5354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxemia during initial stabilization of patients with severe traumatic brain injury (TBI) has been associated with poorer outcomes. However, the effects of delayed hypoxemia occurring during intensive care post-TBI on outcome is unclear. Pre-clinical models of TBI have rarely shown cognitive or behavioral deficits beyond 6 weeks post-injury and commonly have not included modeling of secondary insults. We have previously developed a murine model of TBI followed by delayed hypoxemia to model the secondary insult of hypoxemia and brain hypoxia occurring in the intensive care setting. Understanding long-term effects of delayed hypoxemia post-TBI in our murine model is critical for future testing of candidate therapeutics targeting secondary brain hypoxia. For this study, forty 5-week-old male mice were randomized to controlled cortical impact (CCI; N = 24) or sham surgery (N = 16). One day later, awake animals were randomized to 60 min of hypoxemia or normoxemia. Six months after initial injury, animals underwent behavior testing (Morris water maze, social interaction, and tail suspension) before euthanasia for immunohistochemistry (IHC) assessments. At 6 months post-injury, mice experiencing CCI and hypoxemia (CCI+H) had longer swim distances to the hidden platform (51 cm) compared to CCI alone (26 cm) or sham animals (22 cm). During social interaction assessments, CCI + H mice spent less time interacting with novel stimulus mice (79 sec) than CCI alone (101 sec) or sham animals (139 sec). CCI + H had larger lesion volumes compared to CCI alone (14.0% vs. 9.9%; p < 0.003). Glial fibrillary acidic protein IHC at 6 months post-injury demonstrated increased astrogliosis in the ipsilateral white matter of CCI + H compared to CCI alone. To summarize, this clinically relevant model of delayed hypoxia post-TBI resulted in long-term behavioral deficits and evidence of exacerbated structural injury.
Collapse
Affiliation(s)
- McKenzie Davies
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Addison Jacobs
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - David L. Brody
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| |
Collapse
|
26
|
Blixt J, Gunnarson E, Wanecek M. Erythropoietin Attenuates the Brain Edema Response after Experimental Traumatic Brain Injury. J Neurotrauma 2018; 35:671-680. [PMID: 29179621 PMCID: PMC5806078 DOI: 10.1089/neu.2017.5015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) has neuroprotective effects in multiple central nervous system (CNS) injury models; however EPO's effects on traumatic brain edema are elusive. To explore EPO as an intervention in traumatic brain edema, male Sprague–Dawley (SD) rats were subjected to blunt, controlled traumatic brain injury (TBI). Animals were randomized to EPO 5000 IU/kg or saline (control group) intraperitoneally within 30 min after trauma and once daily for 4 consecutive days. Brain MRI, immunohistofluorescence, immunohistochemistry, and quantitative protein analysis were performed at days 1 and 4 post- trauma. EPO significantly prevented the loss of the tight junction protein zona occludens 1 (ZO-1) observed in control animals after trauma. The decrease of ZO-1 in the control group was associated with an immunoglobulin (Ig)G increase in the perilesional parenchyma, indicating blood–brain barrier (BBB) dysfunction and increased permeability. EPO treatment attenuated decrease in apparent diffusion coefficient (ADC) after trauma, suggesting a reduction of cytotoxic edema, and reduced the IgG leakage, indicating that EPO contributed to preserve BBB integrity and attenuated vasogenic edema. Animals treated with EPO demonstrated conserved levels of aquaporin 4 (AQP4) protein expression in the perilesional area, whereas control animals showed a reduction of AQP4. We show that post TBI administration of EPO decreases early cytotoxic brain edema and preserves structural and functional properties of the BBB, leading to attenuation of the vasogenic edema response. The data support that the mechanisms involve preservation of the tight junction protein ZO-1 and the water channel AQP4, and indicate that treatment with EPO may have beneficial effects on the brain edema response following TBI.
Collapse
Affiliation(s)
- Jonas Blixt
- 1 Perioperative Medicine and Intensive Care, Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden .,2 Department of Physiology and Pharmacology, Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden
| | - Eli Gunnarson
- 3 Department of Women's and Children's Health Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden
| | - Michael Wanecek
- 2 Department of Physiology and Pharmacology, Karolinska University Hospital, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
27
|
Reza-Zaldívar EE, Sandoval-Avila S, Gutiérrez-Mercado YK, Vázquez-Méndez E, Canales-Aguirre AA, Esquivel-Solís H, Gómez-Pinedo U, Márquez-Aguirre AL. Human recombinant erythropoietin reduces sensorimotor dysfunction and cognitive impairment in rat models of chronic kidney disease. Neurologia 2017; 35:147-154. [PMID: 29132915 DOI: 10.1016/j.nrl.2017.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) can cause anaemia and neurological disorders. Recombinant human erythropoietin (rHuEPO) is used to manage anaemia in CKD. However, there is little evidence on the effects of rHuEPO on behaviour and cognitive function in CKD. This study aimed to evaluate the impact of rHuEPO in sensorimotor and cognitive functions in a CKD model. METHODS Male Wistar rats were randomly assigned to 4 groups: control and CKD, with and without rHuEPO treatment (1050 IU per kg body weight, once weekly for 4 weeks). The Morris water maze, open field, and adhesive removal tests were performed simultaneously to kidney damage induction and treatment. Markers of anaemia and renal function were measured at the end of the study. RESULTS Treatment with rHuEPO reduced kidney damage and corrected anaemia in rats with CKD. We observed reduced sensorimotor dysfunction in animals with CKD and treated with rHuEPO. These rats also completed the water maze test in a shorter time than the control groups. CONCLUSIONS rHuEPO reduces kidney damage, corrects anemia, and reduces sensorimotor and cognitive dysfunction in animals with CKD.
Collapse
Affiliation(s)
- E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - S Sandoval-Avila
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - E Vázquez-Méndez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - H Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - U Gómez-Pinedo
- Departamento de Neurología, Laboratorio de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - A L Márquez-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México.
| |
Collapse
|
28
|
Zhou J, Liu T, Cui H, Fan R, Zhang C, Peng W, Yang A, Zhu L, Wang Y, Tang T. Xuefu zhuyu decoction improves cognitive impairment in experimental traumatic brain injury via synaptic regulation. Oncotarget 2017; 8:72069-72081. [PMID: 29069769 PMCID: PMC5641112 DOI: 10.18632/oncotarget.18895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
An overarching consequence of traumatic brain injury (TBI) is the cognitive impairment. It may hinder individual performance of daily tasks and determine people's subjective well-being. The damage to synaptic plasticity, one of the key mechanisms of cognitive dysfunction, becomes the potential therapeutic strategy of TBI. In this study, we aimed to investigate whether Xuefu Zhuyu Decoction (XFZYD), a traditional Chinese medicine, provided a synaptic regulation to improve cognitive disorder following TBI. Morris water maze and modified neurological severity scores were performed to assess the neurological and cognitive abilities. The PubChem Compound IDs of the major compounds of XFZYD were submitted into BATMAN-TCM, an online bioinformatics analysis tool, to predict the druggable targets related to synaptic function. Furthermore, we validated the prediction through immunohistochemical, RT-PCR and western blot analyses. We found that XFZYD enhanced neuroprotection, simultaneously improved learning and memory performances in controlled cortical impact rats. Bioinformatics analysis revealed that the improvements of XFZYD implied the Long-term potentiation relative proteins including NMDAR1, CaMKII and GAP-43. The further confirmation of molecular biological studies confirmed that XFZYD upregulated the mRNA and protein levels of NMDAR1, CaMKII and GAP-43. Pharmacological synaptic regulation of XFZYD could provide a novel therapeutic strategy for cognitive impairment following TBI.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliate to Xinjiang Medical University, 830000 Urumqi, China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Rong Fan
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chunhu Zhang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Weijun Peng
- Department of Traditional Chinese Medicine, 2nd Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Ali Yang
- Department of Neurology, Henan Province People’ Hospital, 450003 Zhengzhou, China
| | - Lin Zhu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| |
Collapse
|
29
|
Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant 2017; 26:1118-1130. [PMID: 28933211 PMCID: PMC5657730 DOI: 10.1177/0963689717714102] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) presents in various forms ranging from mild alterations of consciousness to an unrelenting comatose state and death. In the most severe form of TBI, the entirety of the brain is affected by a diffuse type of injury and swelling. Treatment modalities vary extensively based on the severity of the injury and range from daily cognitive therapy sessions to radical surgery such as bilateral decompressive craniectomies. Guidelines have been set forth regarding the optimal management of TBI, but they must be taken in context of the situation and cannot be used in every individual circumstance. In this review article, we have summarized the current status of treatment for TBI in both clinical practice and basic research. We have put forth a brief overview of the various subtypes of traumatic injuries, optimal medical management, and both the noninvasive and invasive monitoring modalities, in addition to the surgical interventions necessary in particular instances. We have overviewed the main achievements in searching for therapeutic strategies of TBI in basic science. We have also discussed the future direction for developing TBI treatment from an experimental perspective.
Collapse
Affiliation(s)
- Michael Galgano
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gentian Toshkezi
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| | - Thomas Russell
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence Chin
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| |
Collapse
|
30
|
Mirzaei S, Reinig AM, Berlau DJ. Translational obstacles with off-label drug use in acute traumatic brain injury. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2016-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury results in significant morbidity and mortality, and there is an urgent need for neuroprotective medications that can prevent the persisting symptoms and disabilities following injury. Several existing pharmacotherapies have been targeted for off-label benefit in traumatic brain injury, as these agents are well characterized and commercially available, easing the process of clinical trial development. Despite promising results in animal models, clinical trials have demonstrated minimal benefit. One possible reason for these failed translations could be that drug selection, characterization and dosing are not routinely established in the appropriate early phase trials before larger scale testing. Examining how recent trials may have bypassed these steps may help future trials to more definitively determine the efficacy of potential therapeutics.
Collapse
Affiliation(s)
- Sara Mirzaei
- Rueckert-Hartman College for Health Professions, Regis University, 3333 Regis Blvd, H-28, Denver, CO 80221, USA
| | - Andrea M Reinig
- Rueckert-Hartman College for Health Professions, Regis University, 3333 Regis Blvd, H-28, Denver, CO 80221, USA
| | - Daniel J Berlau
- Rueckert-Hartman College for Health Professions, Regis University, 3333 Regis Blvd, H-28, Denver, CO 80221, USA
| |
Collapse
|
31
|
Radabaugh HL, LaPorte MJ, Greene AM, Bondi CO, Lajud N, Kline AE. Refining environmental enrichment to advance rehabilitation based research after experimental traumatic brain injury. Exp Neurol 2017; 294:12-18. [PMID: 28457905 DOI: 10.1016/j.expneurol.2017.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The typical environmental enrichment (EE) paradigm, which consists of continuous exposure after experimental traumatic brain injury (TBI), promotes behavioral and histological benefits. However, rehabilitation is often abbreviated in the clinic and administered in multiple daily sessions. While recent studies have demonstrated that a once daily 6-hr bout of EE confers benefits comparable to continuous EE, breaking the therapy into two shorter sessions may increase novelty and ultimately enhance recovery. Hence, the aim of the study was to test the hypothesis that functional and histological outcomes will be significantly improved by daily preclinical neurorehabilitation consisting of two 3-hr periods of EE vs. a single 6-hr session. Anesthetized adult male rats received a controlled cortical impact of moderate-to-severe injury (2.8mm tissue deformation at 4m/s) or sham surgery and were then randomly assigned to groups receiving standard (STD) housing, a single 6-hr session of EE, or two 3-hr sessions of EE daily for 3weeks. Motor function (beam-balance/traversal) and acquisition of spatial learning/memory retention (Morris water maze) were assessed on post-operative days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 21. Both EE conditions improved motor function and acquisition of spatial learning, and reduced cortical lesion volume relative to STD housing (p<0.05), but did not differ from one another in any endpoint (p>0.05). The findings replicate previous work showing that 6-hr of EE daily is sufficient to confer behavioral and histological benefits after TBI and extend the findings by demonstrating that the benefits are comparable regardless of how the 6-hrs of EE are accrued. The relevance of the finding is that it can be extrapolated to the clinic and may benefit patients who cannot endure a single extended period of neurorehabilitation.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Megan J LaPorte
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anna M Greene
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
32
|
De Blasio D, Fumagalli S, Longhi L, Orsini F, Palmioli A, Stravalaci M, Vegliante G, Zanier ER, Bernardi A, Gobbi M, De Simoni MG. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:938-950. [PMID: 27165013 PMCID: PMC5363468 DOI: 10.1177/0271678x16647397] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin-/-) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin-/- mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.
Collapse
Affiliation(s)
- Daiana De Blasio
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.,2 Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Stefano Fumagalli
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.,2 Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Longhi
- 3 Department of Anesthesia and Critical Care Medicine, Neurosurgical Intensive Care Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Franca Orsini
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | - Matteo Stravalaci
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Gloria Vegliante
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Elisa R Zanier
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Anna Bernardi
- 4 Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | - Marco Gobbi
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | |
Collapse
|
33
|
Carlson SW, Yan H, Dixon CE. Lithium increases hippocampal SNARE protein abundance after traumatic brain injury. Exp Neurol 2017; 289:55-63. [PMID: 28011122 PMCID: PMC6206433 DOI: 10.1016/j.expneurol.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Rodent models of traumatic brain injury (TBI) reproduce secondary injury sequela and cognitive impairments observed in patients afflicted by a TBI. Impaired neurotransmission has been reported in the weeks following experimental TBI, and may be a contributor to behavioral dysfunction. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, the machinery facilitating vesicular docking and fusion, is a highly-conserved mechanism important for neurotransmission. Following TBI, there is a reduction in both the formation of the SNARE complex and the abundance of multiple SNARE proteins, including the chaperone protein cysteine string protein α (CSPα). Treatment with lithium in naïve rats reportedly increases the expression of CSPα. In the context of TBI, brain-injured rats treated with lithium exhibit improved outcome in published reports, but the mechanisms underlying the improvement are poorly understood. The current study evaluated the effect of lithium administration on the abundance of SNARE proteins and SNARE complex formation, hemispheric tissue loss, and neurobehavioral performance following controlled cortical impact (CCI). Sprague Dawley rats were subjected to CCI or sham injury, and treated daily with lithium chloride or vehicle for up to 14days. Administration of lithium after TBI modestly improved spatial memory at 14days post-injury. Semi-quantitative immunoblot analysis of hippocampal lysates revealed that treatment with lithium attenuated reductions in key SNARE proteins and SNARE complex formation at multiple time points post-injury. These findings highlight that treatment with lithium increased the abundance of synaptic proteins that facilitate neurotransmission and may contribute to improved cognitive function after TBI.
Collapse
Affiliation(s)
- Shaun W Carlson
- Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; V.A. Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Hong Yan
- Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; V.A. Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - C Edward Dixon
- Department of Neurosurgery, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; V.A. Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
34
|
Mondello S, Shear DA, Bramlett HM, Dixon CE, Schmid KE, Dietrich WD, Wang KKW, Hayes RL, Glushakova O, Catania M, Richieri SP, Povlishock JT, Tortella FC, Kochanek PM. Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:595-605. [PMID: 26671651 DOI: 10.1089/neu.2015.4132] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats--namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.
Collapse
Affiliation(s)
- Stefania Mondello
- 1 Department of Neurosciences, University of Messina , Messina, Italy
| | - Deborah A Shear
- 2 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Helen M Bramlett
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,4 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - C Edward Dixon
- 5 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Kara E Schmid
- 2 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - W Dalton Dietrich
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Kevin K W Wang
- 6 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research , Banyan Biomarkers, Inc., Alachua, Florida
| | | | | | | | - John T Povlishock
- 9 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Frank C Tortella
- 2 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Patrick M Kochanek
- 10 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Kochanek PM, Bramlett HM, Shear DA, Dixon CE, Mondello S, Dietrich WD, Hayes RL, Wang KKW, Poloyac SM, Empey PE, Povlishock JT, Mountney A, Browning M, Deng-Bryant Y, Yan HQ, Jackson TC, Catania M, Glushakova O, Richieri SP, Tortella FC. Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:606-14. [PMID: 26671284 DOI: 10.1089/neu.2015.4133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.
Collapse
Affiliation(s)
- Patrick M Kochanek
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Helen M Bramlett
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,3 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - C Edward Dixon
- 5 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Stefania Mondello
- 6 Department of Neurosciences, University of Messina , Messina, Italy
| | - W Dalton Dietrich
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc. , Alachua, Florida
| | - Kevin K W Wang
- 8 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida. Gainesville, Florida
| | - Samuel M Poloyac
- 9 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - Philip E Empey
- 9 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - John T Povlishock
- 10 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Andrea Mountney
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Megan Browning
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Ying Deng-Bryant
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Hong Q Yan
- 5 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Travis C Jackson
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
36
|
Takase H, Washida K, Hayakawa K, Arai K, Wang X, Lo EH, Lok J. Oligodendrogenesis after traumatic brain injury. Behav Brain Res 2016; 340:205-211. [PMID: 27829126 DOI: 10.1016/j.bbr.2016.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023]
Abstract
White matter injury is an important contributor to long term motor and cognitive dysfunction after traumatic brain injury. During brain trauma, acceleration, deceleration, torsion, and compression forces often cause direct damage to the axon tracts, and pathways that are triggered by the initial injury can trigger molecular events that result in secondary axon degeneration. White matter injury is often associated with altered mental status, memory deficits, motor or autonomic dysfunction, and contribute to the development of chronic neurodegenerative diseases. The presence and proper functioning of oligodendrocyte precursor cells offer the potential for repair and recovery of injured white matter. The process of the proliferation, maturation of oligodendrocyte precursor cells and their migration to the site of injury to replace injured or lost oligodendrocytes is know as oligodendrogenesis. The process of oligodendrogenesis, as well as the interaction of oligodendrocyte precursor cells with other elements of the neurovascular unit, will be discussed in this review.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuo Washida
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Division of Neurology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
37
|
Kochanek PM, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Schmid KE, Mondello S, Wang KKW, Hayes RL, Povlishock JT, Tortella FC. Approach to Modeling, Therapy Evaluation, Drug Selection, and Biomarker Assessments for a Multicenter Pre-Clinical Drug Screening Consortium for Acute Therapies in Severe Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2015; 33:513-22. [PMID: 26439468 DOI: 10.1089/neu.2015.4113] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) was the signature injury in both the Iraq and Afghan wars and the magnitude of its importance in the civilian setting is finally being recognized. Given the scope of the problem, new therapies are needed across the continuum of care. Few therapies have been shown to be successful. In severe TBI, current guidelines-based acute therapies are focused on the reduction of intracranial hypertension and optimization of cerebral perfusion. One factor considered important to the failure of drug development and translation in TBI relates to the recognition that TBI is extremely heterogeneous and presents with multiple phenotypes even within the category of severe injury. To address this possibility and attempt to bring the most promising therapies to clinical trials, we developed Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug screening consortium for acute therapies in severe TBI. OBTT was developed to include a spectrum of established TBI models at experienced centers and assess the effect of promising therapies on both conventional outcomes and serum biomarker levels. In this review, we outline the approach to TBI modeling, evaluation of therapies, drug selection, and biomarker assessments for OBTT, and provide a framework for reports in this issue on the first five therapies evaluated by the consortium.
Collapse
Affiliation(s)
- Patrick M Kochanek
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Helen M Bramlett
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - C Edward Dixon
- 3 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Deborah A Shear
- 4 In Vivo Neuroprotection Labs, Brain Trauma Neuroprotection & Neurorestoration Branch, Center of Excellence for Psychiatry & Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - W Dalton Dietrich
- 5 Miami Project to Cure Paralysis, Departments of Neurological Surgery, Neurology and Cell Biology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Kara E Schmid
- 6 Brain Trauma Neuroprotection and Neurorestoration Department, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Stefania Mondello
- 7 Department of Neurosciences, University of Messina , Messina, Italy
| | - Kevin K W Wang
- 8 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ronald L Hayes
- 9 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc. , Alachua, Florida
| | - John T Povlishock
- 10 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Frank C Tortella
- 11 Department of Applied Neurobiology and Combat Casualty Care Research Program for Brain Trauma & Neuroprotection Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|