1
|
Kiwanuka O, Lassarén P, Hånell A, Boström L, Thelin EP. ASA-score is associated with 90-day mortality after complicated mild traumatic brain injury - a retrospective cohort study. Acta Neurochir (Wien) 2024; 166:363. [PMID: 39259285 PMCID: PMC11390782 DOI: 10.1007/s00701-024-06247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This study explores the association of the American Society of Anesthesiologists (ASA) score with 90-day mortality in complicated mild traumatic brain injury (mTBI) patients, and in trauma patients without a TBI. METHODS This retrospective study was conducted using a cohort of trauma patients treated at a level III trauma center in Stockholm, Sweden from January to December 2019. The primary endpoint was 90-day mortality. The population was identified using the Swedish Trauma registry. The Trauma and Injury Severity Score (TRISS) was used to estimate the likelihood of survival. Trauma patients without TBI (NTBI) were used for comparison. Data analysis was conducted using R software, and statistical analysis included univariate and multivariate logistic regression. RESULTS A total of 244 TBI patients and 579 NTBI patients were included, with a 90-day mortality of 8.2% (n = 20) and 5.4% (n = 21), respectively. Deceased patients in both cohorts were generally older, with greater comorbidities and higher injury severity. Complicated mTBI constituted 97.5% of the TBI group. Age and an ASA score of 3 or higher were independently associated with increased mortality risk in the TBI group, with odds ratios of 1.04 (95% 1.00-1.09) and 3.44 (95% CI 1.10-13.41), respectively. Among NTBI patients, only age remained a significant mortality predictor. TRISS demonstrated limited predictive utility across both cohorts, yet a significant discrepancy was observed between the outcome groups within the NTBI cohort. CONCLUSION This retrospective cohort study highlights a significant association between ASA score and 90-day mortality in elderly patients with complicated mTBI, something that could not be observed in comparative NTBI cohort. These findings suggest the benefit of incorporating ASA score into prognostic models to enhance the accuracy of outcome prediction models in these populations, though further research is warranted.
Collapse
Affiliation(s)
- Olivia Kiwanuka
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.
| | - Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hånell
- Department of Medical Sciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lennart Boström
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Backus BE, Moustafa F, Skogen K, Sapin V, Rane N, Moya-Torrecilla F, Biberthaler P, Tenovuo O. Consensus paper on the assessment of adult patients with traumatic brain injury with Glasgow Coma Scale 13-15 at the emergency department: A multidisciplinary overview. Eur J Emerg Med 2024; 31:240-249. [PMID: 38744295 DOI: 10.1097/mej.0000000000001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Traumatic brain injury (TBI) is a common reason for presenting to emergency departments (EDs). The assessment of these patients is frequently hampered by various confounders, and diagnostics is still often based on nonspecific clinical signs. Throughout Europe, there is wide variation in clinical practices, including the follow-up of those discharged from the ED. The objective is to present a practical recommendation for the assessment of adult patients with an acute TBI, focusing on milder cases not requiring in-hospital care. The aim is to advise on and harmonize practices for European settings. A multiprofessional expert panel, giving consensus recommendations based on recent scientific literature and clinical practices, is employed. The focus is on patients with a preserved consciousness (Glasgow Coma Scale 13-15) not requiring in-hospital care after ED assessment. The main results of this paper contain practical, clinically usable recommendations for acute clinical assessment, decision-making on acute head computerized tomography (CT), use of biomarkers, discharge options, and needs for follow-up, as well as a discussion of the main features and risk factors for prolonged recovery. In conclusion, this consensus paper provides a practical stepwise approach for the clinical assessment of patients with an acute TBI at the ED. Recommendations are given for the performance of acute head CT, use of brain biomarkers and disposition after ED care including careful patient information and organization of follow-up for those discharged.
Collapse
Affiliation(s)
- Barbra E Backus
- Emergency Department, Franciscus Gasthuis and Vlietland, Rotterdam
- Emergency Department, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Farès Moustafa
- Emergency Department, University Hospital Clermont Auvergne, Clermont-Ferrand, France
| | - Karoline Skogen
- Department of Radiology and Nuclear Medicine, Oslo University Hospitals, Oslo, Norway
| | - Vincent Sapin
- Biochemistry and Molecular Genetics Department, University Hospital Clermont Auvergne, Clermont-Ferrand, France
| | - Neil Rane
- Department of Neuroradiology, St Marys Hospital Major Trauma Centre, Imperial College London NHS Trust
| | - Francisco Moya-Torrecilla
- Physical Therapy Department, School of Health Sciences, University of Malaga, Spain
- International Medical Services, Vithas Xanit International Hospital, Malaga, Spain
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum rechts der Isar Technische Universität, Munich, Germany
| | - Olli Tenovuo
- Department of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Lopes AN, Regner A, Simon D. The Role of S100b Protein Biomarker in Brain Death: A Literature Review. Cureus 2024; 16:e62707. [PMID: 39036258 PMCID: PMC11259197 DOI: 10.7759/cureus.62707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Brain death (BD) represents the irreversible loss of all brain functions, including the brainstem, and is equivalent to clinical death established by neurological criteria. However, clinical diagnosis, mainly based on the absence of primary reflexes post-acute brain injury, remains a challenge in hospital settings. The S100 calcium-binding protein beta (S100b) is used to monitor brain injuries, as recommended by neurotrauma care guidelines in some countries. Its levels are associated with severity and mortality, particularly after traumatic brain injury (TBI) and cerebral hemorrhage. The evaluation of S100b levels in investigating brain death is promising; however, aspects such as cutoff values remain to be elucidated. This paper reviews the literature on the use of S100b as a biomarker in diagnosing brain death. It is noteworthy that there is still no defined cutoff for S100b levels in confirming brain death. Additionally, when considering the use of S100b in emergency situations, a point-of-care methodology should be established to support clinical decision-making quickly and easily in the early identification of patients who are more likely to progress to brain death. In this context, S100b levels may assist in establishing the diagnosis of brain death, complementing existing clinical evidence. This, in turn, can optimize and qualify the organ donation process, reducing costs with ineffective therapies and minimizing the suffering of the families involved.
Collapse
Affiliation(s)
| | - Andrea Regner
- Critical Care, Hospital Materno Infantil Presidente Vargas, Porto Alegre, BRA
| | - Daniel Simon
- Genetics, Universidade Luterana do Brasil, Canoas, BRA
| |
Collapse
|
4
|
Wania R, Lampart A, Niedermeier S, Stahl R, Trumm C, Reidler P, Kammerlander C, Böcker W, Klein M, Pedersen V. Diagnostic value of protein S100b as predictor of traumatic intracranial haemorrhage in elderly adults with low-energy falls: results from a retrospective observational study. Eur J Trauma Emerg Surg 2024; 50:205-213. [PMID: 37442831 PMCID: PMC10924004 DOI: 10.1007/s00068-023-02324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE The objectives of this study were to analyse the clinical value of protein S100b (S100b) in association with clinical findings and anticoagulation therapy in predicting traumatic intracranial haemorrhage (tICH) and unfavourable outcomes in elderly individuals with low-energy falls (LEF). METHODS We conducted a retrospective study in the emergency department (ED) of the LMU University Hospital, Munich by consecutively including all patients aged ≥ 65 years presenting to the ED following a LEF between September 2014 and December 2016 and receiving an emergency cranial computed tomography (cCT) examination. Primary endpoint was the prevalence of tICH. Multivariate logistic regression models and receiver operating characteristics were used to measure the association between clinical findings, anticoagulation therapy and S100b and tICH. RESULTS We included 2687 patients, median age was 81 years (60.4% women). Prevalence of tICH was 6.7% (180/2687) and in-hospital mortality was 6.1% (11/180). Skull fractures were highly associated with tICH (odds ratio OR 46.3; 95% confidence interval CI 19.3-123.8, p < 0.001). Neither anticoagulation therapy nor S100b values were significantly associated with tICH (OR 1.14; 95% CI 0.71-1.86; OR 1.08; 95% CI 0.90-1.25, respectively). Sensitivity of S100b (cut-off: 0.1 ng/ml) was 91.6% (CI 95% 85.1-95.9), specificity was 17.8% (CI 95% 16-19.6), and the area under the curve value was 0.59 (95% CI 0.54 - 0.64) for predicting tICH. CONCLUSION In conclusion, under real ED conditions, neither clinical findings nor protein S100b concentrations or presence of anticoagulation therapy was sufficient to decide with certainty whether a cCT scan can be bypassed in elderly patients with LEF. Further prospective validation is required.
Collapse
Affiliation(s)
- Rebecca Wania
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany
| | - Alina Lampart
- Department of Medicine, Kantonsspital Lucerne, Spitalstrasse, 6000, Lucerne, Switzerland
| | - Sandra Niedermeier
- Department of Anaesthesiology and Intensive Care Medicine, ISAR Klinikum, Sonnenstr. 24-26, 80331, Munich, Germany
| | - Robert Stahl
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph Trumm
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Paul Reidler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Kammerlander
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany
- Trauma Hospital Styria, Goestinger Straße 24, 8020, Graz, Austria
| | - Wolfgang Böcker
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Emergency Department, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Vera Pedersen
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistr 15., 81377, Munich, Germany.
- Emergency Department, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
5
|
Keski-Pukkila M, Karr JE, Posti JP, Berghem K, Kotilainen AK, Blennow K, Zetterberg H, Iverson GL, Luoto TM. Preliminary Evaluation of the Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries with Glial Fibrillary Acidic Protein. Neurotrauma Rep 2024; 5:50-60. [PMID: 38249322 PMCID: PMC10797168 DOI: 10.1089/neur.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP) has become the most promising biomarker for detecting traumatic abnormalities on head computed tomography (CT) in patients with traumatic brain injury (TBI), but most studies have not addressed the potential added value of combining the biomarker with clinical variables that confer risk for intracranial injuries. The Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries in Adults were the first clinical decision rules in the field with an incorporated biomarker, the S100 astroglial calcium-binding protein B (S100B), which is used in the Mild (Low Risk) group defined by the guidelines. Our aim was to evaluate the performance of the guidelines when S100B was substituted with GFAP. The sample (N = 296) was recruited from the Tampere University Hospital's emergency department between November 2015 and November 2016, and there were 49 patients with available GFAP results who were stratified in the Mild (Low Risk) group (thus patients undergoing biomarker triaging). A previously reported cutoff of plasma GFAP ≥140 pg/mL was used. Within the Mild (Low Risk) group (n = 49), GFAP sensitivity (with 95% confidence intervals in parentheses) for detecting traumatic CT abnormalities was 1.0 (0.40-1.00), specificity 0.34 (0.19-0.53), the negative predictive value (NPV) 1.0 (0.68-1.00), and the positive predictive value (PPV) 0.16 (0.05-0.37). The sensitivity and specificity of the modified guidelines with GFAP, when applied to all imaged patients (n = 197) in the whole sample, were 0.94 (0.77-0.99) and 0.20 (0.15-0.28), respectively. NPV was 0.94 (0.80-0.99) and PPV 0.18 (0.13-0.25). In the Mild (Low Risk) group, none of the patients with GFAP results below 140 pg/mL had traumatic abnormalities on their head CT. These findings were derived from a small patient subgroup. Future researchers should replicate these findings in larger samples and assess whether GFAP has added or comparable value to S100B in acute TBI management.
Collapse
Affiliation(s)
- Mira Keski-Pukkila
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, and Turku Brain Injury Center, Turku University Hospital, and University of Turku, Turku, Finland
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Anna-Kerttu Kotilainen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute, Institute of Neurology, University College London, London, United Kingdom
- Department of Molecular Neuroscience, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts, USA
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Hossain I, Marklund N, Czeiter E, Hutchinson P, Buki A. Blood biomarkers for traumatic brain injury: A narrative review of current evidence. BRAIN & SPINE 2023; 4:102735. [PMID: 38510630 PMCID: PMC10951700 DOI: 10.1016/j.bas.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 03/22/2024]
Abstract
Introduction A blood-based biomarker (BBBM) test could help to better stratify patients with traumatic brain injury (TBI), reduce unnecessary imaging, to detect and treat secondary insults, predict outcomes, and monitor treatment effects and quality of care. Research question What evidence is available for clinical applications of BBBMs in TBI and how to advance this field? Material and methods This narrative review discusses the potential clinical applications of core BBBMs in TBI. A literature search in PubMed, Scopus, and ISI Web of Knowledge focused on articles in English with the words "traumatic brain injury" together with the words "blood biomarkers", "diagnostics", "outcome prediction", "extracranial injury" and "assay method" alone-, or in combination. Results Glial fibrillary acidic protein (GFAP) combined with Ubiquitin C-terminal hydrolase-L1(UCH-L1) has received FDA clearance to aid computed tomography (CT)-detection of brain lesions in mild (m) TBI. Application of S100B led to reduction of head CT scans. GFAP may also predict magnetic resonance imaging (MRI) abnormalities in CT-negative cases of TBI. Further, UCH-L1, S100B, Neurofilament light (NF-L), and total tau showed value for predicting mortality or unfavourable outcome. Nevertheless, biomarkers have less role in outcome prediction in mTBI. S100B could serve as a tool in the multimodality monitoring of patients in the neurointensive care unit. Discussion and conclusion Largescale systematic studies are required to explore the kinetics of BBBMs and their use in multiple clinical groups. Assay development/cross validation should advance the generalizability of those results which implicated GFAP, S100B and NF-L as most promising biomarkers in the diagnostics of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, Neurotrauma Research Group, Szentagothai Research Centre, And HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Andras Buki
- Department of Neurosurgery, University of Örebro, Örebro, Sweden
| |
Collapse
|
7
|
Banbury C, Harris G, Clancy M, Blanch RJ, Rickard JJS, Goldberg Oppenheimer P. Window into the mind: Advanced handheld spectroscopic eye-safe technology for point-of-care neurodiagnostic. SCIENCE ADVANCES 2023; 9:eadg5431. [PMID: 37967190 PMCID: PMC10651125 DOI: 10.1126/sciadv.adg5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Traumatic brain injury (TBI), a major cause of morbidity and mortality worldwide, is hard to diagnose at the point of care with patients often exhibiting no clinical symptoms. There is an urgent need for rapid point-of-care diagnostics to enable timely intervention. We have developed a technology for rapid acquisition of molecular fingerprints of TBI biochemistry to safely measure proxies for cerebral injury through the eye, providing a path toward noninvasive point-of-care neurodiagnostics using simultaneous Raman spectroscopy and fundus imaging of the neuroretina. Detection of endogenous neuromarkers in porcine eyes' posterior revealed enhancement of high-wave number bands, clearly distinguishing TBI and healthy cohorts, classified via artificial neural network algorithm for automated data interpretation. Clinically, translating into reduced specialist support, this markedly improves the speed of diagnosis. Designed as a hand-held cost-effective technology, it can allow clinicians to rapidly assess TBI at the point of care and identify long-term changes in brain biochemistry in acute or chronic neurodiseases.
Collapse
Affiliation(s)
- Carl Banbury
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Michael Clancy
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Ministry of Justice, 102 Petty France, Westminster, London, UK
| | - Richard J. Blanch
- Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aiken Institute for Clinical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, UHB NHS Foundation Trust, West Midlands, UK
| | | | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
8
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
9
|
Lagares A, Payen JF, Biberthaler P, Poca MA, Méjan O, Pavlov V, Viglino D, Sapin V, Lassaletta A, de la Cruz J. Study protocol for investigating the clinical performance of an automated blood test for glial fibrillary acidic protein and ubiquitin carboxy-terminal hydrolase L1 blood concentrations in elderly patients with mild traumatic BRAIN Injury and reference values (BRAINI-2 Elderly European study): a prospective multicentre observational study. BMJ Open 2023; 13:e071467. [PMID: 37460257 DOI: 10.1136/bmjopen-2022-071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Two blood brain-derived biomarkers, glial fibrillar acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), can rule out intracranial lesions in patients with mild traumatic brain injury (mTBI) when assessed within the first 12 hours. Most elderly patients were excluded from previous studies due to comorbidities. Biomarker use in elderly population could be affected by increased basal levels. This study will assess the performance of an automated test for measuring serum GFAP and UCH-L1 in elderly patients to predict the absence of intracranial lesions on head CT scans after mTBI, and determine both biomarkers reference values in a non-TBI elderly population. METHODS AND ANALYSIS This is a prospective multicentre observational study on elderly patients (≥65 years) that will be performed in Spain, France and Germany. Two patient groups will be included in two independent substudies. (1) A cohort of 2370 elderly patients (1185<80 years and 1185≥80 years; BRAINI2-ELDERLY DIAGNOSTIC AND PROGNOSTIC STUDY) with mTBI and a brain CT scan that will undergo blood sampling within 12 hours after mTBI. The primary outcome measure is the diagnostic performance of GFAP and UCH-L1 measured using an automated assay for discriminating between patients with positive and negative findings on brain CT scans. Secondary outcome measures include the performance of both biomarkers in predicting early (1 week) and midterm (3 months) neurological status and quality of life after trauma. (2) A cohort of 480 elderly reference participants (BRAINI2-ELDERLY REFERENCE STUDY) in whom reference values for GFAP and UCHL1 will be determined. ETHICS AND DISSEMINATION Ethical approval was obtained from the Institutional Review Boards of Hospital 12 de Octubre in Spain (Re#22/027) and Southeast VI (Clermont Ferrand Hospital) (Re# 22.01782.000095) in France. The study's results will be presented at scientific meetings and published in peer-review publications. TRIAL REGISTRATION NUMBER NCT05425251.
Collapse
Affiliation(s)
- Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Cirugía, Madrid, Spain
- Instituto de Investigación Sanitaria imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jean-François Payen
- Department of Anaesthesia and Intensive Care, Univ. Grenoble Alpes, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes, France
- Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| | - Peter Biberthaler
- Department of Trauma Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - M Antonia Poca
- Department of Neurosurgery, Vall d'Hebron Hospital Universitari; Neurotrauma and Neurosurgery Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Department of Surgery, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Odile Méjan
- bioMérieux, Clinical Unit, Chemin de l'Orme, Marcy l'Etoile, France
| | - Vladislav Pavlov
- bioMérieux, Medical Affairs, Chemin de l'Orme, Marcy l'Etoile, France
| | - Damien Viglino
- Emergency Department, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- HP2 Laboratory INSERM U1800, Grenoble, France
| | - Vincent Sapin
- Department of Biochemistry and Molecular Genetics, University Hospital, Clermont-Ferrand, Clermont Auvergne University, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | | | - Javier de la Cruz
- Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, SAMID, Madrid, Spain
| |
Collapse
|
10
|
Kvist M, Välimaa L, Harel A, Malmi S, Tuomisto A. Glycans as Potential Diagnostic Markers of Traumatic Brain Injury in Children. Diagnostics (Basel) 2023; 13:2181. [PMID: 37443575 DOI: 10.3390/diagnostics13132181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Diagnosing mild traumatic brain injury (TBI) in the acute setting is challenging due to the nonspecific and often transient or delayed symptoms. Further, the criteria for acute head imaging are frequently not fulfilled, which may lead to a missed diagnosis. A rapid test to diagnose TBI using body fluids would be highly useful. Urine and saliva samples were collected from 28 pediatric patients (mean [SD] age, eight years two months [four years three months]) with acute, clinically diagnosed mild TBI and 30 healthy volunteers at Satasairaala Hospital, Pori, Finland, over 11 months. The mean (SD) time from trauma to first sampling was 3 h 56 min (1 h 14 min). Samples were analyzed to determine the number of lectin-binding glycan molecules, indicating nerve tissue damage. The relative levels of several lectin-bound glycans were measured by fluorescence. Compared with healthy controls, the TBI group showed significant increases (p < 0.05, Wilcoxon rank-sum two-sided test) in nine glycans in the saliva, one glycan in the urine, and a significant decrease in seven glycans in the urine. These findings of potentially diagnostic glycans in body fluids after TBI warrant further research and may enable the development of a rapid body fluid-based point-of-care test to identify pediatric patients with TBI after a head injury.
Collapse
Affiliation(s)
| | | | | | - Sari Malmi
- Department of Pediatric Surgery, Satasairaala Hospital, 28500 Pori, Finland
| | - Aleksi Tuomisto
- Department of Pediatric Surgery, Satasairaala Hospital, 28500 Pori, Finland
| |
Collapse
|
11
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
12
|
Rogan A, Sik A, Dickinson E, Patel V, Peckler B, McQuade D, Larsen PD. Diagnostic performance of S100B as a rule-out test for intracranial pathology in head-injured patients presenting to the emergency department who meet NICE Head Injury Guideline criteria for CT-head scan. Emerg Med J 2023; 40:159-166. [PMID: 36323496 DOI: 10.1136/emermed-2022-212549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Traumatic brain injury is a common ED presentation. CT-head utilisation is escalating, exacerbating resource pressure in the ED. The biomarker S100B could assist clinicians with CT-head decisions by excluding intracranial pathology. Diagnostic performance of S100B was assessed in patients meeting National Institute of Health and Clinical Excellence Head Injury Guideline (NICE HIG) criteria for CT-head within 6 and 24 hours of injury. METHODS This multicentre prospective observational study included adult patients presenting to the ED with head injuries between May 2020 and June 2021. Informed consent was obtained from patients meeting NICE HIG CT-head criteria. A venous blood sample was collected and serum was tested for S100B using a Cobas Elecsys-S100 module; >0.1 µg/mL was the threshold used to indicate a positive test. Intracranial pathology reported on CT-head scan by the duty radiologist was used as the reference standard to review diagnostic performance. RESULTS This study included 265 patients of whom 35 (13.2%) had positive CT-head findings. Within 6 hours of injury, sensitivity of S100B was 93.8% (95% CI 69.8% to 99.8%) and specificity was 30.8% (22.6% to 40.0%). Negative predictive value (NPV) was 97.3% (95% CI 84.2% to 99.6%) and area under the curve (AUC) was 0.73 (95% CI 0.61 to 0.85; p=0.003). Within 24 hours of injury, sensitivity was 82.9% (95% CI 66.4% to 93.44%) and specificity was 43.0% (95% CI 36.6% to 49.7%). NPV was 94.29% (95% CI 88.7% to 97.2%) and AUC was 0.65 (95% CI 0.56 to 0.74; p=0.046). Theoretically, use of S100B as a rule-out test would have reduced CT-head scans by 27.1% (95% CI 18.9% to 36.8%) within 6 hours and 37.4% (95% CI 32.0% to 47.2%) within 24 hours. The risk of missing a significant injury with this approach would have been 0.75% (95% CI 0.0% to 2.2%) within 6 hours and 2.3% (95% CI 0.5% to 4.1%) within 24 hours. CONCLUSION Within 6 hours of injury, S100B performed well as a diagnostic test to exclude significant intracranial pathology in low-risk patients presenting with head injury. In theory, if used in addition to NICE HIGs, CT-head rates could reduce by one-quarter with a potential miss rate of <1%.
Collapse
Affiliation(s)
- Alice Rogan
- Department of Surgery and Anaesthesia, University of Otago Wellington, Wellington, New Zealand .,Emergency Department, Wellington Regional Hospital, Newtown, New Zealand
| | - Annabelle Sik
- Department of Surgery and Anaesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Emily Dickinson
- Emergency Department, Wellington Regional Hospital, Newtown, New Zealand
| | - Vimal Patel
- Emergency Department, Hutt Valley District Health Board, Lower Hutt, New Zealand
| | - Brad Peckler
- Emergency Department, Wellington Regional Hospital, Newtown, New Zealand
| | - David McQuade
- Department of Surgery and Anaesthesia, University of Otago Wellington, Wellington, New Zealand.,Emergency Department, Wellington Regional Hospital, Newtown, New Zealand
| | - Peter D Larsen
- Department of Surgery and Anaesthesia, University of Otago Wellington, Wellington, New Zealand
| | | |
Collapse
|
13
|
Isokuortti H, Iverson GL, Posti JP, Berghem K, Kotilainen AK, Luoto TM. Risk for intracranial hemorrhage in individuals after mild traumatic brain injury who are taking serotonergic antidepressants. Front Neurol 2022; 13:952188. [PMID: 36570453 PMCID: PMC9768034 DOI: 10.3389/fneur.2022.952188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Serotonergic antidepressants may predispose to bleeding, but little is known of the risk for traumatic intracranial bleeding. Methods This was a prospective case-control study of 218 patients with mild traumatic brain injuries (TBI) who were treated at a Finnish tertiary trauma hospital. Injury-related information and clinical findings were prospectively collected in the emergency department. Detailed pre-injury health history was collected from electronic medical records. Information on the use of serotonergic antidepressants was attained from the Finnish national prescription registry. All head CT scans were reviewed by a neuroradiologist based on the Common Data Elements. Cases were patients with traumatic intracranial hemorrhage on head CT. Controls were patients from the same cohort, but without traumatic intracranial lesions on CT. The proportion with traumatic intracranial bleeding for patients on serotonergic antidepressant medication was compared to the proportion for patients not on serotonergic medication. Results The study cohort consisted of 24 cases with traumatic intracranial bleeding and 194 injured controls. The median age of the sample was 70 years (interquartile range = 50-83). One fifth (21.6%) of all the patients were taking a serotonergic antidepressant. Of the patients on an antidepressant, 10.6% (5/47) had an acute hemorrhagic lesion compared to 11.1% (19/171) of those who were not on an antidepressant (p = 0.927). In the regression analysis, traumatic intracranial hemorrhage was not associated with antidepressant use. Conclusion Serotonergic antidepressant use was not associated with an increased risk of traumatic intracranial hemorrhage after a mild TBI. The patients in this relatively small cohort were mostly middle-aged and older adults. These factors limit the generalizability of the results in younger patients with mild TBI.
Collapse
Affiliation(s)
- Harri Isokuortti
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland,*Correspondence: Harri Isokuortti
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Anna-Kerttu Kotilainen
- Department of Surgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Iverson GL, Minkkinen M, Karr JE, Berghem K, Zetterberg H, Blennow K, Posti JP, Luoto TM. Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults. Front Neurol 2022; 13:960741. [PMID: 36484020 PMCID: PMC9723459 DOI: 10.3389/fneur.2022.960741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Blood-based biomarkers have been increasingly studied for diagnostic and prognostic purposes in patients with mild traumatic brain injury (MTBI). Biomarker levels in blood have been shown to vary throughout age groups. Our aim was to study four blood biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-L), and total tau (t-tau), in older adult patients with MTBI. The study sample was collected in the emergency department in Tampere University Hospital, Finland, between November 2015 and November 2016. All consecutive adult patients with head injury were eligible for inclusion. Serum samples were collected from the enrolled patients, which were frozen and later sent for biomarker analyses. Patients aged 60 years or older with MTBI, head computed tomography (CT) imaging, and available biomarker levels were eligible for this study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60-100; 41.0% men) were included in the analysis. GFAP was the only biomarker to show statistically significant differentiation between patients with and without acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the curve (AUC) = 0.79, 95% CI = 0.67-0.91]. The median UCH-L1 values were modestly greater in the abnormal head CT group vs. normal head CT group [U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49-0.77]. Older age was associated with biomarker levels in the normal head CT group, with the most prominent age associations being with NF-L (r = 0.56) and GFAP (r = 0.54). The results support the use of GFAP in detecting abnormal head CT findings in older adults with MTBIs. However, small sample sizes run the risk for producing non-replicable findings that may not generalize to the population and do not translate well to clinical use. Further studies should consider the potential effect of age on biomarker levels when establishing clinical cut-off values for detecting head CT abnormalities.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and the Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Mira Minkkinen
- Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Justin E. Karr
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,UK Dementia Research Institute at University College London, London, United Kingdom,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland,Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland,*Correspondence: Teemu M. Luoto
| |
Collapse
|
15
|
Steinmüller JB, Lynnerup NM, Steinmetz J, Riis JJ, Doering P. Implementation of the S100 Calcium-Binding Protein B Biomarker in a Clinical Setting: A Retrospective Study of Benefits, Safety, and Effectiveness. Neurotrauma Rep 2022; 3:447-455. [PMID: 36337079 PMCID: PMC9622208 DOI: 10.1089/neur.2021.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent years have seen the emergence of the S100 calcium-binding protein B (S100B) biomarker used in the initial management of minor traumatic brain injury (TBI) patients. S100B has been found to reduce cerebral computed tomography (CT-C) scans and was recently implemented in the Scandinavian Neurotrauma Committee (SNC) guidelines. In a clinical setup, we retrospectively investigated the use of the S100B biomarker in relation to the SNC guidelines in the respective year before and after implementation. Accordingly, minor TBI patients with the International Classification of Diseases, Tenth Revision diagnostic code of S06.0 commotio cerebri were included in 2018 (n = 786) and 2019 (n = 709) for comparison of emergency department time (EDT) and CT-Cs. In 2019, we included all patients with an S100B sample (n = 547; 348/199 male:female; median age, 52 years). We found an S100B sensitivity of 92% and negative predictive value (NPV) of 99% (cutoff, 0.10 μg/L) regardless of SNC guideline compliance. With strict SNC guideline management, sensitivity and NPV increased to 100%, even at a 0.20-μg/L cutoff that increased the specificity from 49% to 76%. After S100B implementation, we found the median EDT to significantly increase from 196 min (interquartile range [IQR] = 127–289) in 2018 to 216 min (IQR = 134.0–309.5) in 2019 (p = 0.0148), which may have resulted from poor guideline compliance (53.9%). Contrarily, the proportion of CT-C scanned patients decreased from 70% to 56.3% equal to a relative 27.5% decrease of scanned patients (p < 0.0001). Conclusively, our study supported the safe and efficient clinical use of the S100B biomarker, albeit with a minor EDT increase. S100B combination with the SNC guidelines improved clinical potential.
Collapse
Affiliation(s)
| | | | - Jacob Steinmetz
- Department of Anesthesia and Trauma Centre, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,The Danish Air Ambulance, Aarhus, Denmark
| | - Jens Jakob Riis
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - Peter Doering
- Department of Orthopedic Surgery, Aalborg University Hospital, Aalborg, Denmark.,Address correspondence to: Peter Doering, MD, PhD, Aleris Denmark, Spine Unit, Aleris, Denmark.
| |
Collapse
|
16
|
Thomas I, Dickens AM, Posti JP, Czeiter E, Duberg D, Sinioja T, Kråkström M, Retel Helmrich IRA, Wang KKW, Maas AIR, Steyerberg EW, Menon DK, Tenovuo O, Hyötyläinen T, Büki A, Orešič M. Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun 2022; 13:2545. [PMID: 35538079 PMCID: PMC9090763 DOI: 10.1038/s41467-022-30227-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Complex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain injury (TBI). Associations between this and systemic metabolism and their potential prognostic value are poorly understood. Here, we aimed to describe the serum metabolome (including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to severity of injury and patient outcome. We performed a comprehensive metabolomics study in a cohort of 716 patients with TBI and non-TBI reference patients (orthopedic, internal medicine, and other neurological patients) from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We identified panels of metabolites specifically associated with TBI severity and patient outcomes. Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins) were inversely associated with TBI severity and were among the strongest predictors of TBI patient outcomes, which was further confirmed in a separate validation dataset of 558 patients. The observed metabolic patterns may reflect different pathophysiological mechanisms, including protective changes of systemic lipid metabolism aiming to maintain lipid homeostasis in the brain.
Collapse
Affiliation(s)
- Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Daniel Duberg
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Tim Sinioja
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Matilda Kråkström
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Isabel R A Retel Helmrich
- Department of Public Health, Center for Medical Decision Making, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ewout W Steyerberg
- Department of Public Health, Center for Medical Decision Making, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Olli Tenovuo
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | | | - András Büki
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| | | |
Collapse
|
17
|
Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol 2022; 13:835597. [PMID: 35386417 PMCID: PMC8977512 DOI: 10.3389/fneur.2022.835597] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global health issue, with outcomes spanning from intracranial bleeding, debilitating sequelae, and invalidity with consequences for individuals, families, and healthcare systems. Early diagnosis of TBI by testing peripheral fluids such as blood or saliva has been the focus of many research efforts, leading to FDA approval for a bench-top assay for blood GFAP and UCH-L1 and a plasma point-of-care test for GFAP. The biomarker S100B has been included in clinical guidelines for mTBI (mTBI) in Europe. Despite these successes, several unresolved issues have been recognized, including the robustness of prior data, the presence of biomarkers in tissues beyond the central nervous system, and the time course of biomarkers in peripheral body fluids. In this review article, we present some of these issues and provide a viewpoint derived from an analysis of existing literature. We focus on two astrocytic proteins, S100B and GFAP, the most commonly employed biomarkers used in mTBI. We also offer recommendations that may translate into a broader acceptance of these clinical tools.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,FloTBI, Cleveland, OH, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Johan Unden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury-A clinical perspective. Acta Neurol Scand 2022; 146:389-399. [PMID: 35383879 DOI: 10.1111/ane.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 12/19/2022]
Abstract
Blood-based biomarkers are promising tools to complement clinical variables and imaging findings in the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Several promising biomarker candidates have been found for various clinical questions, but the translation of TBI biomarkers into clinical applications has been negligible. Measured biomarker levels are influenced by patient-related variables such as age, blood-brain barrier integrity and renal and liver function. It is not yet fully understood how biomarkers enter the bloodstream from the interstitial fluid of the brain. In addition, the diagnostic performance of TBI biomarkers is affected by sampling timing and analytical methods. In this focused review, the clinical aspects of glial fibrillary acidic protein, neurofilament light, S100 calcium-binding protein B, tau and ubiquitin C-terminal hydrolase-L1 are examined. Current findings and clinical caveats are addressed.
Collapse
Affiliation(s)
- Jussi P. Posti
- Neurocenter Department of Neurosurgery and Turku Brain Injury Center Turku University Hospital and University of Turku Turku Finland
| | - Olli Tenovuo
- Neurocenter Turku Brain Injury Center Turku University Hospital and University of Turku Turku Finland
| |
Collapse
|
19
|
Koivikko P, Posti JP, Mohammadian M, Lagerstedt L, Azurmendi L, Hossain I, Katila AJ, Menon D, Newcombe VFJ, Hutchinson PJ, Maanpää HR, Tallus J, Zetterberg H, Blennow K, Tenovuo O, Sanchez JC, Takala RSK. Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury. Emerg Med J 2021; 39:206-212. [PMID: 34916280 DOI: 10.1136/emermed-2020-209471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. METHODS Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. RESULTS Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. CONCLUSIONS S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.
Collapse
Affiliation(s)
- Pia Koivikko
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital, Turku, Finland .,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mehrbod Mohammadian
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku Brain Injury Center, Turku University Hospital, Turku, Finland
| | - Linnea Lagerstedt
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leire Azurmendi
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Iftakher Hossain
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Cambridge, UK
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| | - David Menon
- Department of Anaesthesia, University of Cambridge, Cambridge, UK
| | | | - Peter John Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Cambridge, UK
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Jussi Tallus
- Neurocenter, Turku Brain Injury Center, Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku, Turku, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg Sahlgrenska Academy, Mölndal, Sweden.,UK Dementia Research Institute, UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg Sahlgrenska Academy, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku Brain Injury Center, Turku University Hospital, Turku, Finland
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine, and Pain Management, Turku University Hospital, Turku, Finland.,Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Kvist M, Välimaa L, Harel A, Posti JP, Rahi M, Saarenpää I, Visuri M, Östberg A, Rinne J. Glycans as Potential Diagnostic Markers of Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11111480. [PMID: 34827479 PMCID: PMC8615782 DOI: 10.3390/brainsci11111480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The diagnosis of mild traumatic brain injury (TBI) is challenging in the acute setting because the symptoms are nonspecific and often transient, or they develop with a delay. In these cases, the criteria for acute head imaging are frequently not fulfilled. This may lead to missed diagnoses in emergency care. There is a need for developing a rapid diagnostic test to verify the presence of TBI using body fluids. Blood, urine, and saliva samples from 11 adult patients (mean age 64 years, SD 24 years) with acute and clinically diagnosed TBI, and 12 healthy volunteers were collected at Turku University Hospital during a period of 5 months. The injuries necessitated hospitalization for at least one day. The TBIs were classified mild in nine cases and severe in two cases. The mean period between the trauma and the time for obtaining the samples was 27 h, SD 11 h. The samples were analyzed in an ISO-certified laboratory for the number of lectin-bound glycan molecules indicating destruction of nerve tissue. The screening was performed on several possible glycans for binding, and the measurement by degree of fluorescence. In the analysis, the group of patients with TBI was compared with healthy volunteers. The results showed a significant decrease (p < 0.05, Wilcoxon rank–sum two-sided test) in the level of two glycans in plasma, but no significant increase for any glycan; in saliva, one glycan showed a significant increase in the TBI group; in urine, three glycans were significantly different between the groups (one showed an increase, whereas two showed a decrease). The results support the idea of conducting more research on how diagnostic glycans could be detected in body fluids after TBI. As a proof-of-concept, significant changes in the concentration of five glycans were found in plasma, saliva, and urine between TBI patients and healthy controls. This may enable the development of a rapid body fluid-based point-of-care test to identify patients with TBI after a head injury.
Collapse
Affiliation(s)
- Mårten Kvist
- Medicortex Finland Oy, 20520 Turku, Finland; (L.V.); (A.H.)
- Correspondence:
| | - Lasse Välimaa
- Medicortex Finland Oy, 20520 Turku, Finland; (L.V.); (A.H.)
| | - Adrian Harel
- Medicortex Finland Oy, 20520 Turku, Finland; (L.V.); (A.H.)
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.P.P.); (M.R.); (I.S.); (M.V.); (A.Ö.); (J.R.)
| | - Melissa Rahi
- Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.P.P.); (M.R.); (I.S.); (M.V.); (A.Ö.); (J.R.)
| | - Ilkka Saarenpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.P.P.); (M.R.); (I.S.); (M.V.); (A.Ö.); (J.R.)
| | - Mikko Visuri
- Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.P.P.); (M.R.); (I.S.); (M.V.); (A.Ö.); (J.R.)
| | - Anna Östberg
- Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.P.P.); (M.R.); (I.S.); (M.V.); (A.Ö.); (J.R.)
| | - Jaakko Rinne
- Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.P.P.); (M.R.); (I.S.); (M.V.); (A.Ö.); (J.R.)
| |
Collapse
|
21
|
Amoo M, Henry J, O'Halloran PJ, Brennan P, Husien MB, Campbell M, Caird J, Javadpour M, Curley GF. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurg Rev 2021; 45:1171-1193. [PMID: 34709508 DOI: 10.1007/s10143-021-01678-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
Biomarkers such as calcium channel binding protein S100 subunit beta (S100B), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1) and neuron-specific enolase (NSE) have been proposed to aid in screening patients presenting with mild traumatic brain injury (mTBI). As such, we aimed to characterise their accuracy at various thresholds. MEDLINE, SCOPUS and EMBASE were searched, and articles reporting the diagnostic performance of included biomarkers were eligible for inclusion. Risk of bias was assessed using the QUADAS-II criteria. A meta-analysis was performed to assess the predictive value of biomarkers for imaging abnormalities on CT. A total of 2939 citations were identified, and 38 studies were included. Thirty-two studies reported data for S100B. At its conventional threshold of 0.1 μg/L, S100B had a pooled sensitivity of 91% (95%CI 87-94) and a specificity of 30% (95%CI 26-34). The optimal threshold for S100B was 0.72 μg/L, with a sensitivity of 61% (95% CI 50-72) and a specificity of 69% (95% CI 64-74). Nine studies reported data for GFAP. The optimal threshold for GFAP was 626 pg/mL, at which the sensitivity was 71% (95%CI 41-91) and specificity was 71% (95%CI 43-90). Sensitivity of GFAP was maximised at a threshold of 22 pg/mL, which had a sensitivity of 93% (95%CI 73-99) and a specificity of 36% (95%CI 12-68%). Three studies reported data for NSE and two studies for UCH-L1, which precluded meta-analysis. There is evidence to support the use of S100B as a screening tool in mild TBI, and potential advantages to the use of GFAP, which requires further investigation.
Collapse
Affiliation(s)
- Michael Amoo
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland. .,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland. .,Beacon Academy, Beacon Hospital, Sandyford, Dublin 18, Ireland.
| | - Jack Henry
- National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Beaumont Hospital, Dublin 9, Ireland
| | - Mohammed Ben Husien
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Matthew Campbell
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - John Caird
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mohsen Javadpour
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,Department of Academic Neurology, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
22
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
23
|
Diagnostic accuracy of prehospital serum S100B and GFAP in patients with mild traumatic brain injury: a prospective observational multicenter cohort study - "the PreTBI I study". Scand J Trauma Resusc Emerg Med 2021; 29:75. [PMID: 34078435 PMCID: PMC8173808 DOI: 10.1186/s13049-021-00891-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background The biomarker serum S100 calcium-binding protein B (S100B) is used in in-hospital triage of adults with mild traumatic brain injury to rule out intracranial lesions. The biomarker glial fibrillary acidic protein (GFAP) is suggested as a potential diagnostic biomarker for traumatic brain injury. The aim of this study was to investigate the diagnostic accuracy of early prehospital S100B and GFAP measurements to rule out intracranial lesions in adult patients with mild traumatic brain injury. Methods Prehospital and in-hospital blood samples were drawn from 566 adult patients with mild traumatic brain injury (Glasgow Coma Scale Score 14–15). The index test was S100B and GFAP concentrations. The reference standard was endpoint adjudication of the traumatic intracranial lesion based on medical records. The primary outcome was prehospital sensitivity of S100B in relation to the traumatic intracranial lesion. Results Traumatic intracranial lesions were found in 32/566 (5.6%) patients. The sensitivity of S100B > 0.10 μg/L was 100% (95%CI: 89.1;100.0) in prehospital samples and 100% (95% CI 89.1;100.0) in in-hospital samples. The specificity was 15.4% (95%CI: 12.4;18.7) in prehospital samples and 31.5% (27.5;35.6) in in-hospital samples. GFAP was only detected in less than 2% of cases with the assay used. Conclusion Early prehospital and in-hospital S100B levels < 0.10 μg/L safely rules out traumatic intracranial lesions in adult patients with mild traumatic brain injury, but specificity is lower with early prehospital sampling than with in-hospital sampling. The very limited cases with values detectable with our assay do not allow conclusions to be draw regarding the diagnostic accuracy of GFAP. Trial registration ClinicalTrials.gov identifier: NCT02867137. Supplementary Information The online version contains supplementary material available at 10.1186/s13049-021-00891-5.
Collapse
|
24
|
Yin W, Weng S, Lai S, Nie H. [GCS score combined with CT score and serum S100B protein level Can evaluate severity and early prognosis of acute traumatic brain injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:543-548. [PMID: 33963713 DOI: 10.12122/j.issn.1673-4254.2021.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the value of Glasgow Coma Scale (GCS) score and CT score combined with serum S100B protein level for evaluation of injury severity and predicting early prognosis of acute traumatic brain injury (TBI). OBJECTIVE A total of 108 patients with TBI admitted within 24 h after injury in the Emergency Department of West China Hospital from May, 2019 to May, 2020 were enrolled in this study. The clinical data, laboratory test results, CT examination, GCS score, Full Outline of Unresponsiveness score, Fisher CT classification, Rotterdam CT score, and serum S100B protein level of the patients were collected upon admission. The patients were followed up for 28 days and divided based on their Glasgow Outcome Scale (GOS) scores into poor prognosis group (GOS 1-3) and good prognosis group (GOS 4-5). The indexes related to poor prognosis were analyzed for their efficacy for predicting the patinets' prognosis. According to the results of head CT, the patients were divided into CT- positive (CT+) group and CT- negative (CT-) group, and the efficacy of serum S100B protein level for predicting CT positivity was evaluated. OBJECTIVE Compared with those with favorable prognosis, the patients with poor prognosis had significantly lower GCS scores (P < 0.01) and higher Rotterdam CT score and serum S100B protein levels (P < 0.01). Among the 3 index, serum S100B protein level had the highest AUC value (0.79); among the combined indexes, GCS score combined with serum S100B protein had the highest AUC value (0.80). Serum S100B protein level was significantly higher in CT+ group than in CT - group (P < 0.05) with a significant correlation with Rotterdam CT score (r=0.26, P < 0.01). OBJECTIVE Serum S100B protein level, GCS score, and Rotterdam CT score can be used as indicators for evaluating the severity of acute TBI, and they are all closely related with early prognosis of the patients. The combination of serum S100B protein, GCS score and Rotterdam CT score has better performance than any of the 3 indexes alone for predicting early prognosis of the patients. Serum S100B protein level is correlated with head imaging findings of patients with acute TBI, but its value in selection of appropriate imaging modalities awaits further investigation.
Collapse
Affiliation(s)
- W Yin
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - S Weng
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - S Lai
- Department of Intensive Care Medicine, Panzhihua Municipal Central Hospital, Panzhihua 617067, China
| | - H Nie
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
26
|
Musick S, Alberico A. Neurologic Assessment of the Neurocritical Care Patient. Front Neurol 2021; 12:588989. [PMID: 33828517 PMCID: PMC8019734 DOI: 10.3389/fneur.2021.588989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Sedation is a ubiquitous practice in ICUs and NCCUs. It has the benefit of reducing cerebral energy demands, but also precludes an accurate neurologic assessment. Because of this, sedation is intermittently stopped for the purposes of a neurologic assessment, which is termed a neurologic wake-up test (NWT). NWTs are considered to be the gold-standard in continued assessment of brain-injured patients under sedation. NWTs also produce an acute stress response that is accompanied by elevations in blood pressure, respiratory rate, heart rate, and ICP. Utilization of cerebral microdialysis and brain tissue oxygen monitoring in small cohorts of brain-injured patients suggests that this is not mirrored by alterations in cerebral metabolism, and seldom affects oxygenation. The hard contraindications for the NWT are preexisting intracranial hypertension, barbiturate treatment, status epilepticus, and hyperthermia. However, hemodynamic instability, sedative use for primary ICP control, and sedative use for severe agitation or respiratory distress are considered significant safety concerns. Despite ubiquitous recommendation, it is not clear if additional clinically relevant information is gleaned through its use, especially with the contemporaneous utilization of multimodality monitoring. Various monitoring modalities provide unique and pertinent information about neurologic function, however, their role in improving patient outcomes and guiding treatment plans has not been fully elucidated. There is a paucity of information pertaining to the optimal frequency of NWTs, and if it differs based on type of injury. Only one concrete recommendation was found in the literature, exemplifying the uncertainty surrounding its utility. The most common sedative used and recommended is propofol because of its rapid onset, short duration, and reduction of cerebral energy requirements. Dexmedetomidine may be employed to facilitate serial NWTs, and should always be used in the non-intubated patient or if propofol infusion syndrome (PRIS) develops. Midazolam is not recommended due to tissue accumulation and residual sedation confounding a reliable NWT. Thus, NWTs are well-tolerated in selected patients and remain recommended as the gold-standard for continued neuromonitoring. Predicated upon one expert panel, they should be performed at least one time per day. Propofol or dexmedetomidine are the main sedative choices, both enabling a rapid awakening and consistent NWT.
Collapse
Affiliation(s)
- Shane Musick
- Department of Neurosurgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Anthony Alberico
- Department of Neurosurgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
27
|
Huebschmann NA, Luoto TM, Karr JE, Berghem K, Blennow K, Zetterberg H, Ashton NJ, Simrén J, Posti JP, Gill JM, Iverson GL. Comparing Glial Fibrillary Acidic Protein (GFAP) in Serum and Plasma Following Mild Traumatic Brain Injury in Older Adults. Front Neurol 2020; 11:1054. [PMID: 33071938 PMCID: PMC7530818 DOI: 10.3389/fneur.2020.01054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Identification and validation of blood-based biomarkers for the diagnosis and prognosis of mild traumatic brain injury (mTBI) is of critical importance. There have been calls for more research on mTBI in older adults. We compared blood-based protein marker glial fibrillary acidic protein (GFAP) concentrations in serum and in plasma within the same cohort of older adults and assessed their ability to discriminate between individuals based on intracranial abnormalities and functional outcome following mTBI. Methods: A sample of 121 older adults [≥50 years old with head computed tomography (CT), n = 92] seeking medical care for a head injury [Glasgow Coma Scale scores of 14 (n = 6; 5.0%) or 15 (n = 115; 95.0%)] were enrolled from the emergency department (ED). The mean time between injury and blood sampling was 3.4 h (SD = 2.1; range = 0.5–11.7). Serum GFAP concentration was measured first using the Human Neurology 4-Plex Assay, while plasma GFAP concentration was later measured using the GFAP Discovery Kit, both on an HD-1 Single molecule array (Simoa) instrument. Glasgow Outcome Scale-Extended was assessed 1 week after injury. Results: Both serum and plasma GFAP levels were significantly higher in those with abnormal CT scans compared to those with normal head CT scans (plasma: U = 1,198, p < 0.001; serum: U = 1,253, p < 0.001). The ability to discriminate those with and without intracranial abnormalities was comparable between serum (AUC = 0.814) and plasma (AUC = 0.778). In the total sample, GFAP concentrations were considerably higher in plasma than in serum (Wilcoxon signed-rank test z = 0.42, p < 0.001, r = 0.42). Serum and plasma GFAP levels were highly correlated in the total sample and within all subgroups (Spearman's rho range: 0.826–0.907). Both serum and plasma GFAP levels were significantly higher in those with poor compared to good functional outcome (serum: U = 1,625, p = 0.002; plasma: U = 1,539, p = 0.013). Neither plasma (AUC = 0.653) nor serum (AUC = 0.690) GFAP were adequate predictors of functional outcome 1 week after injury. Conclusions: Despite differences in concentration, serum and plasma GFAP levels were highly correlated and had similar discriminability between those with and without intracranial abnormalities on head CT following an mTBI. Neither serum nor plasma GFAP had adequate discriminability to identify patients who would have poor functional outcome.
Collapse
Affiliation(s)
- Nathan A Huebschmann
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Sports Concussion Program, MassGeneral Hospital for Children, Boston, MA, United States
| | - Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Justin E Karr
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Sports Concussion Program, MassGeneral Hospital for Children, Boston, MA, United States.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| | - Ksenia Berghem
- Department of Radiology, Medical Imaging Centre, Tampere University Hospital, Tampere, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute, University College London, London, United Kingdom.,Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,National Institute of Health Research Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia, South London & Maudsley National Health Service Foundation, London, United Kingdom
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jessica M Gill
- Division of Intramural Research, National Institutes of Health, Bethesda, MD, United States
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Sports Concussion Program, MassGeneral Hospital for Children, Boston, MA, United States.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States
| |
Collapse
|
28
|
Kahouadji S, Salamin P, Praz L, Coiffier J, Frochaux V, Durif J, Pereira B, Arlettaz L, Oris C, Sapin V, Bouvier D. S100B Blood Level Determination for Early Management of Ski-Related Mild Traumatic Brain Injury: A Pilot Study. Front Neurol 2020; 11:856. [PMID: 32922357 PMCID: PMC7456809 DOI: 10.3389/fneur.2020.00856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Mild traumatic brain injury (mTBI) management in emergency departments is a complex process involving clinical evaluation, laboratory testing, and computerized tomography (CT) scanning. Protein S100B has proven to be a useful blood biomarker for early evaluation of mTBI, as it reduces the required CT scans by one-third. However, to date, the ability of S100B to identify positive abnormal findings in the CT scans of patients suffering from mTBI caused by ski practice has not been investigated. Thus, the primary aim of this study was to investigate the diagnostic performance of S100B as an mTBI management biomarker in patients with ski-related mTBI. Materials and Methods: One hundred and thirty adult mTBI patients presenting to the emergency department of Hôpital du Valais in Sion, Switzerland, with a Glasgow Coma Scale (GCS) score of 13–15 and clinical indication for a CT scan were included in the study. Blood samples for S100B measurement were collected from each patient and frozen in 3-hour post-injury intervals. CT scans were performed for all patients. Later, serum S100B levels were compared to CT scan findings in order to evaluate the biomarker's performance. Results: Of the 130 included cases of mTBI, 87 (70%) were related to ski practice. At the internationally established threshold of 0.1 μg/L, the receiver operating characteristic curve of S100B serum levels for prediction of abnormal CT scans showed 97% sensitivity, 11% specificity, and a 92% negative predictive value. Median S100B concentrations did not differ according to sex, age, or GCS score. Additionally, there was no significant difference between skiers and non-skiers. However, a statistically significant difference was found when comparing the median S100B concentrations of patients who suffered fractures or had polytrauma and those who did not suffer fractures. Conclusion: The performance of S100B in post-mTBI brain lesion screenings seems to be affected by peripheral lesions and/or ski practice. The lack of neurospecificity of the biomarker in this context does not allow unnecessary CT scans to be reduced by one-third as expected.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pauline Salamin
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Laurent Praz
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Julien Coiffier
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Vincent Frochaux
- Department of Emergency Medicine, Valais Hospital, Sion, Switzerland
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Lionel Arlettaz
- Department of Biology, ICH, Valais Hospital, Sion, Switzerland
| | - Charlotte Oris
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
29
|
Kjerulff JL, Seidenfaden SC, Juul N, Møller MF, Munster AMB, Bøtker MT. Influence of Simulated Pre-Hospital Transport, Time to Analysis, and Storage Temperature on S100 Calcium-Binding Protein B Values. J Neurotrauma 2020; 37:1864-1869. [DOI: 10.1089/neu.2019.6907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julie Linding Kjerulff
- Prehospital Emergency Medical Services, Research and Development, Central Denmark Region, Aarhus, Denmark
| | | | - Niels Juul
- Department of Anesthesiology, Section North, Aarhus University Hospital, Central Denmark Region, Aarhus, Denmark
| | - Mette Fogh Møller
- Department of Clinical Biochemistry, Regional Hospital Herning, Central Denmark Region, Herning, Denmark
| | | | - Morten Thingemann Bøtker
- Prehospital Emergency Medical Services, Research and Development, Central Denmark Region, Aarhus, Denmark
| |
Collapse
|
30
|
A multi-staged neuropeptide response to traumatic brain injury. Eur J Trauma Emerg Surg 2020; 48:507-517. [DOI: 10.1007/s00068-020-01431-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/28/2020] [Indexed: 01/05/2023]
|
31
|
Iverson GL, Posti JP, Öhman J, Blennow K, Zetterberg H, Luoto TM. Reliability of serum S100B measurement following mild traumatic brain injury: a comparison of assay measurements from two laboratories. Brain Inj 2020; 34:1237-1244. [PMID: 32744887 DOI: 10.1080/02699052.2020.1800092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE There is enormous research and clinical interest in blood-based biomarkers of mild traumatic brain injury (MTBI) sustained in sports, daily life, or military service. We examined the reliability of a commercially available assay for S100B used on the same samples by two different laboratories separated by 2 years in time. METHODS AND PROCEDURES A cohort of 163 adult patients (head CT-scanned, n = 110) with mild head injury were enrolled from the emergency department (ED). All had Glasgow Coma Scale scores of 14 or 15 in the ED (94.4% = 15). The mean time between injury and venous blood sampling was 2.9 h (SD = 1.4; Range = 0.5-6.0 h). Serum S100B was measured at two independent centers using the same high throughput clinical assay (Elecsys S100B®; Roche Diagnostics). RESULTS The Spearman correlation between the two assays in the total sample (N = 163) was r = 0.93. A Wilcoxson Signed Ranks test indicated that the median scores for the values differed (Z = 2,082, p < .001, Cohen's d = 0.151, small effect size). The values obtained from the two laboratories were very similar for identifying traumatic intracranial abnormalities (sensitivity = 80.1% versus 85.7%). CONCLUSIONS The serum S100B results measured using the same assay in different laboratories yielded highly correlated and clinically similar, but clearly not identical, results.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, MA, USA.,Spaulding Rehabilitation Hospital , Charlestown, MA, USA.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program , Boston, MA, USA
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury Centre, Turku University Hospital, and University of Turku , Turku, Finland
| | - Juha Öhman
- Department of Neurosurgery, Tampere University Hospital and University of Tampere , Tampere, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg , Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg , Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital , Mölndal, Sweden.,UK Dementia Research Institute at University College London , London, UK.,Department of Molecular Neuroscience, University College London Institute of Neurology , London, UK
| | - Teemu Miikka Luoto
- Department of Neurosurgery, Tampere University Hospital and University of Tampere , Tampere, Finland
| |
Collapse
|
32
|
Czeiter E, Amrein K, Gravesteijn BY, Lecky F, Menon DK, Mondello S, Newcombe VFJ, Richter S, Steyerberg EW, Vyvere TV, Verheyden J, Xu H, Yang Z, Maas AIR, Wang KKW, Büki A. Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 2020; 56:102785. [PMID: 32464528 PMCID: PMC7251365 DOI: 10.1016/j.ebiom.2020.102785] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Serum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities. METHODS We analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained <24 h post-injury from 2867 patients with any severity of TBI in the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) Core Study, a prospective, multicenter, cohort study. Univariable and multivariable logistic regression analyses were performed. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals. FINDINGS All biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI: 0•87-0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value: discrimination increased from 0•84 [95%CI: 0•83-0•86] to 0•89 [95%CI: 0•87-0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone. INTERPRETATION Currently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required. FUNDING CENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).
Collapse
Affiliation(s)
- Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, H-7623 Pécs, Hungary; Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Rét u. 2, H-7623 Pécs, Hungary.
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, H-7623 Pécs, Hungary; Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Benjamin Y Gravesteijn
- Center for Medical Decision Making, Department of Public Health, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and emergency care REsearch (CURE), Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, S1 4DA, UK; Emergency Department, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria n. 1, 98125 Messina, Italy
| | - Virginia F J Newcombe
- Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Sophie Richter
- Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Ewout W Steyerberg
- Center for Medical Decision Making, Department of Public Health, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Thijs Vande Vyvere
- Research and Development, Icometrix, Kolonel Begaultlaan 1b/12, 3012 Leuven, Belgium; Department of Radiology, Antwerp University Hospital and University of Antwerp, Wijlrijkstraat 10, 2650 Edegem, Belgium
| | - Jan Verheyden
- Research and Development, Icometrix, Kolonel Begaultlaan 1b/12, 3012 Leuven, Belgium
| | - Haiyan Xu
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, L4-100L 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, L4-100L 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Wijlrijkstraat 10, 2650 Edegem, Belgium
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, L4-100L 1149 South Newell Drive, Gainesville, FL 32611, USA; Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center (VAMC), 1601 SW Archer Rd. Gainesville, FL 32608, USA
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, H-7623 Pécs, Hungary; Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
33
|
Silverberg ND, Iaccarino MA, Panenka WJ, Iverson GL, McCulloch KL, Dams-O’Connor K, Reed N, McCrea M, Cogan AM, Park Graf MJ, Kajankova M, McKinney G, Weyer Jamora C. Management of Concussion and Mild Traumatic Brain Injury: A Synthesis of Practice Guidelines. Arch Phys Med Rehabil 2020; 101:382-393. [DOI: 10.1016/j.apmr.2019.10.179] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
|
34
|
Karr JE, Iverson GL, Berghem K, Kotilainen AK, Terry DP, Luoto TM. Complicated mild traumatic brain injury in older adults: Post-concussion symptoms and functional outcome at one week post injury. Brain Inj 2019; 34:26-33. [DOI: 10.1080/02699052.2019.1669825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Justin E. Karr
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Boston, MA, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Boston, MA, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
- Spaulding Research Institute, Boston, MA, USA
| | - Ksenia Berghem
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | | | - Douglas P. Terry
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Boston, MA, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, USA
| | - Teemu M. Luoto
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| |
Collapse
|