1
|
Navaseelan L, Retinasamy T, Shaikh MF, Arulsamy A. High Mobility Group Box-1 (HMGB1), a Key Mediator of Cognitive Decline in Neurotrauma with a Potential for Targeted Therapy: A Comprehensive Review. FRONT BIOSCI-LANDMRK 2024; 29:322. [PMID: 39344324 DOI: 10.31083/j.fbl2909322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024]
Abstract
Neurotrauma plays a significant role in secondary injuries by intensifying the neuroinflammatory response in the brain. High Mobility Group Box-1 (HMGB1) protein is a crucial neuroinflammatory mediator involved in this process. Numerous studies have hypothesized about the underlying pathophysiology of HMGB1 and its role in cognition, but a definitive link has yet to be established. Elevated levels of HMGB1 in the hippocampus and serum have been associated with declines in cognitive performance, particularly in spatial memory and learning. This review also found that inhibiting HMGB1 can improve cognitive deficits following neurotrauma. Interestingly, HMGB1 levels are linked to the modulation of neuroplasticity and may offer neuroprotective effects in the later stages of neurotraumatic events. Consequently, administering HMGB1 during the acute phase may help reduce neuroinflammatory effects that lead to cognitive deficits in the later stages of neurotrauma. However, further research is needed to understand the time-dependent regulation of HMGB1 and the clinical implications of treatments targeting HMGB1 after neurotrauma.
Collapse
Affiliation(s)
- Locshiny Navaseelan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Morais A, Chung JY, Wu L, Ayata C, Simon B, Whalen MJ. Non-Invasive Vagal Nerve Stimulation Pre-Treatment Reduces Neurological Dysfunction After Closed Head Injury in Mice. Neurotrauma Rep 2024; 5:150-158. [PMID: 38435077 PMCID: PMC10908330 DOI: 10.1089/neur.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice. We show that nVNS pre-treatment suppresses CHI-associated spatial learning and memory impairment and prevents IL-1β activation in injured neurons, but not endothelial cells. In contrast, nVNS administered 10 min after CHI was ineffective. These data suggest that nVNS prophylaxis might ameliorate neuronal dysfunction associated with CHI in populations at high risk for concussive TBI.
Collapse
Affiliation(s)
- Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joon Yong Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bruce Simon
- ElectroCore, Inc., Basking Ridge, New Jersey, USA
| | - Michael J. Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
3
|
Liang Y, Wang Y, Sun C, Xiang Y, Deng Y. Deferoxamine reduces endothelial ferroptosis and protects cerebrovascular function after experimental traumatic brain injury. Brain Res Bull 2024; 207:110878. [PMID: 38218407 DOI: 10.1016/j.brainresbull.2024.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Cerebrovascular dysfunction resulting from traumatic brain injury (TBI) significantly contributes to poor patient outcomes. Recent studies revealed the involvement of iron metabolism in neuronal survival, yet its effect on vasculature remains unclear. This study aims to explore the impact of endothelial ferroptosis on cerebrovascular function in TBI. A Controlled Cortical Impact (CCI) model was established in mice, resulting in a significant increase in iron-related proteins such as TfR1, FPN1, and FTH, as well as oxidative stress biomarker 4HNE. This was accompanied by a decline in expression of the ferroptosis inhibitor GPX4. Moreover, Perls' staining and nonhemin iron content assay showed iron overload in brain microvascular endothelial cells (BMECs) and the ipsilateral cortex. Immunofluorescence staining revealed more FTH-positive cerebral endothelial cells, consistent with impaired perfusion vessel density and cerebral blood flow. As a specific iron chelator, deferoxamine (DFO) treatment inhibited such ferroptotic proteins expression and the accumulation of lipid-reactive oxygen species following CCI, enhancing glutathione peroxidase (GPx) activity. DFO treatment significantly reduced iron deposition in BMECs and brain tissue, and increased density of the cerebral capillaries as well. Consequently, DFO treatment led to improvements in cerebral blood flow (as measured by laser speckle imaging) and behavioral performance (as measured by the neurological severity scores, rotarod test, and Morris water maze test). Taken together, our results indicated that TBI induces remarkable iron disorder and endothelial ferroptosis, and DFO treatment may help maintain iron homeostasis and protect vascular function. This may provide a novel therapeutic strategy to prevent cerebrovascular dysfunction following TBI.
Collapse
Affiliation(s)
- Yidan Liang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yanglingxi Wang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Chao Sun
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yi Xiang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
4
|
Vincent JC, Garnett CN, Watson JB, Higgins EK, Macheda T, Sanders L, Roberts KN, Shahidehpour RK, Blalock EM, Quan N, Bachstetter AD. IL-1R1 signaling in TBI: assessing chronic impacts and neuroinflammatory dynamics in a mouse model of mild closed-head injury. J Neuroinflammation 2023; 20:248. [PMID: 37884959 PMCID: PMC10601112 DOI: 10.1186/s12974-023-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Neuroinflammation contributes to secondary injury cascades following traumatic brain injury (TBI), with alternating waves of inflammation and resolution. Interleukin-1 (IL-1), a critical neuroinflammatory mediator originating from brain endothelial cells, microglia, astrocytes, and peripheral immune cells, is acutely overexpressed after TBI, propagating secondary injury and tissue damage. IL-1 affects blood-brain barrier permeability, immune cell activation, and neural plasticity. Despite the complexity of cytokine signaling post-TBI, we hypothesize that IL-1 signaling specifically regulates neuroinflammatory response components. Using a closed-head injury (CHI) TBI model, we investigated IL-1's role in the neuroinflammatory cascade with a new global knock-out (gKO) mouse model of the IL-1 receptor (IL-1R1), which efficiently eliminates all IL-1 signaling. We found that IL-1R1 gKO attenuated behavioral impairments 14 weeks post-injury and reduced reactive microglia and astrocyte staining in the neocortex, corpus callosum, and hippocampus. We then examined whether IL-1R1 loss altered acute neuroinflammatory dynamics, measuring gene expression changes in the neocortex at 3, 9, 24, and 72 h post-CHI using the NanoString Neuroinflammatory panel. Of 757 analyzed genes, IL-1R1 signaling showed temporal specificity in neuroinflammatory gene regulation, with major effects at 9 h post-CHI. IL-1R1 signaling specifically affected astrocyte-related genes, selectively upregulating chemokines like Ccl2, Ccl3, and Ccl4, while having limited impact on cytokine regulation, such as Tnfα. This study provides further insight into IL-1R1 function in amplifying the neuroinflammatory cascade following CHI in mice and demonstrates that suppression of IL-1R1 signaling offers long-term protective effects on brain health.
Collapse
Affiliation(s)
- Jonathan C Vincent
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- MD/PhD Program, University of Kentucky, Lexington, KY, USA
| | - Colleen N Garnett
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James B Watson
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Emma K Higgins
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Teresa Macheda
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Lydia Sanders
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Kelly N Roberts
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Ryan K Shahidehpour
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adam D Bachstetter
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Lindblad C, Rostami E, Helmy A. Interleukin-1 Receptor Antagonist as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1508-1528. [PMID: 37610701 PMCID: PMC10684479 DOI: 10.1007/s13311-023-01421-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury is a common type of acquired brain injury of varying severity carrying potentially deleterious consequences for the afflicted individuals, families, and society. Following the initial, traumatically induced insult, cellular injury processes ensue. These are believed to be amenable to treatment. Among such injuries, neuroinflammation has gained interest and has become a specific focus for both experimental and clinical researchers. Neuroinflammation is elicited almost immediately following trauma, and extend for a long time, possibly for years, after the primary injury. In the acute phase, the inflammatory response is characterized by innate mechanisms such as the activation of microglia which among else mediates cytokine production. Among the earliest cytokines to emerge are the interleukin- (IL-) 1 family members, comprising, for example, the agonist IL-1β and its competitive antagonist, IL-1 receptor antagonist (IL-1ra). Because of its early emergence following trauma and its increased concentrations also after human TBI, IL-1 has been hypothesized to be a tractable treatment target following TBI. Ample experimental data supports this, and demonstrates restored neurological behavior, diminished lesion zones, and an attenuated inflammatory response following IL-1 modulation either through IL-1 knock-out experiments, IL-1β inhibition, or IL-1ra treatment. Of these, IL-1ra treatment is likely the most physiological. In addition, recombinant human IL-1ra (anakinra) is already approved for utilization across a few rheumatologic disorders. As of today, one randomized clinical controlled trial has utilized IL-1ra inhibition as an intervention and demonstrated its safety. Further clinical trials powered for patient outcome are needed in order to demonstrate efficacy. In this review, we summarize IL-1 biology in relation to acute neuroinflammatory processes following TBI with a particular focus on current evidence for IL-1ra treatment both in the experimental and clinical context.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Elham Rostami
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, entrance 85 floor 2, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Pu H, Wang Y, Yang T, Leak RK, Stetler RA, Yu F, Zhang W, Shi Y, Hu X, Yin KJ, Hitchens TK, Dixon CE, Bennett MVL, Chen J. Interleukin-4 mitigates anxiety-like behavior and loss of neurons and fiber tracts in limbic structures in a microglial PPARγ-dependent manner after traumatic brain injury. Neurobiol Dis 2023; 180:106078. [PMID: 36914076 DOI: 10.1016/j.nbd.2023.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Traumatic brain injury (TBI) is commonly followed by intractable psychiatric disorders and long-term changes in affect, such as anxiety. The present study sought to investigate the effect of repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles on affective symptoms after TBI in mice. Adult male C57BL/6 J mice (10-12 weeks of age) were subjected to controlled cortical impact (CCI) and assessed by a battery of neurobehavioral tests up to 35 days after CCI. Neuron numbers were counted in multiple limbic structures, and the integrity of limbic white matter tracts was evaluated using ex vivo diffusion tensor imaging (DTI). As STAT6 is a critical mediator of IL-4-specific transcriptional activation, STAT6 knockout mice were used to explore the role of endogenous IL-4/STAT6 signaling axis in TBI-induced affective disorders. We also employed microglia/macrophage (Mi/Mϕ)-specific PPARγ conditional knockout (mKO) mice to test if Mi/Mϕ PPARγ critically contributes to IL-4-afforded beneficial effects. We observed anxiety-like behaviors up to 35 days after CCI, and these measures were exacerbated in STAT6 KO mice but mitigated by repetitive IL-4 delivery. We discovered that IL-4 protected against neuronal loss in limbic structures, such as the hippocampus and the amygdala, and improved the structural integrity of fiber tracts connecting the hippocampus and amygdala. We also observed that IL-4 boosted a beneficial Mi/Mϕ phenotype (CD206+/Arginase 1+/PPARγ+ triple-positive) in the subacute injury phase, and that the numbers of Mi/Mϕ appositions with neurons were robustly correlated with long-term behavioral performances. Remarkably, PPARγ-mKO completely abolished IL-4-afforded protection. Thus, CCI induces long-term anxiety-like behaviors in mice, but these changes in affect can be attenuated by transnasal IL-4 delivery. IL-4 prevents the long-term loss of neuronal somata and fiber tracts in key limbic structures, perhaps due to a shift in Mi/Mϕ phenotype. Exogenous IL-4 therefore holds promise for future clinical management of mood disturbances following TBI.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yangfan Wang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - R Anne Stetler
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wenting Zhang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15203, USA
| | - C Edward Dixon
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Mosley N, Chung JY, Jin G, Franceschini MA, Whalen MJ, Chung DY. Cortical Spreading Depolarization, Blood Flow, and Cognitive Outcomes in a Closed Head Injury Mouse Model of Traumatic Brain Injury. Neurocrit Care 2022; 37:102-111. [PMID: 35378664 PMCID: PMC9262867 DOI: 10.1007/s12028-022-01474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cortical spreading depolarizations (CSDs) are associated with worse outcomes in many forms of acute brain injury, including traumatic brain injury (TBI). Animal models could be helpful in developing new therapies or biomarkers to improve outcomes in survivors of TBI. Recently, investigators have observed CSDs in murine models of mild closed head injury (CHI). We designed the currently study to determine additional experimental conditions under which CSDs can be observed, from mild to relatively more severe TBI. METHODS Adult male C57Bl/6J mice (8-14 weeks old) were anesthetized with isoflurane and subjected to CHI with an 81-g weight drop from 152 or 183 cm. CSDs were detected with minimally invasive visible light optical intrinsic signal imaging. Cerebral blood flow index (CBFi) was measured in the 152-cm drop height cohort using diffuse correlation spectroscopy at baseline before and 4 min after CHI. Cognitive outcomes were assessed at 152- and 183-cm drop heights for the Morris water maze hidden platform, probe, and visible platform tests. RESULTS CSDs occurred in 43% (n = 12 of 28) of 152-cm and 58% (n = 15 of 26) of 183-cm drop height CHI mice (p = 0.28). A lower baseline preinjury CBFi was associated with development of CSDs in CHI mice (1.50 ± 0.07 × 10-7 CHI without CSD [CSD-] vs. 1.17 ± 0.04 × 10-7 CHI with CSD [CSD+], p = 0.0001). Furthermore, in CHI mice that developed CSDs, the ratio of post-CHI to pre-CHI CBFi was lower in the hemisphere ipsilateral to a CSD compared with non-CSD hemispheres (0.19 ± 0.07 less in the CSD hemisphere, p = 0.028). At a 152-cm drop height, there were no detectable differences between sham injured (n = 10), CHI CSD+ (n = 12), and CHI CSD- (n = 16) mice on Morris water maze testing at 4 weeks. At a 183-cm drop height, CHI CSD+ mice had worse performance on the hidden platform test at 1-2 weeks versus sham mice (n = 15 CHI CSD+, n = 9 sham, p = 0.045), but there was no appreciable differences compared with CHI CSD- mice (n = 11 CHI CSD-). CONCLUSIONS The data suggest that a lower baseline cerebral blood flow prior to injury may contribute to the occurrence of a CSD. Furthermore, a CSD at the time of injury can be associated with worse cognitive outcome under the appropriate experimental conditions in a mouse CHI model of TBI.
Collapse
Affiliation(s)
- Nathaniel Mosley
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon Y Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gina Jin
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA.
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Role of Inflammation in Traumatic Brain Injury-Associated Risk for Neuropsychiatric Disorders: State of the Evidence and Where Do We Go From Here. Biol Psychiatry 2022; 91:438-448. [PMID: 34955170 DOI: 10.1016/j.biopsych.2021.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, there has been an increasing awareness that traumatic brain injury (TBI) and concussion substantially increase the risk for developing psychiatric disorders. Even mild TBI increases the risk for depression and anxiety disorders such as posttraumatic stress disorder by two- to threefold, predisposing patients to further functional impairment. This strong epidemiological link supports examination of potential mechanisms driving neuropsychiatric symptom development after TBI. One potential mechanism for increased neuropsychiatric symptoms after TBI is via inflammatory processes, as central nervous system inflammation can last years after initial injury. There is emerging preliminary evidence that TBI patients with posttraumatic stress disorder or depression exhibit increased central and peripheral inflammatory markers compared with TBI patients without these comorbidities. Growing evidence has demonstrated that immune signaling in animals plays an integral role in depressive- and anxiety-like behaviors after severe stress or brain injury. In this review, we will 1) discuss current evidence for chronic inflammation after TBI in the development of neuropsychiatric symptoms, 2) highlight potential microglial activation and cytokine signaling contributions, and 3) discuss potential promise and pitfalls for immune-targeted interventions and biomarker strategies to identify and treat TBI patients with immune-related neuropsychiatric symptoms.
Collapse
|
9
|
The Therapeutic Prospects of Targeting IL-1R1 for the Modulation of Neuroinflammation in Central Nervous System Disorders. Int J Mol Sci 2022; 23:ijms23031731. [PMID: 35163653 PMCID: PMC8915186 DOI: 10.3390/ijms23031731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
The interleukin-1 receptor type 1 (IL-1R1) holds pivotal roles in the immune system, as it is positioned at the “epicenter” of the inflammatory signaling networks. Increased levels of the cytokine IL-1 are a recognized feature of the immune response in the central nervous system (CNS) during injury and disease, i.e., neuroinflammation. Despite IL-1/IL-1R1 signaling within the CNS having been the subject of several studies, the roles of IL-1R1 in the CNS cellular milieu still cause controversy. Without much doubt, however, the persistent activation of the IL-1/IL-1R1 signaling pathway is intimately linked with the pathogenesis of a plethora of CNS disease states, ranging from Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), all the way to schizophrenia and prion diseases. Importantly, a growing body of evidence is showing that blocking IL-1R1 signaling via pharmacological or genetic means in different experimental models of said CNS diseases leads to reduced neuroinflammation and delayed disease progression. The aim of this paper is to review the recent progress in the study of the biological roles of IL-1R1, as well as to highlight key aspects that render IL-1R1 a promising target for the development of novel disease-modifying treatments for multiple CNS indications.
Collapse
|
10
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
11
|
Wu L, Chung JY, Cao T, Jin G, Edmiston WJ, Hickman S, Levy ES, Whalen JA, Abrams ESL, Degterev A, Lo EH, Tozzi L, Kaplan DL, El Khoury J, Whalen MJ. Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 2021; 12:1064. [PMID: 34753914 PMCID: PMC8578385 DOI: 10.1038/s41419-021-04333-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL-/-) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3-/- and MLKL-/- mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3-/-, but not MLKL-/- mice, were protected against postinjury motor and cognitive deficits at 1-4 weeks (RIPK3-/- vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3-/- mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24-48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.
Collapse
Affiliation(s)
- Limin Wu
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Joon Yong Chung
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tian Cao
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.13291.380000 0001 0807 1581Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Gina Jin
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - William J. Edmiston
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Suzanne Hickman
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Emily S. Levy
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordyn A. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eliza Sophie LaRovere Abrams
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alexei Degterev
- grid.67033.310000 0000 8934 4045Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA USA
| | - Eng H. Lo
- grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Lorenzo Tozzi
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - David L. Kaplan
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Joseph El Khoury
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Michael J. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
12
|
Wu L, Islam MR, Lee J, Takase H, Guo S, Andrews AM, Buzhdygan TP, Mathew J, Li W, Arai K, Lo EH, Ramirez SH, Lok J. ErbB3 is a critical regulator of cytoskeletal dynamics in brain microvascular endothelial cells: Implications for vascular remodeling and blood brain barrier modulation. J Cereb Blood Flow Metab 2021; 41:2242-2255. [PMID: 33583260 PMCID: PMC8393293 DOI: 10.1177/0271678x20984976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuregulin (NRG)1 - ErbB receptor signaling has been shown to play an important role in the biological function of peripheral microvascular endothelial cells. However, little is known about how NRG1/ErbB signaling impacts brain endothelial function and blood-brain barrier (BBB) properties. NRG1/ErbB pathways are affected by brain injury; when brain trauma was induced in mice in a controlled cortical impact model, endothelial ErbB3 gene expression was reduced to a greater extent than that of other NRG1 receptors. This finding suggests that ErbB3-mediated processes may be significantly compromised after injury, and that an understanding of ErbB3 function would be important in the of study of endothelial biology in the healthy and injured brain. Towards this goal, cultured brain microvascular endothelial cells were transfected with siRNA to ErbB3, resulting in alterations in F-actin organization and microtubule assembly, cell morphology, migration and angiogenic processes. Importantly, a significant increase in barrier permeability was observed when ErbB3 was downregulated, suggesting ErbB3 involvement in BBB regulation. Overall, these results indicate that neuregulin-1/ErbB3 signaling is intricately connected with the cytoskeletal processes of the brain endothelium and contributes to morphological and angiogenic changes as well as to BBB integrity.
Collapse
Affiliation(s)
- Limin Wu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Mohammad R Islam
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Janice Lee
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Allison M Andrews
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, USA
| | - Tetyana P Buzhdygan
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, USA
| | - Justin Mathew
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.,Department of Radiology, Massachusetts General Hospital, Boston, USA.,Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Servio H Ramirez
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, USA.,The Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.,Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
13
|
Cheng C, Wang X, Jiang Y, Li Y, Liao Z, Li W, Yu Z, Whalen MJ, Lok J, Dumont AS, Liu N, Wang X. Recombinant Annexin A2 Administration Improves Neurological Outcomes After Traumatic Brain Injury in Mice. Front Pharmacol 2021; 12:708469. [PMID: 34400908 PMCID: PMC8363504 DOI: 10.3389/fphar.2021.708469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Microvascular failure is one of the key pathogenic factors in the dynamic pathological evolution after traumatic brain injury (TBI). Our laboratory and others previously reported that Annexin A2 functions in blood-brain barrier (BBB) development and cerebral angiogenesis, and recombinant human Annexin A2 (rA2) protected against hypoxia plus IL-1β-induced cerebral trans-endothelial permeability in vitro, and cerebral angiogenesis impairment of AXNA2 knock-out mice in vivo. We thereby hypothesized that ANXA2 might be a cerebrovascular therapy candidate that targets early BBB integrity disruption, and subacute/delayed cerebrovascular remodeling after TBI, ultimately improve neurological outcomes. In a controlled cortex impact (CCI) mice model, we found rA2 treatment (1 mg/kg) significantly reduced early BBB disruption at 24 h after TBI; and rA2 daily treatment for 7 days augmented TBI-induced mRNA levels of pro-angiogenic and endothelial-derived trophic factors in cerebral microvessels. In cultured human brain microvascular endothelial cells (HBMEC), through MAPKs array, we identified that rA2 significantly activated Akt, ERK, and CREB, and the activated CREB might be responsible for the rA2-induced VEGF and BDNF expression. Moreover, rA2 administration significantly increased cerebral angiogenesis examined at 14 days and vessel density at 28 days after TBI in mice. Consistently, our results validated that rA2 significantly induced angiogenesis in vitro, evidenced by tube formation and scratched migration assays in HBMEC. Lastly, we demonstrated that rA2 improved long-term sensorimotor and cognitive function, and reduced brain tissue loss at 28 days after TBI. Our findings suggest that rA2 might be a novel vascular targeting approach for treating TBI.
Collapse
Affiliation(s)
- Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Xiaoshu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Wenlu Li
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Michael J Whalen
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
14
|
Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1. Front Immunol 2021; 12:688254. [PMID: 34093593 PMCID: PMC8176952 DOI: 10.3389/fimmu.2021.688254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - James B. Watson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Hubbard WB, Banerjee M, Vekaria H, Prakhya KS, Joshi S, Wang QJ, Saatman KE, Whiteheart SW, Sullivan PG. Differential Leukocyte and Platelet Profiles in Distinct Models of Traumatic Brain Injury. Cells 2021; 10:cells10030500. [PMID: 33652745 PMCID: PMC7996744 DOI: 10.3390/cells10030500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood–brain barrier (BBB) dysfunction and blood–brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.
Collapse
Affiliation(s)
- William Brad Hubbard
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
| | | | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Sidney W. Whiteheart
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA; (M.B.); (K.S.P.); (S.J.)
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (W.B.H.); (H.V.); (K.E.S.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA;
- Correspondence: ; Tel.: +1-859-323-4684
| |
Collapse
|
16
|
Wu Y, Wu H, Guo X, Pluimer B, Zhao Z. Blood-Brain Barrier Dysfunction in Mild Traumatic Brain Injury: Evidence From Preclinical Murine Models. Front Physiol 2020; 11:1030. [PMID: 32973558 PMCID: PMC7472692 DOI: 10.3389/fphys.2020.01030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents more than 80% of total TBI cases and is a robust environmental risk factor for neurodegenerative diseases including Alzheimer’s disease (AD). Besides direct neuronal injury and neuroinflammation, blood–brain barrier (BBB) dysfunction is also a hallmark event of the pathological cascades after mTBI. However, the vascular link between BBB impairment caused by mTBI and subsequent neurodegeneration remains undefined. In this review, we focus on the preclinical evidence from murine models of BBB dysfunction in mTBI and provide potential mechanistic links between BBB disruption and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Liaudanskaya V, Chung JY, Mizzoni C, Rouleau N, Berk AN, Wu L, Turner JA, Georgakoudi I, Whalen MJ, Nieland TJF, Kaplan DL. Modeling Controlled Cortical Impact Injury in 3D Brain-Like Tissue Cultures. Adv Healthc Mater 2020; 9:e2000122. [PMID: 32406202 PMCID: PMC7395313 DOI: 10.1002/adhm.202000122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) survivors suffer long term from mental illness, neurodegeneration, and neuroinflammation. Studies of 3D tissue models have provided new insights into the pathobiology of many brain diseases. Here, a 3D in vitro contusion model is developed consisting of mouse cortical neurons grown on a silk scaffold embedded in collagen and used outcomes from an in vivo model for benchmarking. Molecular, cellular, and network events are characterized in response to controlled cortical impact (CCI). In this model, CCI induces degradation of neural network structure and function and release of glutamate, which are associated with the expression of programmed necrosis marker phosphorylated Mixed Lineage Kinase Domain Like Pseudokinase (pMLKL). Neurodegeneration is observed first in the directly impacted area and it subsequently spreads over time in 3D space. CCI reduces phosphorylated protein kinase B (pAKT) and Glycogen synthase kinase 3 beta (GSK3β) in neurons in vitro and in vivo, but discordant responses are observed in phosphprylated ribosomal S6 kinase (pS6) and phosphorylated Tau (pTau) expression. In summary, the 3D brain-like culture system mimicked many aspects of in vivo responses to CCI, providing evidence that the model can be used to study the molecular, cellular, and functional sequelae of TBI, opening up new possibilities for discovery of therapeutics.
Collapse
Affiliation(s)
- Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - Joon Yong Chung
- Neuroscience Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - Alexander N Berk
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - Limin Wu
- Neuroscience Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
| | - Julia A Turner
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - Michael J Whalen
- Neuroscience Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, 02155, MA, USA
| |
Collapse
|
18
|
Thome JG, Reeder EL, Collins SM, Gopalan P, Robson MJ. Contributions of Interleukin-1 Receptor Signaling in Traumatic Brain Injury. Front Behav Neurosci 2020; 13:287. [PMID: 32038189 PMCID: PMC6985078 DOI: 10.3389/fnbeh.2019.00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) in various forms affects millions in the United States annually. There are currently no FDA-approved therapies for acute injury or the chronic comorbidities associated with TBI. Acute phases of TBI are characterized by profound neuroinflammation, a process that stimulates the generation and release of proinflammatory cytokines including interleukin-1α (IL-1α) and IL-1β. Both forms of IL-1 initiate signaling by binding with IL-1 receptor type 1 (IL-1R1), a receptor with a natural, endogenous antagonist dubbed IL-1 receptor antagonist (IL-1Ra). The recombinant form of IL-1Ra has gained FDA approval for inflammatory conditions such as rheumatoid arthritis, prompting interest in repurposing these pharmacotherapies for other inflammatory diseases/injury states including TBI. This review summarizes the currently available preclinical and clinical literature regarding the therapeutic potential of inhibiting IL-1-mediated signaling in the context of TBI. Additionally, we propose specific research areas that would provide a greater understanding of the role of IL-1 signaling in TBI and how these data may be beneficial for the development of IL-1-targeted therapies, ushering in the first FDA-approved pharmacotherapy for acute TBI.
Collapse
Affiliation(s)
- Jason G Thome
- Department of Anesthesia and Critical Care, Division of Biological Sciences, College of Medicine, University of Chicago, Chicago, IL, United States
| | - Evan L Reeder
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Sean M Collins
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Poornima Gopalan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
19
|
Liu N, Jiang Y, Chung JY, Li Y, Yu Z, Kim JW, Lok JM, Whalen MJ, Wang X. Annexin A2 Deficiency Exacerbates Neuroinflammation and Long-Term Neurological Deficits after Traumatic Brain Injury in Mice. Int J Mol Sci 2019; 20:ijms20246125. [PMID: 31817350 PMCID: PMC6940735 DOI: 10.3390/ijms20246125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Our laboratory and others previously showed that Annexin A2 knockout (A2KO) mice had impaired blood-brain barrier (BBB) development and elevated pro-inflammatory response in macrophages, implying that Annexin A2 (AnxA2) might be one of the key endogenous factors for maintaining homeostasis of the neurovascular unit in the brain. Traumatic brain injury (TBI) is an important cause of disability and mortality worldwide, and neurovascular inflammation plays an important role in the TBI pathophysiology. In the present study, we aimed to test the hypothesis that A2KO promotes pro-inflammatory response in the brain and worsens neurobehavioral outcomes after TBI. TBI was conducted by a controlled cortical impact (CCI) device in mice. Our experimental results showed AnxA2 expression was significantly up-regulated in response to TBI at day three post-TBI. We also found more production of pro-inflammatory cytokines in the A2KO mouse brain, while there was a significant increase of inflammatory adhesion molecules mRNA expression in isolated cerebral micro-vessels of A2KO mice compared with wild-type (WT) mice. Consistently, the A2KO mice brains had a significant increase in leukocyte brain infiltration at two days after TBI. Importantly, A2KO mice had significantly worse sensorimotor and cognitive function deficits up to 28 days after TBI and significantly larger brain tissue loss. Therefore, these results suggested that AnxA2 deficiency results in exacerbated early neurovascular pro-inflammation, which leads to a worse long-term neurologic outcome after TBI.
Collapse
Affiliation(s)
- Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
| | - Joon Yong Chung
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.Y.C.); (M.J.W.)
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Z.Y.); (J.W.K.); (J.M.L.)
| | - Jeong Woo Kim
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Z.Y.); (J.W.K.); (J.M.L.)
| | - Josephine M. Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Z.Y.); (J.W.K.); (J.M.L.)
| | - Michael J. Whalen
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.Y.C.); (M.J.W.)
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
- Correspondence: ; Tel.: +1-504-988-2646; Fax: +1-504-988-5793
| |
Collapse
|
20
|
Izzy S, Liu Q, Fang Z, Lule S, Wu L, Chung JY, Sarro-Schwartz A, Brown-Whalen A, Perner C, Hickman SE, Kaplan DL, Patsopoulos NA, El Khoury J, Whalen MJ. Time-Dependent Changes in Microglia Transcriptional Networks Following Traumatic Brain Injury. Front Cell Neurosci 2019; 13:307. [PMID: 31440141 PMCID: PMC6694299 DOI: 10.3389/fncel.2019.00307] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The neuroinflammatory response to traumatic brain injury (TBI) is critical to both neurotoxicity and neuroprotection, and has been proposed as a potentially modifiable driver of secondary injury in animal and human studies. Attempts to broadly target immune activation have been unsuccessful in improving outcomes, in part because the precise cellular and molecular mechanisms driving injury and outcome at acute, subacute, and chronic time points after TBI remain poorly defined. Microglia play a critical role in neuroinflammation and their persistent activation may contribute to long-term functional deficits. Activated microglia are characterized by morphological transformation and transcriptomic changes associated with specific inflammatory states. We analyzed the temporal course of changes in inflammatory genes of microglia isolated from injured brains at 2, 14, and 60 days after controlled cortical impact (CCI) in mice, a well-established model of focal cerebral contusion. We identified a time dependent, injury-associated change in the microglial gene expression profile toward a reduced ability to sense tissue damage, perform housekeeping, and maintain homeostasis in the early stages following CCI, with recovery and transition to a specialized inflammatory state over time. This later state starts at 14 days post-injury and is characterized by a biphasic pattern of IFNγ, IL-4, and IL-10 gene expression changes, with concurrent proinflammatory and anti-inflammatory gene changes. Our transcriptomic data sets are an important step to understand microglial role in TBI pathogenesis at the molecular level and identify common pathways that affect outcome. More studies to evaluate gene expression at the single cell level and focusing on subacute and chronic timepoint are warranted.
Collapse
Affiliation(s)
- Saef Izzy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Zhou Fang
- Harvard Medical School, Boston, MA, United States.,Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sevda Lule
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Limin Wu
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joon Yong Chung
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Aliyah Sarro-Schwartz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Alexander Brown-Whalen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Caroline Perner
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Suzanne E Hickman
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nikolaos A Patsopoulos
- Harvard Medical School, Boston, MA, United States.,Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michael J Whalen
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
22
|
Kassi AAY, Mahavadi AK, Clavijo A, Caliz D, Lee SW, Ahmed AI, Yokobori S, Hu Z, Spurlock MS, Wasserman JM, Rivera KN, Nodal S, Powell HR, Di L, Torres R, Leung LY, Rubiano AM, Bullock RM, Gajavelli S. Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Front Neurol 2019; 9:1097. [PMID: 30719019 PMCID: PMC6348935 DOI: 10.3389/fneur.2018.01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.
Collapse
Affiliation(s)
- Anelia A. Y. Kassi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil K. Mahavadi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angelica Clavijo
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Daniela Caliz
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Stephanie W. Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aminul I. Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, United Kingdom
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Markus S. Spurlock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joseph M Wasserman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karla N. Rivera
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Nodal
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry R. Powell
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Long Di
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rolando Torres
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andres Mariano Rubiano
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Ross M. Bullock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shyam Gajavelli
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|