1
|
Vinh To X, Kurniawan ND, Cumming P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res 2023; 1820:148562. [PMID: 37673379 DOI: 10.1016/j.brainres.2023.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We present a cross-sectional, case-matched, and pair-wise comparison of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) measures in vivo and ex vivo in a mouse model of concussion, thus aiming to establish the concordance of structural and diffusion imaging findings in living brain and after fixation. METHODS We allocated 28 male mice aged 3-4 months to sham injury and concussion (CON) groups. CON mice had received a single concussive impact on day 0 and underwent MRI at day 2 (n = 9) or 7 (n = 10) post-impact, and sham control mice likewise underwent imaging at day 2 (n = 5) or 7 (n = 4). Immediately after the final scanning, we collected the perfusion-fixed brains, which were stored for imaging ex vivo 6-12 months later. We then compared the structural imaging, DTI, and NODDI results between different methods. RESULTS In vivo to ex vivo structural and DTI/NODDI findings were in notably poor agreement regarding the effects of concussion on structural integrity of the brain. COMPARISON WITH EXISTING METHODS ex vivo imaging was frequently done to study the effects of diseases and treatments, but our results showed that ex vivo and in vivo imaging can detect completely opposite and contradictory results. This is also the first study that compares in vivo and ex vivo NODDI. CONCLUSION Our findings call for caution in extrapolating translational capabilities obtained ex vivo to physiological measurements in vivo. The divergent findings may reflect fixation artefacts and the contribution of the glymphatic system changes.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | | | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
2
|
To XV, Vegh V, Owusu-Amoah N, Cumming P, Nasrallah FA. Hippocampal demyelination is associated with increased magnetic susceptibility in a mouse model of concussion. Exp Neurol 2023; 365:114406. [PMID: 37062352 DOI: 10.1016/j.expneurol.2023.114406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Structural and functional deficits in the hippocampus are a prominent feature of moderate-severe traumatic brain injury (TBI). In this work, we investigated the potential of Quantitative Susceptibility Imaging (QSM) to reveal the temporal changes in myelin integrity in a mouse model of concussion (mild TBI). We employed a cross-sectional design wherein we assigned 43 mice to cohorts undergoing either a concussive impact or a sham procedure, with QSM imaging at day 2, 7, or 14 post-injury, followed by Luxol Fast Blue (LFB) myelin staining to assess the structural integrity of hippocampal white matter (WM). We assessed spatial learning in the mice using the Active Place Avoidance Test (APA), recording their ability to use visual cues to locate and avoid zone-dependent mild electrical shocks. QSM and LFB staining indicated changes in the stratum lacunosum-molecular layer of the hippocampus in the concussion groups, suggesting impairment of this key relay between the entorhinal cortex and the CA1 regions. These imaging and histology findings were consistent with demyelination, namely increased magnetic susceptibility to MR imaging and decreased LFB staining. In the APA test, sham animals showed fewer entries into the shock zone compared to the concussed cohort. Thus, we present radiological, histological, and behavioral findings that concussion can induce significant and alterations in hippocampal integrity and function that evolve over time after the injury.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | - Viktor Vegh
- The Centre for Advanced Imaging, The University of Queensland, Australia; The ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia
| | - Naana Owusu-Amoah
- The Queensland Brain Institute, The University of Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; The Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
3
|
Berman R, Spencer H, Boese M, Kim S, Radford K, Choi K. Loss of Consciousness and Righting Reflex Following Traumatic Brain Injury: Predictors of Post-Injury Symptom Development (A Narrative Review). Brain Sci 2023; 13:brainsci13050750. [PMID: 37239222 DOI: 10.3390/brainsci13050750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying predictors for individuals vulnerable to the adverse effects of traumatic brain injury (TBI) remains an ongoing research pursuit. This is especially important for patients with mild TBI (mTBI), whose condition is often overlooked. TBI severity in humans is determined by several criteria, including the duration of loss of consciousness (LOC): LOC < 30 min for mTBI and LOC > 30 min for moderate-to-severe TBI. However, in experimental TBI models, there is no standard guideline for assessing the severity of TBI. One commonly used metric is the loss of righting reflex (LRR), a rodent analogue of LOC. However, LRR is highly variable across studies and rodents, making strict numeric cutoffs difficult to define. Instead, LRR may best be used as predictor of symptom development and severity. This review summarizes the current knowledge on the associations between LOC and outcomes after mTBI in humans and between LRR and outcomes after experimental TBI in rodents. In clinical literature, LOC following mTBI is associated with various adverse outcome measures, such as cognitive and memory deficits; psychiatric disorders; physical symptoms; and brain abnormalities associated with the aforementioned impairments. In preclinical studies, longer LRR following TBI is associated with greater motor and sensorimotor impairments; cognitive and memory impairments; peripheral and neuropathology; and physiologic abnormalities. Because of the similarities in associations, LRR in experimental TBI models may serve as a useful proxy for LOC to contribute to the ongoing development of evidence-based personalized treatment strategies for patients sustaining head trauma. Analysis of highly symptomatic rodents may shed light on the biological underpinnings of symptom development after rodent TBI, which may translate to therapeutic targets for mTBI in humans.
Collapse
Affiliation(s)
- Rina Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - Haley Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Sharon Kim
- F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kennett Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kwang Choi
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
- F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Smith AL, Davis J, Panagiotopoulou O, Taylor AB, Robinson C, Ward CV, Kimbel WH, Alemseged Z, Ross CF. Does the model reflect the system? When two-dimensional biomechanics is not 'good enough'. J R Soc Interface 2023; 20:20220536. [PMID: 36695017 PMCID: PMC9874278 DOI: 10.1098/rsif.2022.0536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Models are mathematical representations of systems, processes or phenomena. In biomechanics, finite-element modelling (FEM) can be a powerful tool, allowing biologists to test form-function relationships in silico, replacing or extending results of in vivo experimentation. Although modelling simplifications and assumptions are necessary, as a minimum modelling requirement the results of the simplified model must reflect the biomechanics of the modelled system. In cases where the three-dimensional mechanics of a structure are important determinants of its performance, simplified two-dimensional modelling approaches are likely to produce inaccurate results. The vertebrate mandible is one among many three-dimensional anatomical structures routinely modelled using two-dimensional FE analysis. We thus compare the stress regimes of our published three-dimensional model of the chimpanzee mandible with a published two-dimensional model of the chimpanzee mandible and identify several fundamental differences. We then present a series of two-dimensional and three-dimensional FE modelling experiments that demonstrate how three key modelling parameters, (i) dimensionality, (ii) symmetric geometry, and (iii) constraints, affect deformation and strain regimes of the models. Our results confirm that, in the case of the primate mandible (at least), two-dimensional FEM fails to meet this minimum modelling requirement and should not be used to draw functional, ecological or evolutionary conclusions.
Collapse
Affiliation(s)
- Amanda L. Smith
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, WA 90981, USA
| | - Julian Davis
- Department of Engineering, University of Southern Indiana, 8600 University Blvd, Evansville, IN 47712, USA
| | - Olga Panagiotopoulou
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | | | - Chris Robinson
- Department of Biological Sciences, Bronx Community College, Bronx, NY 10453, USA
- Doctoral Program in Anthropology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Carol V. Ward
- Department of Pathology & Anatomical Sciences, One Hospital Drive, University of Missouri, Columbia, MO 65212, USA
| | - William H. Kimbel
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-4101, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th St, Chicago, IL 60637, USA
| | - Callum F. Ross
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, WA 90981, USA
| |
Collapse
|
5
|
Dong Y, Gu Y, Lu J, Wan J, Jiang S, Koehler RC, Wang J, Zhou J. Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Detecting Severity and Predicting Outcome after Traumatic Brain Injury in Rats. Neurotrauma Rep 2022; 3:261-275. [PMID: 35982981 PMCID: PMC9380886 DOI: 10.1089/neur.2021.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After traumatic brain injury (TBI), early assessment of secondary injury severity is critically important for estimating prognosis and treatment stratification. Currently, secondary injury severity is difficult to estimate. The objective of this study was to investigate the capacity of non-invasive amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) techniques to assess TBI injury in different brain regions and predict long-term neurobehavior outcomes. Fifty-five male and female rats were subjected to a controlled cortical impact with one of three different impactor depths to produce different degrees of TBI. Multi-parameter MRI data were acquired on a 4.7-Tesla scanner at 1 h, 1 day, and 3 days. Immunofluorescence staining was used to detect activated microglia at 3 days, and neurobehavioral tests were performed to assess long-term outcomes after 28 days. The APTw signal in the injury core at 1 day correlated with deficits in sensorimotor function, the sucrose preference test (a test for anhedonia), and spatial memory function on the Barnes maze. The APTw signal in the perilesion ipsilateral cortex gradually increased after TBI, and the value at 3 days correlated with microglia density at 3 days and with spatial memory decline and anhedonia at 28 days. The correlation between APTw and activated microglia was also observed in the ipsilateral thalamus, and its correlation to memory deficit and depression was evident in other ipsilateral sites. These results suggest that APTw imaging can be used for detecting secondary injury and as a potential predictor of long-term outcomes from TBI.
Collapse
Affiliation(s)
- Yinfeng Dong
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanting Gu
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianhua Lu
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
McCunn P, Xu X, Moszczynski A, Li A, Brown A, Bartha R. Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury. J Neuroimaging 2021; 31:879-892. [PMID: 34473386 DOI: 10.1111/jon.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Identification of changesin brain microstructure following mild traumatic brain injury (mTBI) could be instrumental in understanding the underlying pathophysiology. The purpose of this study was to apply neurite orientation dispersion and density imaging (NODDI) to a rodent model of mTBI to determine whether microstructural changes could be detected immediately following injury. METHODS Fifteen adult male Wistar rats were scanned on a Bruker 9.4 Tesla small animal MRI using a multi-shell acquisition (30 b = 1000 s/mm2 and 60 b = 2000 s/mm2 ). Nine animals experienced a single closed head controlled cortical impact followed by NODDI from 1 to 4 h post injury. Region of interest analysis focused on the corpus callosum and hippocampus. A mixed analysis of variance (ANOVA) was used to determine statistically significant interactions in neurite density index (NDI), orientation dispersion index (ODI), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity. Follow up repeated-measures ANOVAs were used to determine individual changes over time. RESULTS NDI showed a significant increase in the hippocampus and corpus callosum following injury, while ODI showed increases in the corpus callosum. No significant changes were observed in the sham control animals. No changes were found in FA, MD, AD, or RD. Histological analysis revealed increased glial fibrillary acidic protein staining relative to controls in both the hippocampus and corpus callosum, with evidence of activated astrocytes in these regions. CONCLUSIONS Changes in NODDI metrics were detected as early as 1 h following mTBI. No changes were detected with conventional diffusion tensor imaging (DTI) metrics, suggesting that NODDI provides greater sensitivity to microstructural changes than conventional DTI.
Collapse
Affiliation(s)
- Patrick McCunn
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyun Xu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Alex Li
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Departments of Psychiatry and Medical Imaging, University of Western Ontario, London, Ontario, Canada
| | - Arthur Brown
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
To XV, Nasrallah FA. Multi-modal magnetic resonance imaging in a mouse model of concussion. Sci Data 2021; 8:207. [PMID: 34354090 PMCID: PMC8342546 DOI: 10.1038/s41597-021-00985-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
This data collection contains Magnetic Resonance Imaging (MRI) data, including structural, diffusion, stimulus-evoked, and resting-state functional MRI and behavioural assessment results, including acute post-impact Loss-of-Righting Reflex time and acute, subacute, and longer-term Neural Severity Score, and Open Field Behaviour obtained from a mouse model of concussion. Four cohorts with 43 3-4 months old male mice in total were used: Sham (n = 14, n = 6 day 2, n = 3 day 7, n = 5 day 14), concussion day 2 (CON 2; n = 9), concussion day 7 (CON 7; n = 10), concussion day 14 (CON 14; n = 10). The data collection contains the aforementioned MRI data in compressed NIFTI format, data sheets on animal's backgrounds and behavioural outcomes and is made publicly available from a data repository. The available data are intended to facility cross-study comparisons, meta-analysis, and science reproducibility.
Collapse
Affiliation(s)
- Xuan Vinh To
- grid.1003.20000 0000 9320 7537The Queensland Brain Institute, The University of Queensland, Saint Lucia, Australia
| | - Fatima A. Nasrallah
- grid.1003.20000 0000 9320 7537The Queensland Brain Institute, The University of Queensland, Saint Lucia, Australia ,grid.1003.20000 0000 9320 7537The Centre for Advanced Imaging, The University of Queensland, Saint Lucia, Australia
| |
Collapse
|
8
|
Soni N, Medeiros R, Alateeq K, To XV, Nasrallah FA. Diffusion Tensor Imaging Detects Acute Pathology-Specific Changes in the P301L Tauopathy Mouse Model Following Traumatic Brain Injury. Front Neurosci 2021; 15:611451. [PMID: 33716645 PMCID: PMC7943881 DOI: 10.3389/fnins.2021.611451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked with tauopathy. However, imaging methods that can non-invasively detect tau-protein abnormalities following TBI need further investigation. This study aimed to investigate the potential of diffusion tensor imaging (DTI) to detect tauopathy following TBI in P301L mutant-tau-transgenic-pR5-mice. A total of 24 9-month-old pR5 mice were randomly assigned to sham and TBI groups. Controlled cortical injuries/craniotomies were performed for TBI/sham groups followed by DTI data acquisition on days 1 and 7 post-injury. DTI data were analyzed by using voxelwise analysis and track-based spatial statistics for gray matter and white matter. Further, immunohistochemistry was performed for total-tau and phosphorylated-tau, astrocytes, and microglia. To detect the association of DTI with these pathological markers, a correlation analysis was performed between DTI and histology findings. At day 1 post-TBI, DTI revealed a widespread reduction in fractional anisotropy (FA) and axial diffusivity (AxD) in the TBI group compared to shams. On day 7, further reduction in FA, AxD, and mean diffusivity and increased radial diffusivity were observed. FA was significantly increased in the amygdala and cortex. Correlation results showed that in the ipsilateral hemisphere FA reduction was associated with increased phosphorylated-tau and glial-immunoreactivity, whereas in the contralateral regions, the FA increase was associated with increased immunostaining for astrocytes. This study is the first to exploit DTI to investigate the effect of TBI in tau-transgenic mice. We show that alterations in the DTI signal were associated with glial activity following TBI and would most likely reflect changes that co-occur with/without phosphorylated-tau. In addition, FA may be a promising measure to identify discrete pathological processes such as increased astroglia activation, tau-hyperphosphorylation or both in the brain following TBI.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|