1
|
Jin C, Yu JM, Li R, Ye XJ. Regional biomechanical characterization of the spinal cord tissue: dynamic mechanical response. Front Bioeng Biotechnol 2024; 12:1439323. [PMID: 39219623 PMCID: PMC11361947 DOI: 10.3389/fbioe.2024.1439323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Characterizing the dynamic mechanical properties of spinal cord tissue is deemed important for developing a comprehensive knowledge of the mechanisms underlying spinal cord injury. However, complex viscoelastic properties are vastly underexplored due to the spinal cord shows heterogeneous properties. To investigate regional differences in the biomechanical properties of spinal cord, we provide a mechanical characterization method (i.e., dynamic mechanical analysis) that facilitates robust measurement of spinal cord ex vivo, at small deformations, in the dynamic regimes. Load-unload cycles were applied to the tissue surface at sinusoidal frequencies of 0.05, 0.10, 0.50 and 1.00 Hz ex vivo within 2 h post mortem. We report the main response features (e.g., nonlinearities, rate dependencies, hysteresis and conditioning) of spinal cord tissue dependent on anatomical origin, and quantify the viscoelastic properties through the measurement of peak force, moduli, and hysteresis and energy loss. For all three anatomical areas (cervical, thoracic, and lumbar spinal cord tissues), the compound, storage, and loss moduli responded similarly to increasing strain rates. Notably, the complex modulus values of ex vivo spinal cord tissue rose nonlinearly with rising test frequency. Additionally, at every strain rate, it was shown that the tissue in the thoracic spinal cord was significantly more rigid than the tissue in the cervical or lumbar spinal cord, with compound modulus values roughly 1.5-times that of the lumbar region. At strain rates between 0.05 and 0.50 Hz, tan δ values for thoracic (that is, 0.26, 0.25, 0.06, respectively) and lumbar (that is, 0.27, 0.25, 0.07, respectively) spinal cord regions were similar, respectively, which were higher than cervical (that is, 0.21, 0.21, 0.04, respectively) region. The conditioning effects tend to be greater at relative higher deformation rates. Interestingly, no marked difference of conditioning ratios is observed among all three anatomical regions, regardless of loading rate. These findings lay a foundation for further comparison between healthy and diseased spinal cord to the future development of spinal cord scaffold and helps to advance our knowledge of neuroscience.
Collapse
Affiliation(s)
- Chen Jin
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang-ming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-jian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
3
|
Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Acta Biomater 2023; 155:436-448. [PMID: 36435440 DOI: 10.1016/j.actbio.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI), a debilitating medical condition that can cause irreversible loss of neurons and permanent paralysis, currently has no cure. However, regenerative medicine may offer a promising treatment. Given that numerous regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding and characterising the mechanical properties of the spinal cord tissue is very important. In this study, we have systematically characterised the spatiotemporal changes in elastic stiffness (elastic modulus, Pa) and viscosity (drop in peak force, %) of injured rat thoracic spinal cord tissues at distinct time points after crush injury using the indentation technique. Our results demonstrate that in comparison with uninjured spinal cord tissue, the injured tissues exhibited lower stiffness (median 3281 Pa versus 9632 Pa; P < 0.001) but demonstrated elevated viscosity (median 80% versus 57%; P < 0.001) at 3 days postinjury. Between 4 and 6 weeks after SCI, the overall viscoelastic properties of injured tissues returned to baseline values. At 12 weeks after SCI, in comparison with uninjured tissue, the injured spinal cord tissues displayed a significant increase in both elasticity (median 13698 Pa versus 9920 Pa; P < 0.001) and viscosity (median 64% versus 58%; P < 0.001). This work constitutes the first quantitative mapping of spatiotemporal changes in spinal cord tissue elasticity and viscosity in injured rats, providing a mechanical basis of the tissue for future studies on the development of biomaterials for SCI repair. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating disease often leading to permanent paralysis. While enormous progress in understanding the molecular pathomechanisms of SCI has been made, the mechanical properties of injured spinal cord tissue have received considerably less attention. This study provides systematic characterization of the biomechanical evolution of rat spinal cord tissue after SCI using a microindentation test method. We find spinal cord tissue behaves significantly softer but more viscous immediately postinjury. As time passes, the lesion site gradually returns to baseline values and then displays pronounced increased viscoelastic properties. As host tissue mechanical properties are a crucial consideration for any biomaterial implanted into central nervous system, our results may have important implications for further studies of SCI repair.
Collapse
|
4
|
Yuan W, Song C. Crosstalk between bone and other organs. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:331-348. [PMID: 37724328 PMCID: PMC10471111 DOI: 10.1515/mr-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 09/20/2023]
Abstract
Bone has long been considered as a silent organ that provides a reservoir of calcium and phosphorus, traditionally. Recently, further study of bone has revealed additional functions as an endocrine organ connecting systemic organs of the whole body. Communication between bone and other organs participates in most physiological and pathological events and is responsible for the maintenance of homeostasis. Here, we present an overview of the crosstalk between bone and other organs. Furthermore, we describe the factors mediating the crosstalk and review the mechanisms in the development of potential associated diseases. These connections shed new light on the pathogenesis of systemic diseases and provide novel potential targets for the treatment of systemic diseases.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
5
|
Fouad K, Ng C, Basso DM. Behavioral testing in animal models of spinal cord injury. Exp Neurol 2020; 333:113410. [PMID: 32735871 PMCID: PMC8325780 DOI: 10.1016/j.expneurol.2020.113410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
This review is based on a lecture presented at the Craig H. Neilsen Foundation sponsored Spinal Cord Injury Training Program at Ohio State University. We discuss the advantages and challenges of injury models in rodents and theory relation to various behavioral outcome measures. We offer strategies and advice on experimental design, behavioral testing, and on the challenges, one will encounter with animal testing. This review is designed to guide those entering the field of spinal cord injury and/or involved with in vivo animal testing.
Collapse
Affiliation(s)
- K Fouad
- University of Alberta, Faculty of Rehabilitation Medicine, Dept of Physical Therapy, 3-48 Corbett Hall, Edmonton T6G 2G4, Canada; University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada.
| | - C Ng
- University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada
| | - D M Basso
- Ohio State University, College of Medicine, School of Health and Rehabilitation Sciences, 106A Atwell Hall, 453 W. 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|