1
|
Garcia-Ballestas E, Villafañe J, Nuñez-Baez K, Florez Perdomo WA, Duran MA, Janjua T, Moscote-Salazar LR, Agrawal A. A systematic review and meta-analysis on glycemic control in traumatic brain injury. Clin Neurol Neurosurg 2024; 245:108504. [PMID: 39141934 DOI: 10.1016/j.clineuro.2024.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Hyperglycemia is associated with adverse outcomes in patent with traumatic brain injury. There is convincing evidence of the deleterious effects of early systemic hyperglycemia on neurological outcomes and guides management toward intensive glycemic control. The purpose of this systematic review and meta analysis is to evaluate and summarize the level of evidence on the role of glycemic control in traumatic brain injury. METHODS A systematic review and meta-analysis were performed following PRISMA guidelines. This review involved studies conducted in humans covering glycemic control in traumatic brain injury. A systematic literature search was performed in PubMed, Embase, EBSCO Host, Scopus, ScienceDirect, Medline, and LILACS from database inception to October 2020. The risk of bias was evaluated with the GRADE quality Scale. RESULTS The results of this meta-analysis that involved 1236 patients included in 10 studies suggest that intensive glycemic control did not show significant differences in mortality compared with conservative management (RR 0.99 [95 % CI 0.81-1.21] p = 0.92). Intensive glycemic control reduced the risk of unfavorable clinical outcomes compared to standard management (RR 0.87 [95 % CI 0.78-0.96] p = 0.007) and increased favorable clinical outcomes compared to standard neurocritical care (RR 1.19 [95 % CI 1.02-138] p = 0.003). CONCLUSIONS The possible effect of glycemic control could be associated with silent hypoglycemic episodes during intensive care. Further studies evaluating the impact of glycemic control in traumatic brain injury are necessary.
Collapse
Affiliation(s)
- Ezequiel Garcia-Ballestas
- Center of Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia; Latinoamerican Council of Neurocritical Care, CLaNi, Cartagena de Indias, Bolívar, Colombia.
| | - Javier Villafañe
- Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Karen Nuñez-Baez
- Center of Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - William A Florez Perdomo
- Latinoamerican Council of Neurocritical Care, CLaNi, Cartagena de Indias, Bolívar, Colombia; Sahagún Clinic, Sahagún, Córdoba, Colombia; Surcolombian University. Neiva, Huila, Colombia
| | | | - Tariq Janjua
- Department of Neurology and Critical Care Medicine, Regions Hospital, Saint Paul, MN, USA
| | - Luis Rafael Moscote-Salazar
- Center of Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, India
| |
Collapse
|
2
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
3
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
4
|
Farkhondeh T, Samarghandian S, Roshanravan B, Peivasteh-Roudsari L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat Food Nutr Agric 2021; 11:137-144. [PMID: 31288732 DOI: 10.2174/2212798410666190617161523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury (TBI) is one of the main causes of mortality and morbidity worldwide with no suitable treatment. The present study was designed to review the present literature about the protective effects of curcumin and the underlying mechanism against TBI. All published English language papers from beginning to 2019 were selected in this study. The findings indicate that curcumin may be effective against TBI outcomes by modulating the molecular signaling pathways involved in oxidative stress, inflammation, apoptosis, and autophagy. However, more experimental studies should be done to identify all mechanisms involved in the pathogenesis of TBI. Patents for Curcumin and chronic inflammation and traumatic brain injury management (WO2017097805A1 and US9101580B2) were published. In conclusion, the present study confirmed the potential therapeutic impact of curcumin for treating TBI.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Peivasteh-Roudsari
- Devision of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Salman M, Kaushik P, Tabassum H, Parvez S. Melatonin Provides Neuroprotection Following Traumatic Brain Injury-Promoted Mitochondrial Perturbation in Wistar Rat. Cell Mol Neurobiol 2021; 41:765-781. [PMID: 32468441 DOI: 10.1007/s10571-020-00884-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Excessive mitochondrial fission has been implicated in the etiology of neuronal cell death in traumatic brain injury (TBI). In the present study, we examined the efficacy of melatonin (Mel) as a neuroprotective agent against TBI-induced oxidative damage and mitochondrial dysfunction. We assessed the impact of Mel post-treatment (10 mg/kg b.wt., i.p.) at different time intervals in TBI-subjected Wistar rats. We found that the Mel treatment significantly attenuated brain edema, oxidative damage, mitochondrial fission, and promoted mitochondrial fusion. Additionally, Mel-treated rats showed restoration of mitochondrial membrane potential and oxidative phosphorylation with a concomitant reduction in cytochrome-c release. Further, Mel treatment significantly inhibited the translocation of Bax and Drp1 proteins to mitochondria in TBI-subjected rats. The restorative role of Mel treatment in TBI rats was supported by the mitochondrial ultra-structural analysis, which showed activation of mitochondrial fusion mechanism. Mel enhanced mitochondrial biogenesis by upregulation of PGC-1α protein. Our results demonstrated the remedial role of Mel in ameliorating mitochondrial dysfunctions that are modulated in TBI-subjected rats and provided support for mitochondrial-mediated neuroprotection as a putative therapeutic agent in the brain trauma.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Prabu S, Samad NA, Ahmad NA, Jumbri K, Raoov M, Rahim NY, Samikannu K, Mohamad S. Studies on the supramolecular complex of a guanosine with beta-cyclodextrin and evaluation of its anti-proliferative activity. Carbohydr Res 2020; 497:108138. [DOI: 10.1016/j.carres.2020.108138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
|
7
|
Salman M, Tabassum H, Parvez S. Nrf2/HO-1 mediates the neuroprotective effects of pramipexole by attenuating oxidative damage and mitochondrial perturbation after traumatic brain injury in rats. Dis Model Mech 2020; 13:dmm045021. [PMID: 32540990 PMCID: PMC7449795 DOI: 10.1242/dmm.045021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Pramipexole (PPX), a D2-like receptor agonist, is generally used in the treatment of Parkinson's disease and restless leg syndrome. Its neuroprotective effects have been shown against various neurological disorders. Recent research work has demonstrated that PPX exerts neuroprotection through mitochondria. However, the neuromodulator-related effects of PPX against traumatic brain injury (TBI) remain unexplored. The present study, therefore, investigated the mechanism of neuroprotection by PPX against oxidative stress, mitochondrial dysfunction and neuronal damage following TBI in rats. We hypothesized that the neuroprotection by PPX in TBI-subjected rats might involve activation of the Nrf2/HO-1 (also known as Nfe2l2/Hmox1) signaling pathway. PPX was injected intraperitoneally (0.25 mg/kg body weight and 1.0 mg/kg body weight) at different time intervals post-TBI. Several neurobehavioral parameters were assessed at 48 h post-TBI, and the brain was isolated for molecular and biochemical analysis. The results demonstrated that PPX treatment significantly improved the behavioral deficits, decreased the lipid peroxidation rate, increased glutathione levels and decreased 4-hydroxynonenal levels in TBI-subjected rats. PPX also increased the activities of glutathione peroxidase and superoxide dismutase enzymes. In addition, PPX treatment inhibited mitochondrial reactive oxygen species production, restored mitochondrial membrane potential and increased ATP levels after a TBI. Further, PPX treatment reduced the Bax/Bcl2 ratio and translocation of Bax to mitochondria and cytochrome-c to the cytosol. Finally, PPX treatment greatly accelerated the translocation of Nrf2 to the nucleus and upregulated HO-1 protein expression. We conclude that the neuroprotective effects of PPX are mediated by activation of the Nrf2/HO-1 signaling pathway following TBI.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110 029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
8
|
Bonilla-Mendoza CA, Garcia-Ballestas E, Pacheco-Hernandez A, Moscote-Salazar LR, Keni RR, Agrawal A. Mitochondrial Dysfunction in Traumatic Brain Injury: Management Strategies. INDIAN JOURNAL OF NEUROTRAUMA 2020. [DOI: 10.1055/s-0040-1713457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AbstractToday, traumatic brain injuries continue to be studied, increasingly investigating the pathophysiological mechanisms that contribute to the clinical presentation, severity, and possible sequelae, but despite this, the prognosis of these patients is sometimes poor. Mitochondrial dysfunction comprises a series of reactions that contribute to the inflammatory process in these patients that have an impact on the prognosis, since it is one of the pathophysiological mechanisms involved in secondary lesions after a traumatic brain injury; and therefore has opened a field of study in the search of possible biomolecular markers that allow us to establish a prognosis and prediction of mortality.
Collapse
Affiliation(s)
| | - Ezequiel Garcia-Ballestas
- Centro de Investigaciones Biomédicas (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Columbia
| | - Alfonso Pacheco-Hernandez
- Fundación Centro Colombiano de Epilepsia y Enfermedades Neurologicas–FIRE, Faculty of Medicine, University of Cartagena, Cartagena, Columbia
| | - Luis-Rafael Moscote-Salazar
- Centro de Investigaciones Biomedicas (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Columbia
| | - Ravish R. Keni
- Department of Neurology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
| | - Amit Agrawal
- Department of Neurosurgery, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
| |
Collapse
|
9
|
A multi-staged neuropeptide response to traumatic brain injury. Eur J Trauma Emerg Surg 2020; 48:507-517. [DOI: 10.1007/s00068-020-01431-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/28/2020] [Indexed: 01/05/2023]
|
10
|
Guanosine protects against behavioural and mitochondrial bioenergetic alterations after mild traumatic brain injury. Brain Res Bull 2020; 163:31-39. [PMID: 32681970 DOI: 10.1016/j.brainresbull.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a heterogeneous cerebral insult induced by traumatic biomechanical forces. Mitochondria play a critical role in brain bioenergetics, and TBI induces several consequences related with oxidative stress and excitotoxicity clearly demonstrated in different experimental model involving TBI. Mitochondrial bioenergetics alterations can present several targets for therapeutics which could help reduce secondary brain lesions such as neuropsychiatric problems, including memory loss and motor impairment. Guanosine (GUO), an endogenous neuroprotective nucleoside, affords the long-term benefits of controlling brain neurodegeneration, mainly due to its capacity to activate the antioxidant defense system and maintenance of the redox system. However, little is known about the exact protective mechanism exerted by GUO on mitochondrial bioenergetics disruption induced by TBI. Thus, the aim of this study was to investigate the effects of GUO in brain cortical and hippocampal mitochondrial bioenergetics in the mild TBI model. Additionally, we aimed to assess whether mitochondrial damage induced by TBI may be related to behavioral alterations in rats. Our findings showed that 24 h post-TBI, GUO treatment promotes an adaptive response of mitochondrial respiratory chain increasing oxygen flux which it was able to protect against the uncoupling of oxidative phosphorylation (OXPHOS) induced by TBI, restored the respiratory electron transfer system (ETS) established with an uncoupler. Guanosine treatment also increased respiratory control ratio (RCR), an indicator of the state of mitochondrial coupling, which is related to the mitochondrial functionality. In addition, mitochondrial bioenergetics failure was closely related with locomotor, exploratory and memory impairments. The present study suggests GUO treatment post mild TBI could increase GDP endogenous levels and consequently increasing ATP levels promotes an increase of RCR increasing OXPHOS and in substantial improve mitochondrial respiration in different brain regions, which, in turn, could promote an improvement in behavioral parameters associated to the mild TBI. These findings may contribute to the development of future therapies with a target on failure energetic metabolism induced by TBI.
Collapse
|
11
|
Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats. Chem Biol Interact 2019; 304:173-185. [DOI: 10.1016/j.cbi.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
|
12
|
A 1 rather than A 2A adenosine receptor as a possible target of Guanosine effects on mitochondrial dysfunction following Traumatic Brain Injury in rats. Neurosci Lett 2019; 704:141-144. [PMID: 30974229 DOI: 10.1016/j.neulet.2019.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) represents one of the leading causes of death worldwide. Its pathophysiology involves several neurochemical events including mitochondrial dysfunction. Since mitochondrial respiration plays a key role in cell survival, pharmacological interventions targeting mitochondrial function have been highlighted as a powerful tool against the neurodegenerative process triggered by TBI. Guanosine (GUO), a neuroprotective molecule in different neurological disorders involving neurotoxicity, has shown protective properties after TBI, however its mechanism of action is not well understood in the central nervous system (CNS). Therefore, the aim of this study is to evaluate the possible target receptor involved in the protective GUO effects on TBI-induced mitochondrial dysfunction in the cerebral cortex of rats. Results show that a single dose of GUO (7.5 mg/kg) injected 40 min after a fluid percussion injury (FPI) protects against loss of mitochondrial membrane potential and increase of reactive oxygen species 8 h post-TBI. These effects were specifically blocked by a pretreatment (10 min after TBI) with an A1 adenosine receptor antagonist (DPCPX 1 mg/kg). In contrast, pretreatment with an A2A adenosine receptor antagonist (SCH 58261 0.05 mg/kg) did not alter GUO effects. These findings suggest that acute GUO neuroprotection following TBI involves the modulation of the adenosinergic system, especially A1 adenosine receptor.
Collapse
|
13
|
Guanosine protects against Ca 2+-induced mitochondrial dysfunction in rats. Biomed Pharmacother 2019; 111:1438-1446. [PMID: 30841459 DOI: 10.1016/j.biopha.2019.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Mitochondria play an important role in cell life and in the regulation of cell death. In addition, mitochondrial dysfunction contributes to a wide range of neuropathologies. The nucleoside Guanosine (GUO) is an endogenous molecule, presenting antioxidant properties, possibly due to its direct scavenging ability and/or from its capacity to activate the antioxidant defense system. GUO demonstrate a neuroprotective effect due to the modulation of the glutamatergic system and maintenance of the redox system. Thus, considering the few studies focused on the direct effects of GUO on mitochondrial bioenergetics, we designed a study to evaluate the in vitro effects of GUO on rat mitochondrial function, as well as against Ca2+-induced impairment. Our results indicate that GUO prevented mitochondrial dysfunction induced by Ca2+ misbalance, once GUO was able to reduce mitochondrial swelling in the presence of Ca2+, as well as ROS production and hydrogen peroxide levels, and to increase manganese superoxide dismutase activity, oxidative phosphorylation and tricarboxylic acid cycle activities. Our study indicates for the first time that GUO could direct prevent the mitochondrial damage induced by Ca2+ and that these effects were not related to its scavenging properties. Our data indicates that GUO could be included as a new pharmacological strategy for diseases linked to mitochondrial dysfunction.
Collapse
|
14
|
Marques NF, Massari CM, Tasca CI. Guanosine Protects Striatal Slices Against 6-OHDA-Induced Oxidative Damage, Mitochondrial Dysfunction, and ATP Depletion. Neurotox Res 2018; 35:475-483. [PMID: 30417317 DOI: 10.1007/s12640-018-9976-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/18/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta which induces severe motor symptoms. 6-OHDA is a neurotoxin widely used in PD animal models due to its high affinity by dopamine transporter, its rapid non-enzymatic auto-oxidation which generates reactive oxygen species (ROS), oxidative stress, and for induced mitochondrial dysfunction. We previously reported an in vitro protocol of 6-OHDA-induced toxicity in brain regions slices, as a simple and sensitive assay to screen for protective compounds related to PD. Guanosine (GUO), a guanine-based purine nucleoside, is a neuroprotective molecule that is showing promising effects as an antiparkinsonian agent. To investigate the mechanisms involved on GUO-induced neuroprotection, slices of cortex, striatum, and hippocampus were incubated with GUO in the presence of 6-OHDA (100 μM). 6-OHDA promoted a decrease in cellular viability and increased ROS generation in all brain regions. Disruption of mitochondrial potential, depletion in intracellular ATP levels, and increase in cell membrane permeabilization were evidenced in striatal slices. GUO prevented the increase in ROS generation, disruption in mitochondrial potential, and depletion of intracellular ATP induced by 6-OHDA in striatal slices. In conclusion, GUO was effective to prevent oxidative events before cell damage, such as mitochondrial disruption, intracellular ATP levels depletion, and ROS generation in striatal slices subjected to in vitro 6-OHDA-induced toxicity.
Collapse
Affiliation(s)
- Naiani Ferreira Marques
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Caio Marcos Massari
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil. .,Departamento de Bioquímica, CCB, UFSC, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
15
|
Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, Royes LF, Fighera MR, Porciúncula LO, Cunha RA, Soares FAA. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Mol Neurobiol 2018; 56:3145-3158. [PMID: 30105669 DOI: 10.1007/s12035-018-1296-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rogério R Gerbatin
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gláubia Sartori
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ronaldo M Golombieski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Alfredo Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRep Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luiz F Royes
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele R Fighera
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lisiane O Porciúncula
- Laboratory of Studies on the Purinergic System, Department of Biochemistry / ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo A Cunha
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Félix A A Soares
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
16
|
Liu W, Chen Y, Meng J, Wu M, Bi F, Chang C, Li H, Zhang L. Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo. J Neuroinflammation 2018; 15:48. [PMID: 29458437 PMCID: PMC5817788 DOI: 10.1186/s12974-018-1083-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a critical public health and socioeconomic problem throughout the world. Inflammation-induced secondary injury is one of the vital pathogenic parameters of TBI. Molecular signaling cascades of pyroptosis, a specific type of cellular necrosis, are key drivers of TBI-induced inflammation. Methods In this study, mice with genetically ablated caspase-1 (caspase-1−/−) were subjected to controlled cortical impact injury in vivo, and primary neuron deficient in caspase-1 through siRNA knockdown and pharmacologic inhibition was stimulated by mechanical scratch, equiaxial stretch, and LPS/ATP in vitro. We evaluated the effects of caspase-1 deficiency on neurological deficits, inflammatory factors, histopathology, cell apoptosis, and pyroptosis. Results During the acute post-injury period (0–48 h) in vivo, motor deficits, anti-inflammatory cytokines (TGF-β and IL-10), pro-inflammatory cytokines (IFN-γ, IL-1β, and IL-18), and blood lactate dehydrogenase (LDH), as well as pyroptosis-related proteins (caspase-1, caspase-1 fragments, caspase-11 and GSDMD), were increased. Caspase-1 was activated in the cortex of TBI mice. Inflammatory activation was more profound in injured wild-type mice than in caspase-1−/− mice. In vitro, mechanical scratch, equiaxial stretch, and LPS/ATP-induced neuron pyroptosis, apoptosis, LDH release, and increased expression of inflammatory factors. The effects of mechanical and inflammatory stress were reduced through inhibition of caspase-1 activity through siRNA knockdown and pharmacologic inhibition. Conclusion Collectively, these data demonstrate that pyroptosis is involved in neuroinflammation and neuronal injury after TBI, and ablation of caspase-1 inhibits TBI-induced pyroptosis. Our findings suggest that caspase-1 may be a potential target for TBI therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1083-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China. .,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China. .,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China.
| | - Jiao Meng
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China.,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Minfei Wu
- Department of Orthopedics, Jilin University Second Hospital, Changchun, 8974617, People's Republic of China
| | - Fangfang Bi
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China.,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Cuicui Chang
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China.,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Hua Li
- Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Liangjun Zhang
- Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| |
Collapse
|
17
|
Griffiths H, Goyal MS, Pineda JA. Brain metabolism and severe pediatric traumatic brain injury. Childs Nerv Syst 2017; 33:1719-1726. [PMID: 29149384 DOI: 10.1007/s00381-017-3514-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/30/2023]
Abstract
Age-dependent changes in brain metabolism may influence the response to and tolerance of secondary insults, potentially affecting outcomes. More complete characterization of brain metabolism across the clinical trajectory of severe pediatric TBI is needed to improve our ability to measure and better mitigate the impact of secondary insults. Better management of secondary insults will impact clinical care and the probability of success of future neuroprotective clinical trials. Improved bedside monitoring and imaging technologies will be required to achieve these goals. Effective and sustained integration of brain metabolism information into the pediatric critical care setting will be equally challenging and important.
Collapse
Affiliation(s)
- Heidi Griffiths
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Manu S Goyal
- Department of Neuroradiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jose A Pineda
- Department of Pediatrics and Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|