1
|
Strigo IA, Craig ADB, Simmons AN. Expectation of pain and relief: A dynamical model of the neural basis for pain-trauma co-morbidity. Neurosci Biobehav Rev 2024; 163:105750. [PMID: 38849067 DOI: 10.1016/j.neubiorev.2024.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Posttraumatic Stress Disorder (PTSD) is highly co-morbid with chronic pain conditions. When present, PTSD significantly worsens chronic pain outcomes. Likewise, pain contributes to a more severe PTSD as evidenced by greater disability, more frequent use of harmful opioid analgesics and increased pain severity. The biomechanism behind this comorbidity is incompletely understood, however recent work strongly supports the widely-accepted role of expectation, in the entanglement of chronic pain and trauma symptoms. This work has shown that those with trauma have a maladaptive brain response while expecting stress and pain, whereas those with chronic pain may have a notable impairment in brain response while expecting pain relief. This dynamical expectation model of the interaction between neural systems underlying expectation of pain onset (traumatic stress) and pain offset (chronic pain) is biologically viable and may provide a biomechanistic insight into pain-trauma comorbidity. These predictive mechanisms work through interoceptive pathways in the brain critically the insula cortex. Here we highlight how the neural expectation-related mechanisms augment the existing models of pain and trauma to better understand the dynamics of pain and trauma comorbidity. These ideas will point to targeted complementary clinical approaches, based on mechanistically separable neural biophenotypes for the entanglement of chronic pain and trauma symptoms.
Collapse
Affiliation(s)
- Irina A Strigo
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Health Care Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Psychiatry, University of California San Francisco, 401 Parnassus Ave, San Francisco, CA 94143, USA.
| | | | - Alan N Simmons
- Center of Excellence in Stress and Mental Health, San Diego Veterans Affairs Health Care Center, 3350 La Jolla Village Dr, San Diego, CA 92161, USA; Stress and Neuroimaging Laboratory, San Diego Veterans Affairs Health Care Center, 3350 La Jolla Village Drive, MC 151-B, San Diego, CA 92161, USA; Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Strigo IA, Kadlec M, Mitchell JM, Simmons AN. Identification of group differences in predictive anticipatory biasing of pain during uncertainty: preparing for the worst but hoping for the best. Pain 2024; 165:1735-1747. [PMID: 38501988 PMCID: PMC11247452 DOI: 10.1097/j.pain.0000000000003207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT Pain anticipation during conditions of uncertainty can unveil intrinsic biases, and understanding these biases can guide pain treatment interventions. This study used machine learning and functional magnetic resonance imaging to predict anticipatory responses in a pain anticipation experiment. One hundred forty-seven participants that included healthy controls (n = 57) and individuals with current and/or past mental health diagnosis (n = 90) received cues indicating upcoming pain stimuli: 2 cues predicted high and low temperatures, while a third cue introduced uncertainty. Accurate differentiation of neural patterns associated with specific anticipatory conditions was observed, involving activation in the anterior short gyrus of the insula and the nucleus accumbens. Three distinct response profiles emerged: subjects with a negative bias towards high pain anticipation, those with a positive bias towards low pain anticipation, and individuals whose predictions during uncertainty were unbiased. These profiles remained stable over one year, were consistent across diagnosed psychopathologies, and correlated with cognitive coping styles and underlying insula anatomy. The findings suggest that individualized and stable pain anticipation occurs in uncertain conditions.
Collapse
Affiliation(s)
- Irina A. Strigo
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Health Care Center, San Francisco, CA, United States
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Molly Kadlec
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Health Care Center, San Francisco, CA, United States
| | - Jennifer M. Mitchell
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Alan N. Simmons
- San Diego Veterans Affairs Health Care Center, San Diego, CA, United States
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Boyko M, Gruenbaum BF, Oleshko A, Merzlikin I, Zlotnik A. Diet's Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood-Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients 2023; 15:4681. [PMID: 37960334 PMCID: PMC10649677 DOI: 10.3390/nu15214681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) has a profound impact on cognitive and mental functioning, leading to lifelong impairment and significantly diminishing the quality of life for affected individuals. A healthy blood-brain barrier (BBB) plays a crucial role in guarding the brain against elevated levels of blood glutamate, making its permeability a vital aspect of glutamate regulation within the brain. Studies have shown the efficacy of reducing excess glutamate in the brain as a treatment for post-TBI depression, anxiety, and aggression. The purpose of this article is to evaluate the involvement of dietary glutamate in the development of depression after TBI. We performed a literature search to examine the effects of diets abundant in glutamate, which are common in Asian populations, when compared to diets low in glutamate, which are prevalent in Europe and America. We specifically explored these effects in the context of chronic BBB damage after TBI, which may initiate neurodegeneration and subsequently have an impact on depression through the mechanism of chronic glutamate neurotoxicity. A glutamate-rich diet leads to increased blood glutamate levels when contrasted with a glutamate-poor diet. Within the context of chronic BBB disruption, elevated blood glutamate levels translate to heightened brain glutamate concentrations, thereby intensifying neurodegeneration due to glutamate neurotoxicity.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Igor Merzlikin
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
4
|
Traumatic Life Experience and Pain Sensitization: Meta-analysis of Laboratory Findings. Clin J Pain 2023; 39:15-28. [PMID: 36524769 DOI: 10.1097/ajp.0000000000001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Psychological trauma often co-occurs with pain. This relationship has been explored using laboratory pain measures; however, findings have been mixed. Previous studies have limited operationalization of trauma (eg, posttraumatic stress disorder) or pain (eg, pain thresholds), which may contribute to conflicting results. Further, prior reviews likely underrepresent trauma experiences among people who are not receiving clinical care, limiting generalizability. MATERIALS AND METHODS We systematically reviewed the existing literature on the relationship between psychological trauma (eg, car accidents, sexual assault, childhood abuse, neglect) and laboratory pain (ie, quantitative sensory testing measures of pain threshold, intensity, summation, modulation), using inclusive criteria. The direction of the relationship between psychological trauma and pain sensitivity was evaluated, and moderation by purported pain mechanism (ie, pain detection, suprathreshold pain, central sensitization, inhibition) was explored. RESULTS Analyses were conducted using 48 studies that provided 147 effect sizes. A multivariate random-effects model with robust variance estimation resulted in a small but statistically significant overall effect size of g=0.24 (P=0.0002), reflecting a positive association between psychological trauma and enhanced laboratory pain sensitivity. Upon examination of mechanistic moderators, this relationship appears driven by effects on pain detection (g=0.28, P=0.002) and central sensitization (g=0.22, P=0.04). While effect sizes were similar across all moderators, effects on suprathreshold pain and inhibition were not statistically significant. DISCUSSION Findings demonstrate an overall pattern of trauma-related pain enhancement and point to central sensitization as a key underlying mechanism.
Collapse
|
5
|
Strigo IA, Spadoni AD, Simmons AN. Understanding Pain and Trauma Symptoms in Veterans From Resting-State Connectivity: Unsupervised Modeling. FRONTIERS IN PAIN RESEARCH 2022; 3:871961. [PMID: 35620636 PMCID: PMC9127988 DOI: 10.3389/fpain.2022.871961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023] Open
Abstract
Trauma and posttraumatic stress are highly comorbid with chronic pain and are often antecedents to developing chronic pain conditions. Pain and trauma are associated with greater utilization of medical services, greater use of psychiatric medication, and increased total cost of treatment. Despite the high overlap in the clinic, the neural mechanisms of pain and trauma are often studied separately. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) scans were completed among a diagnostically heterogeneous sample of veterans with a range of back pain and trauma symptoms. Using Group Iterative Multiple Model Estimation (GIMME), an effective functional connectivity analysis, we explored an unsupervised model deriving subgroups based on path similarity in a priori defined regions of interest (ROIs) from brain regions implicated in the experience of pain and trauma. Three subgroups were identified by patterns in functional connection and differed significantly on several psychological measures despite similar demographic and diagnostic characteristics. The first subgroup was highly connected overall, was characterized by functional connectivity from the nucleus accumbens (NAc), the anterior cingulate cortex (ACC), and the posterior cingulate cortex (PCC) to the insula and scored low on pain and trauma symptoms. The second subgroup did not significantly differ from the first subgroup on pain and trauma measures but was characterized by functional connectivity from the ACC and NAc to the thalamus and from ACC to PCC. The third subgroup was characterized by functional connectivity from the thalamus and PCC to NAc and scored high on pain and trauma symptoms. Our results suggest that, despite demographic and diagnostic similarities, there may be neurobiologically dissociable biotypes with different mechanisms for managing pain and trauma. These findings may have implications for the determination of appropriate biotype-specific interventions that target these neurological systems.
Collapse
Affiliation(s)
- Irina A. Strigo
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Health Care Center, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Andrea D. Spadoni
- Stress and Neuroimaging Laboratory, San Diego Veterans Affairs Health Care Center, San Francisco, CA, United States
- Center of Excellence in Stress and Mental Health, San Diego Veterans Affairs Health Care Center, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Stress and Neuroimaging Laboratory, San Diego Veterans Affairs Health Care Center, San Francisco, CA, United States
- Center of Excellence in Stress and Mental Health, San Diego Veterans Affairs Health Care Center, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Hellewell SC, Beaton CS, Welton T, Grieve SM. Characterizing the Risk of Depression Following Mild Traumatic Brain Injury: A Meta-Analysis of the Literature Comparing Chronic mTBI to Non-mTBI Populations. Front Neurol 2020; 11:350. [PMID: 32508733 PMCID: PMC7248359 DOI: 10.3389/fneur.2020.00350] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Mild traumatic brain injury (mTBI) is associated with depressed mood acutely post-injury, but there is little evidence regarding long-term depression. The aim of this study was to determine the odds ratio (OR) of depression chronically following mTBI. Methods: We searched Medline (PubMed), ProQuest, and Web of Science from date of database creation to January 23, 2019, for eligible studies examining depression at least 6 months post-injury in adult subjects with mTBI of any etiology, including civilians and military. Three authors independently reviewed titles and abstracts for study eligibility. Data were extracted and collated by two investigators. Risk of bias was assessed with the SIGN methodology. Study data were pooled using random-effects meta-analysis. The primary exposure was mTBI, and the primary outcome was depression. Secondary exploratory variables were time of assessment, age at injury, age at assessment, sex, and etiology. Results: We included 47 cross-sectional studies (n = 25,103 mTBI and 29,982 control), 26 cohort studies (n = 70,119 mTBI, 262,034 control), four prospective observational studies (n = 1,058 mTBI and 733 control), two prospective longitudinal studies (n = 119 mTBI, 81 control), two case-control studies (n = 56 mTBI, 56 control), and one randomized controlled trial (n = 252 mTBI, 3,214 control). mTBI was associated with a 3.29-fold increased risk of depression (OR 3.29, 95% CI 2.68–4.03, I2 = 96%). The OR for depression did not change when subjects were assessed at 6–12 months (OR 2.43, 1.45–4.07), years 1–2 (OR 4.12, 2.10–8.07); 2–10 (OR 3.28, 2.42–4.46), or 10+ (OR 3.42, 1.51–7.77). Similar risk of depression was sustained across different age at injury (<25: OR 2.26, 1.82–2.81; 25–35: OR 4.67, 3.06–7.14; >35: OR 2.69, 1.42–5.10) and different age at assessment (<40 years: OR 3.14, 2.48–3.99; >40 years: OR 4.57, 2.54–8.24). Female sex had a non-significant increase in OR (OR 19.97, 2.39–166.93) compared to male (OR 3.0, 2.33–3.86). mTBI etiology had no impact on depression. Conclusions: Those experiencing mTBI are more than three times more likely to experience depression compared to those without a history of mTBI, and this risk remains decades beyond the mTBI event. Future longitudinal studies are needed to identify and mitigate this risk.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Caerwen S Beaton
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Thomas Welton
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ofoghi Z, Dewey D, Barlow KM. A Systematic Review of Structural and Functional Imaging Correlates of Headache or Pain after Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:907-923. [DOI: 10.1089/neu.2019.6750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Zahra Ofoghi
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen M. Barlow
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Paediatric Neurology Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Lahav Y, Solomon Z, Siegel A, Tsur N, Defrin R. Punishing the Self: Post-Traumatic Guilt Mediates the Link Between Trauma and Deficient Pain Modulation. THE JOURNAL OF PAIN 2019; 21:364-374. [PMID: 31401209 DOI: 10.1016/j.jpain.2019.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/23/2019] [Accepted: 07/31/2019] [Indexed: 11/25/2022]
Abstract
Trauma survivors may suffer from post-traumatic stress disorder (PTSD), elevated post-traumatic guilt (PG), and alterations in the pain system. However, the association between PG and alterations in pain perception and modulation among trauma survivors has not been established, nor has the possible underlying role of PG. This longitudinal study investigated: 1) the unique contribution of PG in predicting pain perception and modulation, while controlling for PTSD symptoms; and 2) the mediating role of PG in explaining pain perception and modulation among torture survivors, above and beyond PTSD symptoms. Participants were 59 torture survivors and 44 age-matched controls. PG and PTSD symptoms were assessed in 2003 (T1). Heat-pain threshold, heat-pain tolerance, temporal summation of pain (TSP), and conditioned pain modulation (CPM) were measured 5 years later (T2). Torture survivors had elevated PG and PTSD symptoms, enhanced TSP, and reduced CPM, compared to controls. While PTSD predicted reduced pain tolerance and CPM, PG predicted increased pain tolerance. Moreover, PG mediated the associations between torture and (increased) pain threshold, pain tolerance, and TSP. It appears that PTSD and PG induce opposite effects on the pain modulation capacity of torture survivors, a dichotomy that may explain paradoxical pain responses among trauma survivors, as discussed. PERSPECTIVE: This longitudinal study sheds light on the possible mechanisms underlying variations in pain perception and modulation among trauma survivors. PTSD and PG each mediated opposing pain modulation profiles, suggesting that individual responses to trauma, rather than the trauma itself, influence pain responses.
Collapse
Affiliation(s)
- Yael Lahav
- I-Core Research Center for Mass Trauma, Tel-Aviv University, Tel-Aviv, Israel.
| | - Zahava Solomon
- I-Core Research Center for Mass Trauma, Tel-Aviv University, Tel-Aviv, Israel; Bob Shapell School of Social Work, Tel-Aviv University, Tel-Aviv, Israel
| | - Alana Siegel
- I-Core Research Center for Mass Trauma, Tel-Aviv University, Tel-Aviv, Israel; Bob Shapell School of Social Work, Tel-Aviv University, Tel-Aviv, Israel
| | - Noga Tsur
- I-Core Research Center for Mass Trauma, Tel-Aviv University, Tel-Aviv, Israel; Bob Shapell School of Social Work, Tel-Aviv University, Tel-Aviv, Israel
| | - Ruth Defrin
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
McKernan LC, Johnson BN, Crofford LJ, Lumley MA, Bruehl S, Cheavens JS. Posttraumatic Stress Symptoms Mediate the Effects of Trauma Exposure on Clinical Indicators of Central Sensitization in Patients With Chronic Pain. Clin J Pain 2019; 35:385-393. [PMID: 30730446 PMCID: PMC6450707 DOI: 10.1097/ajp.0000000000000689] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Evidence supports high rates of co-occurrence of posttraumatic stress disorder (PTSD) and chronic pain disorders involving central sensitization (CS). The nature of this relationship, however, remains relatively unexplored. In this study, we aimed to (1) assess how both trauma exposure and current PTSD symptoms are related to clinical manifestations of CS, and (2) test whether PTSD symptoms explain the relationship between trauma exposure and CS. Because experiential avoidance has been shown to impact the relationship between trauma and health outcomes, we (3) explored experiential avoidance as a possible mediator or moderator of the trauma-CS relationship. METHODS A sample of 202 adult patients (79% female) with chronic pain completed validated self-report measures of trauma exposure, current PTSD symptoms, experiential avoidance, and 3 manifestations of CS: widespread pain, greater pain severity, and polysomatic symptom reporting. We used path analysis and multivariate regression to assess our study aims. RESULTS Both trauma exposure and PTSD symptoms were significantly associated with all 3 clinical indicators of CS. PTSD symptoms partially explained the relationship between trauma exposure and widespread pain, pain intensity, and polysomatic symptoms. Experiential avoidance did not mediate or moderate the trauma-CS relationship. CONCLUSIONS Our findings suggest that trauma exposure is linked to elevated clinical markers of CS but a critical factor in this relationship is the mediating effect of current PTSD symptoms.
Collapse
Affiliation(s)
- Lindsey C. McKernan
- Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center
| | | | | | | | - Stephen Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center
| | | |
Collapse
|