1
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
2
|
Grovola MR, Cullen DK. Neuropathological mRNA Expression Changes after Single Mild Traumatic Brain Injury in Pigs. Biomedicines 2024; 12:2019. [PMID: 39335533 PMCID: PMC11428889 DOI: 10.3390/biomedicines12092019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health concern, with an estimated 42 million cases globally every year. The majority of TBIs are mild TBIs, also known as concussion, and result from the application of mechanical forces on the head. Most patients make a complete recovery and mortality is rare; therefore, studies investigating cellular changes after mild TBI in a clinical setting are limited. To address this constraint, our group utilized a pig model of closed-head rotational acceleration-induced TBI, which recreated the biomechanical loading parameters associated with concussion on a large gyrencephalic brain similar to humans. While our previous research has focused on immunohistochemical characterization of neuropathology, the current study utilized transcriptomic assays to evaluate an array of TBI-induced neurodegenerative analytes. Pigs subjected to mild TBI were survived for 3 days post-injury (DPI) (n = 3), 30 DPI (n = 3), or 1 year post-injury (YPI) (n = 3) and compared to animals undergoing a sham procedure (n = 8). RNA was isolated from whole coronal sections of fixed tissue and multiplexed on a Nanostring neuropathology panel. Differential expression analysis revealed 11 differentially expressed genes at 3 DPI versus sham, including downregulation of the synaptotagmin calcium sensor gene (SYT1), upregulation of the neurofibromin gene (NF1), and upregulation of the Alzheimer's disease-associated receptor gene (SORL1). There were no differentially expressed genes at 30 DPI or 1 YPI compared to shams. Additionally, high-magnitude undirected global significance scores (GSS) were detected at 3 DPI for chromatin modification and autophagy gene sets, and at 30 DPI for cytokine gene sets, while many dysregulated gene sets were highlighted by directed GSSs out to 1 YPI. This study adds to a growing body of literature on transcriptomic changes in a clinically relevant large animal model of closed-head TBI, which highlights potential therapeutic targets following mild TBI.
Collapse
Affiliation(s)
- Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Gerhalter T, Chen AM, Dehkharghani S, Peralta R, Gajdosik M, Zarate A, Bushnik T, Silver JM, Im BS, Wall SP, Madelin G, Kirov II. Longitudinal changes in sodium concentration and in clinical outcome in mild traumatic brain injury. Brain Commun 2024; 6:fcae229. [PMID: 39035416 PMCID: PMC11258572 DOI: 10.1093/braincomms/fcae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Ionic imbalances and sodium channel dysfunction, well-known sequelae of traumatic brain injury (TBI), promote functional impairment in affected subjects. Therefore, non-invasive measurement of sodium concentrations using 23Na MRI has the potential to detect clinically relevant injury and predict persistent symptoms. Recently, we reported diffusely lower apparent total sodium concentrations (aTSC) in mild TBI patients compared to controls, as well as correlations between lower aTSC and worse clinical outcomes. The main goal of this study was to determine whether these aTSC findings, and their changes over time, predict outcomes at 3- and 12-month from injury. Twenty-seven patients previously studied with 23Na MRI and outcome measures at 22 ± 10 days (average ± standard deviation) after injury (visit-1, v1) were contacted at 3- (visit-2, v2) and 12-month after injury (visit-3, v3) to complete the Rivermead post-concussion symptoms questionnaire (RPQ), the extended Glasgow outcome scale (GOSE), and the brief test of adult cognition by telephone (BTACT). Follow-up 1H and 23Na MRI were additionally scheduled at v2. Linear regression was used to calculate aTSC in global grey and white matters. Six hypotheses were tested in relation to the serial changes in outcome measures and in aTSC, and in relation to the cross-sectional and serial relationships between aTSC and outcome. Twenty patients contributed data at v2 and fifteen at v3. Total RPQ and composite BTACT z-scores differed significantly for v2 and v3 in comparison to v1 (each P < 0.01), reflecting longitudinally reduced symptomatology and improved performance on cognitive testing. No associations between aTSC and outcome were observed at v2. Previously lower grey and white matter aTSC normalized at v2 in comparison to controls, in line with a statistically detectable longitudinal increase in grey matter aTSC between v1 and v2 (P = 0.0004). aTSC values at v1 predicted a subset of future BTACT subtest scores, but not future RPQ scores nor GOSE-defined recovery status. Similarly, aTSC rates of change correlated with BTACT rates of change, but not with those of RPQ. Tissue aTSC, previously shown to be diffusely decreased compared to controls at v1, was no longer reduced by v2, suggesting normalization of the sodium ionic equilibrium. These changes were accompanied by marked improvement in outcome. The results support the notion that early aTSC from 23Na MRI predicts future BTACT, but not RPQ scores, nor future GOSE status.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Seena Dehkharghani
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Gajdosik
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alejandro Zarate
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan M Silver
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Brian S Im
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen P Wall
- Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Song H, Tomasevich A, Paolini A, Browne KD, Wofford KL, Kelley B, Kantemneni E, Kennedy J, Qiu Y, Schneider ALC, Dolle JP, Cullen DK, Smith DH. Sex differences in the extent of acute axonal pathologies after experimental concussion. Acta Neuropathol 2024; 147:79. [PMID: 38705966 PMCID: PMC11070329 DOI: 10.1007/s00401-024-02735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrew Paolini
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kathryn L Wofford
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Eashwar Kantemneni
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Justin Kennedy
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Yue Qiu
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Ulyanova AV, Adam CD, Cottone C, Maheshwari N, Grovola MR, Fruchet OE, Alamar J, Koch PF, Johnson VE, Cullen DK, Wolf JA. Hippocampal interneuronal dysfunction and hyperexcitability in a porcine model of concussion. Commun Biol 2023; 6:1136. [PMID: 37945934 PMCID: PMC10636018 DOI: 10.1038/s42003-023-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.
Collapse
Affiliation(s)
- Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Nikhil Maheshwari
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Michael R Grovola
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Oceane E Fruchet
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Jami Alamar
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA.
| |
Collapse
|
6
|
Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, Zhang S, Jiang T, Wang T, Yao B, Wang H, Xu D. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B 2023; 13:3708-3727. [PMID: 37719378 PMCID: PMC10501875 DOI: 10.1016/j.apsb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons. Here we explored how gestational exposure to dexamethasone, a synthetic glucocorticoid commonly used in clinical practice, has lasting effects on offspring's learning and memory. Adult offspring rats of prenatal dexamethasone exposure (PDE) displayed significant impairments in novelty recognition and spatial learning memory, with some phenotypes maintained transgenerationally. PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations, and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory, but these changes failed to carry over to offspring of F5 and F7 generations. Mechanistically, altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission, which might be related to oocyte-specific high expression and transmission of miR-133a-3p. Together, PDE affects hippocampal excitatory synaptic transmission, with lasting consequences across generations, and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.
Collapse
Affiliation(s)
- Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lulu Xie
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Baozhen Yao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
7
|
Harris JP, Mietus CJ, Browne KD, Wofford KL, Keating CE, Brown DP, Johnson BN, Wolf JA, Smith DH, Cohen AS, Duda JE, Cullen DK. Neuronal somatic plasmalemmal permeability and dendritic beading caused by head rotational traumatic brain injury in pigs-An exploratory study. Front Cell Neurosci 2023; 17:1055455. [PMID: 37519631 PMCID: PMC10381956 DOI: 10.3389/fncel.2023.1055455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Closed-head traumatic brain injury (TBI) is induced by rapid motion of the head, resulting in diffuse strain fields throughout the brain. The injury mechanism(s), loading thresholds, and neuroanatomical distribution of affected cells remain poorly understood, especially in the gyrencephalic brain. We utilized a porcine model to explore the relationships between rapid head rotational acceleration-deceleration loading and immediate alterations in plasmalemmal permeability within cerebral cortex, sub-cortical white matter, and hippocampus. To assess plasmalemmal compromise, Lucifer yellow (LY), a small cell-impermeant dye, was delivered intraventricularly and diffused throughout the parenchyma prior to injury in animals euthanized at 15-min post-injury; other animals (not receiving LY) were survived to 8-h or 7-days. Plasmalemmal permeability preferentially occurred in neuronal somata and dendrites, but rarely in white matter axons. The burden of LY+ neurons increased based on head rotational kinematics, specifically maximum angular velocity, and was exacerbated by repeated TBI. In the cortex, LY+ cells were prominent in both the medial and lateral gyri. Neuronal membrane permeability was observed within the hippocampus and entorhinal cortex, including morphological changes such as beading in dendrites. These changes correlated with reduced fiber volleys and synaptic current alterations at later timepoints in the hippocampus. Further histological observations found decreased NeuN immunoreactivity, increased mitochondrial fission, and caspase pathway activation in both LY+ and LY- cells, suggesting the presence of multiple injury phenotypes. This exploratory study suggests relationships between plasmalemmal disruptions in neuronal somata and dendrites within cortical and hippocampal gray matter as a primary response in closed-head rotational TBI and sets the stage for future, traditional hypothesis-testing experiments.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Constance J. Mietus
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kathryn L. Wofford
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Carolyn E. Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Daniel P. Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Grovola MR, Jinich A, Paleologos N, Arroyo EJ, Browne KD, Swanson RL, Duda JE, Cullen DK. Persistence of Hyper-Ramified Microglia in Porcine Cortical Gray Matter after Mild Traumatic Brain Injury. Biomedicines 2023; 11:1960. [PMID: 37509599 PMCID: PMC10377269 DOI: 10.3390/biomedicines11071960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to morbidity and mortality in the United States as several million people visit the emergency department every year due to TBI exposures. Unfortunately, there is still no consensus on the pathology underlying mild TBI, the most common severity sub-type of TBI. Previous preclinical and post-mortem human studies have detailed the presence of diffuse axonal injury following TBI, suggesting that white matter pathology is the predominant pathology of diffuse brain injury. However, the inertial loading produced by TBI results in strain fields in both gray and white matter. In order to further characterize gray matter pathology in mild TBI, our lab used a pig model (n = 25) of closed-head rotational acceleration-induced TBI to evaluate blood-brain barrier disruptions, neurodegeneration, astrogliosis, and microglial reactivity in the cerebral cortex out to 1 year post-injury. Immunohistochemical staining revealed the presence of a hyper-ramified microglial phenotype-more branches, junctions, endpoints, and longer summed process length-at 30 days post injury (DPI) out to 1 year post injury in the cingulate gyrus (p < 0.05), and at acute and subacute timepoints in the inferior temporal gyrus (p < 0.05). Interestingly, we did not find neuronal loss or astroglial reactivity paired with these chronic microglia changes. However, we observed an increase in fibrinogen reactivity-a measure of blood-brain barrier disruption-predominately in the gray matter at 3 DPI (p = 0.0003) which resolved to sham levels by 7 DPI out to chronic timepoints. Future studies should employ gene expression assays, neuroimaging, and behavioral assays to elucidate the effects of these hyper-ramified microglia, particularly related to neuroplasticity and responses to potential subsequent insults. Further understanding of the brain's inflammatory activity after mild TBI will hopefully provide understanding of pathophysiology that translates to clinical treatment for TBI.
Collapse
Affiliation(s)
- Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan Jinich
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Paleologos
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edgardo J Arroyo
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Acero VP, Das S, Rivellini O, Purvis EM, Adewole DO, Cullen DK. Emergent structural and functional properties of hippocampal multi-cellular aggregates. Front Neurosci 2023; 17:1171115. [PMID: 37397454 PMCID: PMC10311220 DOI: 10.3389/fnins.2023.1171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified in vitro models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties. To address this, we utilized a forced aggregation technique to generate high-density (>100,000 cells/mm3) multi-cellular three-dimensional aggregates using rodent embryonic hippocampal tissue. We contrasted the emergent structural and functional properties of aggregated (3D) and dissociated (2D) cultures over 28 days in vitro (DIV). Hippocampal aggregates displayed robust axonal fasciculation across large distances and significant neuronal polarization, i.e., spatial segregation of dendrites and axons, at earlier time points compared to dissociated cultures. Moreover, we found that astrocytes in aggregate cultures self-organized into non-overlapping quasi-domains and developed highly stellate morphologies resembling astrocyte structures in vivo. We maintained cultures on multi-electrode arrays (MEAs) to assess spontaneous electrophysiological activity for up to 28 DIV. We found that 3D networks of aggregated cultures developed highly synchronized networks and with high burstiness by 28 DIV. We also demonstrated that dual-aggregate networks became active by 7 DIV, in contrast to single-aggregate networks which became active and developed synchronous bursting activity with repeating motifs by 14 DIV. Taken together, our findings demonstrate that the high-density, multi-cellular, 3D microenvironment of hippocampal aggregates supports the recapitulation of emergent biofidelic morphological and functional properties. Our findings suggest that neural aggregates may be used as segregated, modular building blocks for the development of complex, multi-nodal neural network topologies.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
McNeil E, Walilko T, Hulbert LE, VanMeter JW, LaConte S, VandeVord P, Zai L, Bentley TB. Development of a Minipig Model of BINT From Blast Exposure Using a Repeatable Mobile Shock Expansion Tube. Mil Med 2023; 188:e591-e599. [PMID: 34677612 DOI: 10.1093/milmed/usab409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/27/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The Office of Naval Research (ONR) sponsored the Blast Load Assessment Sense and Test (BLAST) program to provide an approach to operationally relevant monitoring and analysis of blast exposure for optimization of service member performance and health. Of critical importance in this effort was the development of a standardized methodology for preclinical large animal studies that can reliably produce outcome measures that cannot be measured in human studies to support science-based guidelines. The primary advantage of this approach is that, because animal studies report physiological measures that correlate with human neuropathology, these data can be used to evaluate potential risks to service members by accounting for the anatomical and physiological differences between humans and large animal models. This article describes the methodology used to generate a comprehensive outcome measure dataset correlated with controlled blast exposure. METHODS AND MATERIALS To quantify outcomes associated with a single exposure to blast, 23 age- and weight-matched Yucatan minipigs were exposed to a single blast event generated by a large-bore, compressed gas shock tube. The peak pressure ranged from 280 to 525 kPa. After a post-exposure 72-hour observation period, the physiological response was quantified using a comprehensive set of neurological outcome measures that included neuroimaging, histology, and behavioral measures. Responses of the blast-exposed animals were compared to the sham-treated cohort to identify statistically significant and physiologically relevant differences between the two groups. RESULTS Following a single exposure, the minipigs were assessed for structural, behavioral, and cellular changes for 3 days after exposure. The following neurological changes were observed: Structural-Using Diffusion Tensor Imaging, a statistically significant decrement (P < .001) in Fractional Anisotropy across the entire volume of the brain was observed when comparing the exposed group to the sham group. This finding indicates that alterations in brain tissue following exposure are not focused at a single location but instead a diffuse brain volume that can only be observed through a systematic examination of the neurological tissue. Cellular-The histopathology results from several large white matter tract locations showed varied cellular responses from six different stains. Using standard statistical methods, results from stains such as Fluoro-Jade C and cluster of differentiation 68 in the hippocampus showed significantly higher levels of neurodegeneration and increased microglia/macrophage activation in blast-exposed subjects. However, other stains also indicated increased response, demonstrating the need for multivariate analysis with a larger dataset. Behavioral-The behavior changes observed were typically transient; the animals' behavior returned to near baseline levels after a relatively short recovery period. Despite behavioral recovery, the presence of active neurodegenerative and inflammatory responses remained. CONCLUSIONS The results of this study demonstrate that (1) a shock tube provides an effective tool for generating repeatable exposures in large animals and (2) exposure to blast overpressure can be correlated using a combination of imaging, behavioral, and histological analyses. This research demonstrates the importance of using multiple physiological indicators to track blast-induced changes in minipigs. The methodology and findings from this effort were central to developing machine-learning models to inform the development of blast exposure guidelines.
Collapse
Affiliation(s)
- Elizabeth McNeil
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Timothy Walilko
- Arlington Division, Applied Research Associates, Inc., Arlington, VA 22203, USA
| | - Lindsey E Hulbert
- Animal Sciences and Industry Department, Kansas State University, Manhattan, KS 66506, USA
| | - John W VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stephen LaConte
- Virginia Tech Carilion Research Institute 2 Riverside Circle, Roanoke, VA 24016, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Laila Zai
- Lucent Research, LLC, Parker, CO 80138, USA
| | | |
Collapse
|
11
|
Song H, McEwan PP, Ameen-Ali KE, Tomasevich A, Kennedy-Dietrich C, Palma A, Arroyo EJ, Dolle JP, Johnson VE, Stewart W, Smith DH. Concussion leads to widespread axonal sodium channel loss and disruption of the node of Ranvier. Acta Neuropathol 2022; 144:967-985. [PMID: 36107227 PMCID: PMC9547928 DOI: 10.1007/s00401-022-02498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
Despite being a major health concern, little is known about the pathophysiological changes that underly concussion. Nonetheless, emerging evidence suggests that selective damage to white matter axons, or diffuse axonal injury (DAI), disrupts brain network connectivity and function. While voltage-gated sodium channels (NaChs) and their anchoring proteins at the nodes of Ranvier (NOR) on axons are key elements of the brain's network signaling machinery, changes in their integrity have not been studied in context with DAI. Here, we utilized a clinically relevant swine model of concussion that induces evolving axonal pathology, demonstrated by accumulation of amyloid precursor protein (APP) across the white matter. Over a two-week follow-up post-concussion with this model, we found widespread loss of NaCh isoform 1.6 (Nav1.6), progressive increases in NOR length, the appearance of void and heminodes and loss of βIV-spectrin, ankyrin G, and neurofascin 186 or their collective diffusion into the paranode. Notably, these changes were in close proximity, yet distinct from APP-immunoreactive swollen axonal profiles, potentially representing a unique, newfound phenotype of axonal pathology in DAI. Since concussion in humans is non-fatal, the clinical relevance of these findings was determined through examination of post-mortem brain tissue from humans with higher levels of acute traumatic brain injury. Here, a similar loss of Nav1.6 and changes in NOR structures in brain white matter were observed as found in the swine model of concussion. Collectively, this widespread and progressive disruption of NaChs and NOR appears to be a form of sodium channelopathy, which may represent an important substrate underlying brain network dysfunction after concussion.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Przemyslaw P McEwan
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kamar E Ameen-Ali
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | | | - Alexander Palma
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Edgardo J Arroyo
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - William Stewart
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Fiber orientation downsampling compromises the computation of white matter tract-related deformation. J Mech Behav Biomed Mater 2022; 132:105294. [DOI: 10.1016/j.jmbbm.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/13/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
|
13
|
McCorkle TA, Romm ZL, Raghupathi R. Repeated Mild TBI in Adolescent Rats Reveals Sex Differences in Acute and Chronic Behavioral Deficits. Neuroscience 2022; 493:52-68. [PMID: 35469970 PMCID: PMC10074545 DOI: 10.1016/j.neuroscience.2022.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
Abstract
High school students who participate in contact sports are vulnerable to sustaining multiple concussions and exhibit deficits in cognitive function in both the acute and chronic phases and in emotional behavior in the chronic phase. Further, boys are more likely to suffer cognitive problems whereas girls tend to report depression and anxiety. The effects of repetitive mild TBI in adolescent (35-40-day old) male and female Sprague-Dawley rats on object location and spatial working memory (hippocampal-dependent) and object recognition memory (hippocampal-independent) at 1-and-4-weeks post-injury along with trait-dependent anxiety- and depressive-like behaviors at 5 weeks were examined. Compared to sham-injured rats, male brain-injured rats demonstrated significant impairment in both hippocampal-dependent and -independent memory tasks at both time points, whereas female brain-injured rats only exhibited impairment in these tests at the 4-week time point. In contrast, depressive-like behaviors were present in the forced swim test in only the female brain-injured animals at 5 weeks post-injury; anxiety-like behaviors were not evident in either male or female brain-injured animals. Histological analysis at 6 weeks after injury revealed that repeated mild TBI in male and female adolescent rats resulted in increased reactivity of astrocytes and microglia within the corpus callosum below the impact site and in the stratum oriens and stratum pyramidale of the CA2 region of the dorsal hippocampus. Together, these data are indicative of the differences in the temporal pattern of post-traumatic behavioral deficits between male and female animals and that female animals may be more likely to develop deficits in the chronic post-traumatic period.
Collapse
Affiliation(s)
- T A McCorkle
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Philadelphia, PA 19129, United States
| | - Z L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - R Raghupathi
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Philadelphia, PA 19129, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
14
|
Zhou Z, Li X, Domel AG, Dennis EL, Georgiadis M, Liu Y, Raymond SJ, Grant G, Kleiven S, Camarillo D, Zeineh M. The Presence of the Temporal Horn Exacerbates the Vulnerability of Hippocampus During Head Impacts. Front Bioeng Biotechnol 2022; 10:754344. [PMID: 35392406 PMCID: PMC8980591 DOI: 10.3389/fbioe.2022.754344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying pathogenesis remains elusive. In this study, we hypothesize that the presence of the adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the hippocampus. Two finite element models of the human head were used to investigate this hypothesis, one with and one without the temporal horn, and both including a detailed hippocampal subfield delineation. A fluid-structure interaction coupling approach was used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to account for its fluid behavior. By comparing the response of these two models under identical loadings, the model that included the temporal horn predicted increased magnitudes of strain and strain rate in the hippocampus with respect to its counterpart without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3, hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These computational results suggest that the presence of the temporal horn exacerbate the vulnerability of the hippocampus, highlighting the mechanobiological dependency of the hippocampus on the temporal horn.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - August G. Domel
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yuzhe Liu
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Samuel J. Raymond
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Neurology, Stanford University, Stanford, CA, United States
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
16
|
Gupta A, Dovek L, Proddutur A, Elgammal FS, Santhakumar V. Long-Term Effects of Moderate Concussive Brain Injury During Adolescence on Synaptic and Tonic GABA Currents in Dentate Granule Cells and Semilunar Granule Cells. Front Neurosci 2022; 16:800733. [PMID: 35360164 PMCID: PMC8964009 DOI: 10.3389/fnins.2022.800733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Progressive physiological changes in the hippocampal dentate gyrus circuits following traumatic brain injury (TBI) contribute to temporal evolution of neurological sequelae. Although early posttraumatic changes in dentate synaptic and extrasynaptic GABA currents have been reported, and whether they evolve over time and remain distinct between the two projection neuron classes, granule cells and semilunar granule cells, have not been evaluated. We examined long-term changes in tonic GABA currents and spontaneous inhibitory postsynaptic currents (sIPSCs) and in dentate projection neurons 3 months after moderate concussive fluid percussion injury (FPI) in adolescent rats. Granule cell tonic GABA current amplitude remained elevated up to 1 month after FPI, but decreased to levels comparable with age-matched controls by 3 months postinjury. Granule cell sIPSC frequency, which we previously reported to be increased 1 week after FPI, remained higher than in age-matched controls at 1 month and was significantly reduced 3 months after FPI. In semilunar granule cells, tonic GABA current amplitude and sIPSC frequency were not different from controls 3 months after FPI, which contrast with decreases observed 1 week after injury. The switch in granule cell inhibitory inputs from early increase to subsequent decrease could contribute to the delayed emergence of cognitive deficits and seizure susceptibility after brain injury.
Collapse
Affiliation(s)
- Akshay Gupta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Laura Dovek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Archana Proddutur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Fatima S. Elgammal
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States,*Correspondence: Vijayalakshmi Santhakumar,
| |
Collapse
|
17
|
Williams HC, Carlson SW, Saatman KE. A role for insulin-like growth factor-1 in hippocampal plasticity following traumatic brain injury. VITAMINS AND HORMONES 2022; 118:423-455. [PMID: 35180936 DOI: 10.1016/bs.vh.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) initiates a constellation of secondary injury cascades, leading to neuronal damage and dysfunction that is often beyond the scope of endogenous repair mechanisms. Cognitive deficits are among the most persistent morbidities resulting from TBI, necessitating a greater understanding of mechanisms of posttraumatic hippocampal damage and neuroplasticity and identification of therapies that improve recovery by enhancing repair pathways. Focusing here on hippocampal neuropathology associated with contusion-type TBIs, the impact of brain trauma on synaptic structure and function and the process of adult neurogenesis is discussed, reviewing initial patterns of damage as well as evidence for spontaneous recovery. A case is made that insulin-like growth factor-1 (IGF-1), a growth-promoting peptide synthesized in both the brain and the periphery, is well suited to augment neuroplasticity in the injured brain. Essential during brain development, multiple lines of evidence delineate roles in the adult brain for IGF-1 in the maintenance of synapses, regulation of neurotransmission, and modulation of forms of synaptic plasticity such as long-term potentiation. Further, IGF-1 enhances adult hippocampal neurogenesis though effects on proliferation and neuronal differentiation of neural progenitor cells and on dendritic growth of newly born neurons. Post-injury administration of IGF-1 has been effective in rodent models of TBI in improving learning and memory, attenuating death of mature hippocampal neurons and promoting neurogenesis, providing critical proof-of-concept data. More studies are needed to explore the effects of IGF-1-based therapies on synaptogenesis and synaptic plasticity following TBI and to optimize strategies in order to stimulate only appropriate, functional neuroplasticity.
Collapse
Affiliation(s)
- Hannah C Williams
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
18
|
Wofford KL, Grovola MR, Adewole DO, Browne KD, Putt ME, O’Donnell JC, Cullen DK. Relationships between injury kinematics, neurological recovery, and pathology following concussion. Brain Commun 2021; 3:fcab268. [PMID: 34934944 PMCID: PMC8684470 DOI: 10.1093/braincomms/fcab268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mild traumatic brain injury affects millions of individuals annually primarily through falls, traffic collisions, or blunt trauma and can generate symptoms that persist for years. Closed-head rotational loading is the most common cause of mild traumatic brain injury and is defined by a rapid rotational acceleration of brain tissue within an intact skull. Injury kinematics-the mechanical descriptors of injury-inducing motion-explain movement of the head, which govern energy transfer, and, therefore, determine injury severity. However, the relationship between closed-head rotational injury kinematics-such as angular velocity, angular acceleration, and injury duration-and outcome after mild traumatic brain injury is not completely understood. To address this gap in knowledge, we analysed archived surgical records of 24 swine experiencing a diffuse closed-head rotational acceleration mild traumatic brain injury against 12 sham animals. Kinematics were contrasted against acute recovery outcomes, specifically apnea time, extubation time, standing time, and recovery duration. Compared to controls, animals experiencing a mild traumatic brain injury were far more likely to have apnea (P < 0.001), shorter time to extubation (P = 0.023), and longer time from extubation to standing (P = 0.006). Using least absolute shrinkage and selection operator-based regressions, kinematic parameters, including maximum negative angular velocity and time from peak angular velocity to maximum angular deceleration, were selected to explain variation in apnea time, standing time, and recovery duration. Simplified linear models employing the least absolute shrinkage and selection operator-selected variables explained a modest degree of variation in apnea time (adjusted R 2 = 0.18), standing time (adjusted R 2 = 0.19), and recovery duration (adjusted R 2 = 0.27). Neuropathology was correlated with multiple injury kinematics, with maximum angular acceleration exhibiting the strongest correlation (R 2 = 0.66). Together, these data suggest the interplay between multiple injury kinematics, including maximum negative angular velocity (immediately preceding cessation of head motion) and time from peak angular velocity to maximum angular deceleration, best explain acute recovery metrics and neuropathology after mild traumatic brain injury in swine. Future experiments that independently manipulate individual kinematic parameters could be instrumental in developing translational diagnostics for clinical mild traumatic brain injury.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Michael R Grovola
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C O’Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Fronczak KM, Li Y, Henchir J, Dixon CE, Carlson SW. Reductions in Synaptic Vesicle Glycoprotein 2 Isoforms in the Cortex and Hippocampus in a Rat Model of Traumatic Brain Injury. Mol Neurobiol 2021; 58:6006-6019. [PMID: 34435329 PMCID: PMC8602666 DOI: 10.1007/s12035-021-02534-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) can produce lasting cognitive, emotional, and somatic difficulties that can impact quality of life for patients living with an injury. Impaired hippocampal function and synaptic alterations have been implicated in contributing to cognitive difficulties in experimental TBI models. In the synapse, neuronal communication is facilitated by the regulated release of neurotransmitters from docking presynaptic vesicles. The synaptic vesicle glycoprotein 2 (SV2) isoforms SV2A and SV2B play central roles in the maintenance of the readily releasable pool of vesicles and the coupling of calcium to the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex responsible for vesicle docking. Recently, we reported the findings of TBI-induced reductions in presynaptic vesicle density and SNARE complex formation; however, the effect of TBI on SV2 is unknown. To investigate this, rats were subjected to controlled cortical impact (CCI) or sham control surgery. Abundance of SV2A and SV2B were assessed at 1, 3, 7, and 14 days post-injury by immunoblot. SV2A and SV2B were reduced in the cortex at several time points and in the hippocampus at every time point assessed. Immunohistochemical staining and quantitative intensity measurements completed at 14 days post-injury revealed reduced SV2A immunoreactivity in all hippocampal subregions and reduced SV2B immunoreactivity in the molecular layer after CCI. Reductions in SV2A abundance and immunoreactivity occurred concomitantly with motor dysfunction and spatial learning and memory impairments in the 2 weeks post-injury. These findings provide novel evidence for the effect of TBI on SV2 with implications for impaired neurotransmission neurobehavioral dysfunction after TBI.
Collapse
Affiliation(s)
- Katherine M Fronczak
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Youming Li
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Shaun W Carlson
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
20
|
Grovola MR, Paleologos N, Brown DP, Tran N, Wofford KL, Harris JP, Browne KD, Shewokis PA, Wolf JA, Cullen DK, Duda JE. Diverse changes in microglia morphology and axonal pathology during the course of 1 year after mild traumatic brain injury in pigs. Brain Pathol 2021; 31:e12953. [PMID: 33960556 PMCID: PMC8412066 DOI: 10.1111/bpa.12953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Over 2.8 million people experience mild traumatic brain injury (TBI) in the United States each year, which may lead to long-term neurological dysfunction. The mechanical forces that are caused by TBI propagate through the brain to produce diffuse axonal injury (DAI) and trigger secondary neuroinflammatory cascades. The cascades may persist from acute to chronic time points after injury, altering the homeostasis of the brain. However, the relationship between the hallmark axonal pathology of diffuse TBI and potential changes in glial cell activation or morphology have not been established in a clinically relevant large animal model at chronic time points. In this study, we assessed the tissue from pigs subjected to rapid head rotation in the coronal plane to generate mild TBI. Neuropathological assessments for axonal pathology, microglial morphological changes, and astrocyte reactivity were conducted in specimens out to 1-year post-injury. We detected an increase in overall amyloid precursor protein pathology, as well as periventricular white matter and fimbria/fornix pathology after a single mild TBI. We did not detect the changes in corpus callosum integrity or astrocyte reactivity. However, detailed microglial skeletal analysis revealed changes in morphology, most notably increases in the number of microglial branches, junctions, and endpoints. These subtle changes were most evident in periventricular white matter and certain hippocampal subfields, and were observed out to 1-year post-injury in some cases. These ongoing morphological alterations suggest persistent change in neuroimmune homeostasis. Additional studies are needed to characterize the underlying molecular and neurophysiological alterations, as well as potential contributions to neurological deficits.
Collapse
Affiliation(s)
- Michael R. Grovola
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Nicholas Paleologos
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Daniel P. Brown
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Nathan Tran
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
| | - Kathryn L. Wofford
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - James P. Harris
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kevin D. Browne
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Patricia A. Shewokis
- Department of Nutrition SciencesCollege of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaPAUSA
- School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaPAUSA
| | - John A. Wolf
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Parkinson's Disease Research, Education and Clinical CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
21
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Mayer AR, Ling JM, Dodd AB, Rannou-Latella JG, Stephenson DD, Dodd RJ, Mehos CJ, Patton DA, Cullen DK, Johnson VE, Pabbathi Reddy S, Robertson-Benta CR, Gigliotti AP, Meier TB, Vermillion MS, Smith DH, Kinsler R. Reproducibility and Characterization of Head Kinematics During a Large Animal Acceleration Model of Traumatic Brain Injury. Front Neurol 2021; 12:658461. [PMID: 34177763 PMCID: PMC8219951 DOI: 10.3389/fneur.2021.658461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood-brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Psychology Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Julie G. Rannou-Latella
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Carissa J. Mehos
- Neurosciences Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria E. Johnson
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharvani Pabbathi Reddy
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | | | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Douglas H. Smith
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel Kinsler
- Enroute Care Group, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| |
Collapse
|
23
|
Verboon LN, Patel HC, Greenhalgh AD. The Immune System's Role in the Consequences of Mild Traumatic Brain Injury (Concussion). Front Immunol 2021; 12:620698. [PMID: 33679762 PMCID: PMC7928307 DOI: 10.3389/fimmu.2021.620698] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mild TBI), often referred to as concussion, is the most common form of TBI and affects millions of people each year. A history of mild TBI increases the risk of developing emotional and neurocognitive disorders later in life that can impact on day to day living. These include anxiety and depression, as well as neurodegenerative conditions such as chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD). Actions of brain resident or peripherally recruited immune cells are proposed to be key regulators across these diseases and mood disorders. Here, we will assess the impact of mild TBI on brain and patient health, and evaluate the recent evidence for immune cell involvement in its pathogenesis.
Collapse
Affiliation(s)
- Laura N. Verboon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Hiren C. Patel
- Division of Cardiovascular Sciences, Salford Royal National Health Service Foundation Trust, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Group, University of Manchester, Manchester, United Kingdom
| | - Andrew D. Greenhalgh
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Group, University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Burrell JC, Browne KD, Dutton JL, Laimo FA, Das S, Brown DP, Roberts S, Petrov D, Ali Z, Ledebur HC, Rosen JM, Kaplan HM, Wolf JA, Smith DH, Chen HI, Cullen DK. A Porcine Model of Peripheral Nerve Injury Enabling Ultra-Long Regenerative Distances: Surgical Approach, Recovery Kinetics, and Clinical Relevance. Neurosurgery 2021; 87:833-846. [PMID: 32392341 DOI: 10.1093/neuros/nyaa106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Millions of Americans experience residual deficits from traumatic peripheral nerve injury (PNI). Despite advancements in surgical technique, repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with slow rates of axonal regeneration. Novel surgical solutions require valid preclinical models that adequately replicate the key challenges of clinical PNI. OBJECTIVE To develop a preclinical model of PNI in swine that addresses 2 challenging, clinically relevant PNI scenarios: long segmental defects (≥5 cm) and ultra-long regenerative distances (20-27 cm). Thus, we aim to demonstrate that a porcine model of major PNI is suitable as a potential framework to evaluate novel regenerative strategies prior to clinical deployment. METHODS A 5-cm-long common peroneal nerve or deep peroneal nerve injury was repaired using a saphenous nerve or sural nerve autograft, respectively. Histological and electrophysiological assessments were performed at 9 to 12 mo post repair to evaluate nerve regeneration and functional recovery. Relevant anatomy, surgical approach, and functional/histological outcomes were characterized for both repair techniques. RESULTS Axons regenerated across the repair zone and were identified in the distal stump. Electrophysiological recordings confirmed these findings and suggested regenerating axons reinnervated target muscles. CONCLUSION The models presented herein provide opportunities to investigate peripheral nerve regeneration using different nerves tailored for specific mechanisms of interest, such as nerve modality (motor, sensory, and mixed fiber composition), injury length (short/long gap), and total regenerative distance (proximal/distal injury).
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - John L Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franco A Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Daniel P Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sanford Roberts
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, New Hampshire
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Wofford KL, Grovola MR, Adewole DO, Browne KD, Putt ME, O'Donnell JC, Cullen DK. Relationships between injury kinematics, neurological recovery, and pathology following concussion. Brain Commun 2021. [PMID: 34934944 DOI: 10.1093/braincomms/fcab268/6430108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Mild traumatic brain injury affects millions of individuals annually primarily through falls, traffic collisions, or blunt trauma and can generate symptoms that persist for years. Closed-head rotational loading is the most common cause of mild traumatic brain injury and is defined by a rapid rotational acceleration of brain tissue within an intact skull. Injury kinematics-the mechanical descriptors of injury-inducing motion-explain movement of the head, which govern energy transfer, and, therefore, determine injury severity. However, the relationship between closed-head rotational injury kinematics-such as angular velocity, angular acceleration, and injury duration-and outcome after mild traumatic brain injury is not completely understood. To address this gap in knowledge, we analysed archived surgical records of 24 swine experiencing a diffuse closed-head rotational acceleration mild traumatic brain injury against 12 sham animals. Kinematics were contrasted against acute recovery outcomes, specifically apnea time, extubation time, standing time, and recovery duration. Compared to controls, animals experiencing a mild traumatic brain injury were far more likely to have apnea (P < 0.001), shorter time to extubation (P = 0.023), and longer time from extubation to standing (P = 0.006). Using least absolute shrinkage and selection operator-based regressions, kinematic parameters, including maximum negative angular velocity and time from peak angular velocity to maximum angular deceleration, were selected to explain variation in apnea time, standing time, and recovery duration. Simplified linear models employing the least absolute shrinkage and selection operator-selected variables explained a modest degree of variation in apnea time (adjusted R 2 = 0.18), standing time (adjusted R 2 = 0.19), and recovery duration (adjusted R 2 = 0.27). Neuropathology was correlated with multiple injury kinematics, with maximum angular acceleration exhibiting the strongest correlation (R 2 = 0.66). Together, these data suggest the interplay between multiple injury kinematics, including maximum negative angular velocity (immediately preceding cessation of head motion) and time from peak angular velocity to maximum angular deceleration, best explain acute recovery metrics and neuropathology after mild traumatic brain injury in swine. Future experiments that independently manipulate individual kinematic parameters could be instrumental in developing translational diagnostics for clinical mild traumatic brain injury.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Michael R Grovola
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
27
|
Traumatic Brain Injury Preserves Firing Rates But Disrupts Laminar Oscillatory Coupling and Neuronal Entrainment in Hippocampal CA1. eNeuro 2020; 7:ENEURO.0495-19.2020. [PMID: 32737188 PMCID: PMC7477953 DOI: 10.1523/eneuro.0495-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022] Open
Abstract
While hippocampal-dependent learning and memory are particularly vulnerable to traumatic brain injury (TBI), the functional status of individual hippocampal neurons and their interactions with oscillations are unknown following injury. Using the most common rodent TBI model and laminar recordings in CA1, we found a significant reduction in oscillatory input into the radiatum layer of CA1 after TBI. Surprisingly, CA1 neurons maintained normal firing rates despite attenuated input, but did not maintain appropriate synchronization with this oscillatory input or with local high-frequency oscillations. Normal synchronization between these coordinating oscillations was also impaired. Simultaneous recordings of medial septal neurons known to participate in theta oscillations revealed increased GABAergic/glutamatergic firing rates postinjury under anesthesia, potentially because of a loss of modulating feedback from the hippocampus. These results suggest that TBI leads to a profound disruption of connectivity and oscillatory interactions, potentially disrupting the timing of CA1 neuronal ensembles that underlie aspects of learning and memory.
Collapse
|
28
|
Hamilton KA, Santhakumar V. Current ex Vivo and in Vitro Approaches to Uncovering Mechanisms of Neurological Dysfunction after Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:18-24. [PMID: 32548365 PMCID: PMC7297186 DOI: 10.1016/j.cobme.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury often leads to progressive alterations at the molecular to circuit levels resulting in epilepsy and memory impairments. Ex vivo and in vitro models have provided a powerful platform for investigating the multimodal alteration after trauma. Recent ex vivo analyses using voltage sensitive dye imaging, optogenetics, and glutamate uncaging have revealed circuit abnormalities following in vivo brain injury. In vitro injury models have enabled examination of early and progressive changes in activity while development of three-dimensional organoids derived from human induced pluripotent stem cells have opened novel avenues for injury research. Here, we highlight recent advances in ex vivo and in vitro systems, focusing on their potential for advancing mechanistic understandings, possible limitations, and implications for therapeutics.
Collapse
Affiliation(s)
- Kelly Andrew Hamilton
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
29
|
Vibration Does Not Affect Short Term Outcomes Following Traumatic Brain Injury in a Porcine Model. Mil Med 2020. [DOI: 10.1093/milmed/usz346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Introduction
Traumatic brain injury (TBI) has become increasingly prevalent among the injuries sustained in the military. Many wounded warriors require emergency medical evacuation via helicopter and subsequently fixed wing transport. During aeromedical evacuation, both pilots and patients experience whole body vibration due to engine, rotor, and propeller rotation. The impact of posttraumatic vibration and hypoxia exposure characteristic of the aeromedical evacuation environment on TBI is currently unknown.
Methods
A swine TBI model of controlled cortical impact was utilized. The pigs first underwent TBI or sham injury and were subsequently exposed to vibration or no vibration and hypoxia or normoxia for 2 hours. They were monitored for an additional 4 hours following vibration/hypoxia and blood was drawn at hourly intervals for cytokine and serum biomarker analysis. Continuous physiologic and neurologic monitoring were utilized. Prior to the conclusion of the experiment, the animals underwent brain magnetic resonance imaging. At the end of the study, the brain was extracted for histologic analysis.
Results
Physiologic parameters except for peripheral capillary oxygen saturation (SpO2) were similar between all groups. The hypoxia groups demonstrated the expected decrease in SpO2 and pO2 during the hypoxic period, and this was sustained throughout the study period. The pH, pCO2 and electrolytes were similar among all groups. Neuron specific enolase was increased over time in the TBI group, however it was similar to the sham TBI group at all time points. There were no differences in IL-1β, IL-6, IL-8, TNFα, GFAP, HIF1α, syndecan-1, or S100β serum levels between groups. The mean ICP during cortical impact in the TBI group was 279.8 ± 56.2 mmHg. However, the postinjury ICP was not different between groups at any subsequent time point. Brain tissue oxygenation and perfusion were similar between all groups.
Conclusion
In this novel study evaluating the effect of vibration on short-term outcomes following TBI, we demonstrate that the moderate vibration and hypoxia simulating aeromedical evacuation do not impact short term outcomes following TBI.
Collapse
|
30
|
Grovola MR, Paleologos N, Wofford KL, Harris JP, Browne KD, Johnson V, Duda JE, Wolf JA, Cullen DK. Mossy cell hypertrophy and synaptic changes in the hilus following mild diffuse traumatic brain injury in pigs. J Neuroinflammation 2020; 17:44. [PMID: 32005260 PMCID: PMC6993507 DOI: 10.1186/s12974-020-1720-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Each year in the USA, over 2.4 million people experience mild traumatic brain injury (TBI), which can induce long-term neurological deficits. The dentate gyrus of the hippocampus is notably susceptible to damage following TBI, as hilar mossy cell changes in particular may contribute to post-TBI dysfunction. Moreover, microglial activation after TBI may play a role in hippocampal circuit and/or synaptic remodeling; however, the potential effects of chronic microglial changes are currently unknown. The objective of the current study was to assess neuropathological and neuroinflammatory changes in subregions of the dentate gyrus at acute to chronic time points following mild TBI using an established model of closed-head rotational acceleration induced TBI in pigs. METHODS This study utilized archival tissue of pigs which were subjected to sham conditions or rapid head rotation in the coronal plane to generate mild TBI. A quantitative assessment of neuropathological changes in the hippocampus was performed via immunohistochemical labeling of whole coronal tissue sections at 3 days post-injury (DPI), 7 DPI, 30 DPI, and 1 year post-injury (YPI), with a focus on mossy cell atrophy and synaptic reorganization, in context with microglial alterations (e.g., density, proximity to mossy cells) in the dentate gyrus. RESULTS There were no changes in mossy cell density between sham and injured animals, indicating no frank loss of mossy cells at the mild injury level evaluated. However, we found significant mossy cell hypertrophy at 7 DPI and 30 DPI in anterior (> 16% increase in mean cell area at each time; p = < 0.001 each) and 30 DPI in posterior (8.3% increase; p = < 0.0001) hippocampus. We also found dramatic increases in synapsin staining around mossy cells at 7 DPI in both anterior (74.7% increase in synapsin labeling; p = < 0.0001) and posterior (82.7% increase; p = < 0.0001) hippocampus. Interestingly, these morphological and synaptic alterations correlated with a significant change in microglia in proximity to mossy cells at 7 DPI in anterior and at 30 DPI in the posterior hippocampus. For broader context, while we found that there were significant increases in microglia density in the granule cell layer at 30 DPI (anterior and posterior) and 1 YPI (posterior only) and in the molecular layer at 1 YPI (anterior only), we found no significant changes in overall microglial density in the hilus at any of the time points evaluated post-injury. CONCLUSIONS The alterations of mossy cell size and synaptic inputs paired with changes in microglia density around the cells demonstrate the susceptibility of hilar mossy cells after even mild TBI. This subtle hilar mossy cell pathology may play a role in aberrant hippocampal function post-TBI, although additional studies are needed to characterize potential physiological and cognitive alterations.
Collapse
Affiliation(s)
- Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Nicholas Paleologos
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Kathryn L Wofford
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - James P Harris
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Victoria Johnson
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Wolf
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Parivash SN, Goubran M, Mills BD, Rezaii P, Thaler C, Wolman D, Bian W, Mitchell LA, Boldt B, Douglas D, Wilson EW, Choi J, Xie L, Yushkevich PA, DiGiacomo P, Wongsripuemtet J, Parekh M, Fiehler J, Do H, Lopez J, Rosenberg J, Camarillo D, Grant G, Wintermark M, Zeineh M. Longitudinal Changes in Hippocampal Subfield Volume Associated with Collegiate Football. J Neurotrauma 2019; 36:2762-2773. [PMID: 31044639 PMCID: PMC7872005 DOI: 10.1089/neu.2018.6357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Collegiate football athletes are subject to repeated traumatic brain injuriesthat may cause brain injury. The hippocampus is composed of several distinct subfields with possible differential susceptibility to injury. The aim of this study is to determine whether there are longitudinal changes in hippocampal subfield volume in collegiate football. A prospective cohort study was conducted over a 5-year period tracking 63 football and 34 volleyball male collegiate athletes. Athletes underwent high-resolution structural magnetic resonance imaging, and automated segmentation provided hippocampal subfield volumes. At baseline, football (n = 59) athletes demonstrated a smaller subiculum volume than volleyball (n = 32) athletes (-67.77 mm3; p = 0.012). A regression analysis performed within football athletes similarly demonstrated a smaller subiculum volume among those at increased concussion risk based on athlete position (p = 0.001). For the longitudinal analysis, a linear mixed-effects model assessed the interaction between sport and time, revealing a significant decrease in cornu ammonis area 1 (CA1) volume in football (n = 36) athletes without an in-study concussion compared to volleyball (n = 23) athletes (volume difference per year = -35.22 mm3; p = 0.005). This decrease in CA1 volume over time was significant when football athletes were examined in isolation from volleyball athletes (p = 0.011). Thus, this prospective, longitudinal study showed a decrease in CA1 volume over time in football athletes, in addition to baseline differences that were identified in the downstream subiculum. Hippocampal changes may be important to study in high-contact sports.
Collapse
Affiliation(s)
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, California
| | - Brian D. Mills
- Department of Radiology, Stanford University, Stanford, California
| | - Paymon Rezaii
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dylan Wolman
- Department of Radiology, Stanford University, Stanford, California
| | - Wei Bian
- Department of Radiology, Stanford University, Stanford, California
| | - Lex A. Mitchell
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, Tripler Army Medical Center, Honolulu, Hawaii
| | - Brian Boldt
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, Madigan Army Medical Center, Tacoma, Washington
| | - David Douglas
- Department of Radiology, Stanford University, Stanford, California
| | - Eugene W. Wilson
- Department of Radiology, Stanford University, Stanford, California
| | - Jay Choi
- Department of Radiology, Stanford University, Stanford, California
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phil DiGiacomo
- Department of Radiology, Stanford University, Stanford, California
| | | | - Mansi Parekh
- Department of Radiology, Stanford University, Stanford, California
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Huy Do
- Department of Radiology, Stanford University, Stanford, California
| | - Jaime Lopez
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | | | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, California
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
32
|
Hoffe B, Holahan MR. The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol 2019; 10:838. [PMID: 31354509 PMCID: PMC6635594 DOI: 10.3389/fphys.2019.00838] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer’s disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
33
|
Bolton-Hall AN, Hubbard WB, Saatman KE. Experimental Designs for Repeated Mild Traumatic Brain Injury: Challenges and Considerations. J Neurotrauma 2019; 36:1203-1221. [PMID: 30351225 PMCID: PMC6479246 DOI: 10.1089/neu.2018.6096] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mild traumatic brain injury (mild TBI) is a growing public concern, as evidence mounts that even brain injuries classified as "mild" can result in persistent neurological dysfunction. Multiple brain injuries heighten the likelihood of worsened or more prolonged symptomatology and may trigger long-term neurodegeneration. Animal models provide a logical platform to identify key parameters, such as loading forces, duration between injuries, and number of injuries, which contribute to additive or synergistic damage after repeated mild TBI. Despite the tremendous increase in research productivity in the field of repeated mild TBI, relatively few studies have been designed in such a way as to provide experimental-based insights into the dependence of cellular and functional outcomes on the prescribed parameters of mild TBI. In this review, we summarize how standard models of TBI have been adapted to produce mild TBI and highlight commonly observed aspects of neuropathology replicated in rodent models of mild TBI. The complexity of designing studies of repeated TBI is discussed, including challenges of incorporating appropriate control groups, informative experimental design, and relevant outcome measures. We then feature studies that provide a well-controlled, within-study design varying either the number of injuries or the interinjury interval. Harnessing the power of experimental models of TBI to elucidate which injury parameters are critical contributors to acute and chronic damage after repeated injury can further efforts at prevention and provide improved models for testing mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Amanda N. Bolton-Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
34
|
Ulyanova AV, Koch PF, Cottone C, Grovola MR, Adam CD, Browne KD, Weber MT, Russo RJ, Gagnon KG, Smith DH, Isaac Chen H, Johnson VE, Kacy Cullen D, Wolf JA. Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus. eNeuro 2018; 5:ENEURO.0102-18.2018. [PMID: 30229132 PMCID: PMC6142048 DOI: 10.1523/eneuro.0102-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
The hippocampus is integral to working and episodic memory and is a central region of interest in diseases affecting these processes. Pig models are widely used in translational research and may provide an excellent bridge between rodents and nonhuman primates for CNS disease models because of their gyrencephalic neuroanatomy and significant white matter composition. However, the laminar structure of the pig hippocampus has not been well characterized. Therefore, we histologically characterized the dorsal hippocampus of Yucatan miniature pigs and quantified the cytoarchitecture of the hippocampal layers. We then utilized stereotaxis combined with single-unit electrophysiological mapping to precisely place multichannel laminar silicon probes into the dorsal hippocampus without the need for image guidance. We used in vivo electrophysiological recordings of simultaneous laminar field potentials and single-unit activity in multiple layers of the dorsal hippocampus to physiologically identify and quantify these layers under anesthesia. Consistent with previous reports, we found the porcine hippocampus to have the expected archicortical laminar structure, with some anatomical and histological features comparable to the rodent and others to the primate hippocampus. Importantly, we found these distinct features to be reflected in the laminar electrophysiology. This characterization, as well as our electrophysiology-based methodology targeting the porcine hippocampal lamina combined with high-channel-count silicon probes, will allow for analysis of spike-field interactions during normal and disease states in both anesthetized and future awake behaving neurophysiology in this large animal.
Collapse
Affiliation(s)
| | - Paul F. Koch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Carlo Cottone
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael R. Grovola
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Christopher D. Adam
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Kevin D. Browne
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Maura T. Weber
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robin J. Russo
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Kimberly G. Gagnon
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Victoria E. Johnson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - D. Kacy Cullen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - John A. Wolf
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
35
|
Neuberger EJ, Gupta A, Subramanian D, Korgaonkar AA, Santhakumar V. Converging early responses to brain injury pave the road to epileptogenesis. J Neurosci Res 2017; 97:1335-1344. [PMID: 29193309 DOI: 10.1002/jnr.24202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of "acquired" epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain.
Collapse
Affiliation(s)
- Eric J Neuberger
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Akshay Gupta
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Deepak Subramanian
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Akshata A Korgaonkar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
36
|
Abstract
Mild traumatic brain injury (mTBI) frequently challenges the integrity of sleep function by affecting multiple brain areas implicated in controlling the switch between wakefulness and sleep and those involved in circadian and homeostatic processes; the malfunction of each causes a variety of disorders. In this review, we discuss recent data on the dynamics between disorders of sleep and mental/psychiatric disorders in persons with mTBI. This analysis sets the stage for understanding how a variety of physiological, emotional and environmental influences affect sleep and mental activities after injury to the brain. Consideration of the intricate links between sleep and mental functions in future research can increase understanding on the underlying mechanisms of sleep-related and psychiatric comorbidity in mTBI.
Collapse
|
37
|
Cullen DK, Harris JP, Browne KD, Wolf JA, Duda JE, Meaney DF, Margulies SS, Smith DH. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods Mol Biol 2016; 1462:289-324. [PMID: 27604725 DOI: 10.1007/978-1-4939-3816-2_17] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive non-impact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI.
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA. .,Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - James P Harris
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Kevin D Browne
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - John A Wolf
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David F Meaney
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105C Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105D Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Douglas H Smith
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|