1
|
Lele AV, Vavilala MS. Cerebral Autoregulation-guided Management of Adult and Pediatric Traumatic Brain Injury. J Neurosurg Anesthesiol 2023; 35:354-360. [PMID: 37523326 DOI: 10.1097/ana.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Cerebral autoregulation (CA) plays a vital role in maintaining cerebral blood flow in response to changes in systemic blood pressure. Impairment of CA following traumatic brain injury (TBI) may exacerbate the injury, potentially impacting patient outcomes. This focused review addresses 4 key questions regarding the measurement, natural history of CA after TBI, and potential clinical implications of CA status and CA-guided management in adults and children with TBI. We examine the feasibility and safety of CA assessment, its association with clinical outcomes, and the potential for reversing deranged CA following TBI. Finally, we discuss how the knowledge of CA status may affect TBI management and outcomes.
Collapse
Affiliation(s)
- Abhijit V Lele
- Department of Anesthesiology and Pain Medicine
- Harborview Injury Prevention and Research Center
- Department of Neurological Surgery, Harborview Medical Center, University of Washington, Seattle, WA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine
- Harborview Injury Prevention and Research Center
- Department of Neurological Surgery, Harborview Medical Center, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Balzi APDCC, Otsuki DA, Andrade L, Paiva W, Souza FL, Aureliano LGC, Malbouisson LMS. Can a Therapeutic Strategy for Hypotension Improve Cerebral Perfusion and Oxygenation in an Experimental Model of Hemorrhagic Shock and Severe Traumatic Brain Injury? Neurocrit Care 2023; 39:320-330. [PMID: 37535176 DOI: 10.1007/s12028-023-01802-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Restoration of brain tissue perfusion is a determining factor in the neurological evolution of patients with traumatic brain injury (TBI) and hemorrhagic shock (HS). In a porcine model of HS without neurological damage, it was observed that the use of fluids or vasoactive drugs was effective in restoring brain perfusion; however, only terlipressin promoted restoration of cerebral oxygenation and lower expression of edema and apoptosis markers. It is unclear whether the use of vasopressor drugs is effective and beneficial during situations of TBI. The objective of this study is to compare the effects of resuscitation with saline solution and terlipressin on cerebral perfusion and oxygenation in a model of TBI and HS. METHODS Thirty-two pigs weighing 20-30 kg were randomly allocated into four groups: control (no treatment), saline (60 ml/kg of 0.9% NaCl), terlipressin (2 mg of terlipressin), and saline plus terlipressin (20 ml/kg of 0.9% NaCl + 2 mg of terlipressin). Brain injury was induced by lateral fluid percussion, and HS was induced through pressure-controlled bleeding, aiming at a mean arterial pressure (MAP) of 40 mmHg. After 30 min of circulatory shock, resuscitation strategies were initiated according to the group. The systemic and cerebral hemodynamic and oxygenation parameters, lactate levels, and hemoglobin levels were evaluated. The data were subjected to analysis of variance for repeated measures. The significance level established for statistical analysis was p < 0.05. RESULTS The terlipressin and saline plus terlipressin groups showed an increase in MAP that lasted until the end of the experiment (p < 0.05). There was a notable increase in intracranial pressure in all groups after starting treatment for shock. Cerebral perfusion pressure and cerebral oximetry showed no improvement after hemodynamic recovery in any group. The groups that received saline at resuscitation had the lowest hemoglobin concentrations after treatment. CONCLUSIONS The treatment of hypotension in HS with saline and/or terlipressin cannot restore cerebral perfusion or oxygenation in experimental models of HS and severe TBI. Elevated MAP raises intracranial pressure owing to brain autoregulation dysfunction caused by TBI.
Collapse
Affiliation(s)
- Ana Paula de Carvalho Canela Balzi
- Anesthesiology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Divisão de Anestesia do ICHC, UTI Cirúrgica Pediátrica, Av. Enéas Carvalho de Aguiar, 255 - 8° Andar, Cerqueira César, São Paulo, SP, 05403-900, Brazil.
| | - Denise Aya Otsuki
- Medical Research Laboratory -LIM-08, Anesthesiology Department, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucia Andrade
- Nephrology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Wellingson Paiva
- Neurosurgery Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Lima Souza
- Medical Research Laboratory, Nephrology Department, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Guilherme Cernaglia Aureliano
- Pathology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Marcelo Sá Malbouisson
- Anesthesiology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César, São Paulo, SP, 05403-000, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Yu Y, Gong Y, Hu B, Ouyang B, Pan A, Liu J, Liu F, Shang XL, Yang XH, Tu G, Wang C, Ma S, Fang W, Liu L, Liu J, Chen D. Expert consensus on blood pressure management in critically ill patients. JOURNAL OF INTENSIVE MEDICINE 2023; 3:185-203. [PMID: 37533806 PMCID: PMC10391579 DOI: 10.1016/j.jointm.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Yuetian Yu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bin Ouyang
- Department of Critical Care Medicine, The First Affiliated Hospital of SunYatsen University, Guangzhou 510080, Guangdong, China
| | - Aijun Pan
- Department of Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Jinglun Liu
- Department of Emergency Medicine and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Xiu-Ling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350001 Fujian, China
| | - Xiang-Hong Yang
- Department of Intensive Care Unit, Emergency & Intensive Care Unit Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014 Zhejiang, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changsong Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shaolin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Fang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, 250014 Shandong, China
| | - Ling Liu
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009 Jiangsu, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Park K, Stein KY, Thelin EP, Zeiler FA. Cerebrovascular Reactivity Is Not Associated With Therapeutic Intensity in Adult Traumatic Brain Injury: A Validation Study. Neurotrauma Rep 2023; 4:307-317. [PMID: 37187506 PMCID: PMC10181802 DOI: 10.1089/neur.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Address correspondence to: Logan Froese, BSc (Eng), Biomedical Engineering, Faculty of Engineering, University of Manitoba, 75 Chancellor's Circle, Winnipeg, Manitoba R3T 5V6, Canada;
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kangyun Park
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric P. Thelin
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21:1004-1060. [PMID: 36183712 PMCID: PMC10427240 DOI: 10.1016/s1474-4422(22)00309-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Lancet Neurology Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI. Since then, funding agencies have supported research both in high-income countries (HICs) and in low-income and middle-income countries (LMICs). In November 2020, the World Health Assembly, the decision-making body of WHO, passed resolution WHA73.10 for global actions on epilepsy and other neurological disorders, and WHO launched the Decade for Action on Road Safety plan in 2021. New knowledge has been generated by large observational studies, including those conducted under the umbrella of the International Traumatic Brain Injury Research (InTBIR) initiative, established as a collaboration of funding agencies in 2011. InTBIR has also provided a huge stimulus to collaborative research in TBI and has facilitated participation of global partners. The return on investment has been high, but many needs of patients with TBI remain unaddressed. This update to the 2017 Commission presents advances and discusses persisting and new challenges in prevention, clinical care, and research. In LMICs, the occurrence of TBI is driven by road traffic incidents, often involving vulnerable road users such as motorcyclists and pedestrians. In HICs, most TBI is caused by falls, particularly in older people (aged ≥65 years), who often have comorbidities. Risk factors such as frailty and alcohol misuse provide opportunities for targeted prevention actions. Little evidence exists to inform treatment of older patients, who have been commonly excluded from past clinical trials—consequently, appropriate evidence is urgently required. Although increasing age is associated with worse outcomes from TBI, age should not dictate limitations in therapy. However, patients injured by low-energy falls (who are mostly older people) are about 50% less likely to receive critical care or emergency interventions, compared with those injured by high-energy mechanisms, such as road traffic incidents. Mild TBI, defined as a Glasgow Coma sum score of 13–15, comprises most of the TBI cases (over 90%) presenting to hospital. Around 50% of adult patients with mild TBI presenting to hospital do not recover to pre-TBI levels of health by 6 months after their injury. Fewer than 10% of patients discharged after presenting to an emergency department for TBI in Europe currently receive follow-up. Structured follow-up after mild TBI should be considered good practice, and urgent research is needed to identify which patients with mild TBI are at risk for incomplete recovery. The selection of patients for CT is an important triage decision in mild TBI since it allows early identification of lesions that can trigger hospital admission or life-saving surgery. Current decision making for deciding on CT is inefficient, with 90–95% of scanned patients showing no intracranial injury but being subjected to radiation risks. InTBIR studies have shown that measurement of blood-based biomarkers adds value to previously proposed clinical decision rules, holding the potential to improve efficiency while reducing radiation exposure. Increased concentrations of biomarkers in the blood of patients with a normal presentation CT scan suggest structural brain damage, which is seen on MR scanning in up to 30% of patients with mild TBI. Advanced MRI, including diffusion tensor imaging and volumetric analyses, can identify additional injuries not detectable by visual inspection of standard clinical MR images. Thus, the absence of CT abnormalities does not exclude structural damage—an observation relevant to litigation procedures, to management of mild TBI, and when CT scans are insufficient to explain the severity of the clinical condition. Although blood-based protein biomarkers have been shown to have important roles in the evaluation of TBI, most available assays are for research use only. To date, there is only one vendor of such assays with regulatory clearance in Europe and the USA with an indication to rule out the need for CT imaging for patients with suspected TBI. Regulatory clearance is provided for a combination of biomarkers, although evidence is accumulating that a single biomarker can perform as well as a combination. Additional biomarkers and more clinical-use platforms are on the horizon, but cross-platform harmonisation of results is needed. Health-care efficiency would benefit from diversity in providers. In the intensive care setting, automated analysis of blood pressure and intracranial pressure with calculation of derived parameters can help individualise management of TBI. Interest in the identification of subgroups of patients who might benefit more from some specific therapeutic approaches than others represents a welcome shift towards precision medicine. Comparative-effectiveness research to identify best practice has delivered on expectations for providing evidence in support of best practices, both in adult and paediatric patients with TBI. Progress has also been made in improving outcome assessment after TBI. Key instruments have been translated into up to 20 languages and linguistically validated, and are now internationally available for clinical and research use. TBI affects multiple domains of functioning, and outcomes are affected by personal characteristics and life-course events, consistent with a multifactorial bio-psycho-socio-ecological model of TBI, as presented in the US National Academies of Sciences, Engineering, and Medicine (NASEM) 2022 report. Multidimensional assessment is desirable and might be best based on measurement of global functional impairment. More work is required to develop and implement recommendations for multidimensional assessment. Prediction of outcome is relevant to patients and their families, and can facilitate the benchmarking of quality of care. InTBIR studies have identified new building blocks (eg, blood biomarkers and quantitative CT analysis) to refine existing prognostic models. Further improvement in prognostication could come from MRI, genetics, and the integration of dynamic changes in patient status after presentation. Neurotrauma researchers traditionally seek translation of their research findings through publications, clinical guidelines, and industry collaborations. However, to effectively impact clinical care and outcome, interactions are also needed with research funders, regulators, and policy makers, and partnership with patient organisations. Such interactions are increasingly taking place, with exemplars including interactions with the All Party Parliamentary Group on Acquired Brain Injury in the UK, the production of the NASEM report in the USA, and interactions with the US Food and Drug Administration. More interactions should be encouraged, and future discussions with regulators should include debates around consent from patients with acute mental incapacity and data sharing. Data sharing is strongly advocated by funding agencies. From January 2023, the US National Institutes of Health will require upload of research data into public repositories, but the EU requires data controllers to safeguard data security and privacy regulation. The tension between open data-sharing and adherence to privacy regulation could be resolved by cross-dataset analyses on federated platforms, with the data remaining at their original safe location. Tools already exist for conventional statistical analyses on federated platforms, however federated machine learning requires further development. Support for further development of federated platforms, and neuroinformatics more generally, should be a priority. This update to the 2017 Commission presents new insights and challenges across a range of topics around TBI: epidemiology and prevention (section 1 ); system of care (section 2 ); clinical management (section 3 ); characterisation of TBI (section 4 ); outcome assessment (section 5 ); prognosis (Section 6 ); and new directions for acquiring and implementing evidence (section 7 ). Table 1 summarises key messages from this Commission and proposes recommendations for the way forward to advance research and clinical management of TBI.
Collapse
Affiliation(s)
- Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mathew Abrams
- International Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Nada Andelic
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael J Bell
- Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yelena G Bodien
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health Örebro University, Örebro, Sweden
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Randall M Chesnut
- Department of Neurological Surgery and Department of Orthopaedics and Sports Medicine, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, Universita Milano Bicocca, Milan, Italy
- NeuroIntensive Care, San Gerardo Hospital, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - David Clark
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Betony Clasby
- Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Endre Czeiter
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance and Department of Neurology, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Véronique De Keyser
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ramon Diaz-Arrastia
- Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas A van Essen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Éanna Falvey
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco and San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dashiell Gantner
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Benjamin Gravesteijn
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabian Guiza
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Deepak Gupta
- Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Gregory Hawryluk
- Section of Neurosurgery, GB1, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Hutchinson
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA
| | - Swati Jain
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hope Kent
- Department of Psychology, University of Exeter, Exeter, UK
| | - Angelos Kolias
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc Maegele
- Cologne-Merheim Medical Center, Department of Trauma and Orthopedic Surgery, Witten/Herdecke University, Cologne, Germany
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Amy Markowitz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Nelson
- Section for Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lindsay D Nelson
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginia Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Wilco Peul
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Dana Pisică
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy, and Dipartimento di Scienze Chirurgiche e Diagnostiche, University of Genoa, Italy
| | - Cecilie Røe
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, UCSD School of Medicine, La Jolla, CA, USA
| | - Nicole von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences Leiden University Medical Center, Leiden, Netherlands
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nancy Temkin
- Departments of Neurological Surgery, and Biostatistics, University of Washington, Seattle, WA, USA
| | - Olli Tenovuo
- Department of Rehabilitation and Brain Trauma, Turku University Hospital, and Department of Neurology, University of Turku, Turku, Finland
| | - Alice Theadom
- National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
| | - Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Abel Torres Espin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, CHU de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Van Praag
- Departments of Clinical Psychology and Neurosurgery, Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Thijs Vande Vyvere
- Department of Radiology, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences (MOVANT), Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Esther L Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Frederick A Zeiler
- Departments of Surgery, Human Anatomy and Cell Science, and Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario, ON, Canada
| | | |
Collapse
|
6
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
7
|
Batson C, Froese L, Sekhon MS, Griesdale DE, Gomez A, Thelin EP, Raj R, Aries M, Gallagher CN, Bernard F, Kramer AH, Zeiler FA. Impact of Chronological Age and Biological Sex on Cerebrovascular Reactivity in Moderate/Severe Traumatic Brain Injury: A CAnadian High-Resolution TBI (CAHR-TBI) Study. J Neurotrauma 2022. [PMID: 36047825 DOI: 10.1089/neu.2022.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impaired cerebrovascular reactivity has emerged as an important associate with poor long-term outcome after moderate/severe traumatic brain injury (TBI). However, our understanding of what drives or modulates the degree of impaired cerebrovascular function remains poor. Age and biological sex remain important modifiers of cerebrovascular function in health and disease, yet their impact on cerebrovascular reactivity after TBI remains unclear. The aim of this study was to explore subgroup responses based on age and biological sex on cerebral physiology. Data from 283 TBI patients from the CAnadian High Resolution TBI (CAHR-TBI) Research Collaborative were evaluated. Cerebrovascular reactivity was determined using high-frequency cerebral physiology for the derivation of three intracranial pressure (ICP) based indices: (1). PRx - correlation between ICP and mean arterial pressure (MAP), (2). PAx - correlation between pulse amplitude of ICP (AMP) and MAP and (3). RAC - correlation between AMP and cerebral perfusion pressure (CPP). Insult burden (% time above clinically defined thresholds) were calculated for these indices. These cerebral physiology indices were studied for their relationship with age via linear regression, age trichotomization (< 40, 40 - 60, > 60) and decades of age (< 30, 30 - 39, 40 - 49, 50 - 59, 60 - 69, > 69) schemes. Similarly, differences based on biological sex were assessed. A statistically significant positive linear correlation was found between PAx, RAC and age. In corollary, a statistically significant relationship was found between increasing age on trichotomized and decades of age analysis with PAx and RAC measures. PRx failed to demonstrate such relationships to advancing age. There was no clear difference in cerebrovascular reactivity profiles between biological sex categories. These findings suggest that AMP-based cerebrovascular reactivity indices may be better positioned to detect impairment in TBI patients with advancing age. Further investigation into the utility of PAx and RAC is required, as they may prove useful for certain subgroups of patients.
Collapse
Affiliation(s)
| | - Logan Froese
- University of Manitoba Faculty of Engineering, Biomedical Engineering, SP-422 EITC, 75 Chancellor`s Circle, Winnipeg, Manitoba, Canada, R3T 5V6;
| | - Mypinder Singh Sekhon
- University of British Columbia, Critical Care Medicine, 899 West 12th Avenue, Vancouver, British Columbia, Canada, V5Z 1M9;
| | - Donald E Griesdale
- University of British Columbia, Anesthesiology, Pharmacology and Therapeutics, Vancouver, British Columbia, Canada;
| | - Alwyn Gomez
- University of Manitoba Faculty of Health Sciences, Surgery, GF231, Health Sciences Centre, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Eric Peter Thelin
- Karolinska Institutet, Department of Clinical Neuroscience, Neurosurgical Research Laboratory, Building R2:02, Karolinska University Hospital, Stockholm, Sweden, 171 76;
| | - Rahul Raj
- HUS, Topeliuksenkatu 5, Helsinki, Finland, 00029 HUS;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Clare N Gallagher
- University of Calgary, Department of Clinical Neurosciences, Calgary, Alberta, Canada;
| | - Francis Bernard
- Hôpital du Sacré-Coeur de Montreal, Intensive Care Unit, 5400 Boul Gouin O, Montreal, Quebec, Canada, H4J1C5;
| | - Andreas H Kramer
- University of Calgary, Departments of Critical Care Medicine and Clinical Neurosciences, 3132 Hospital Drive NW, Calgary, Calgary, Alberta, Canada, T2N 2T9;
| | - Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| |
Collapse
|
8
|
Froese L, Gomez A, Sainbhi AS, Batson C, Slack T, Stein KY, Mathieu F, Zeiler FA. Optimal bispectral index level of sedation and cerebral oximetry in traumatic brain injury: a non-invasive individualized approach in critical care? Intensive Care Med Exp 2022; 10:33. [PMID: 35962913 PMCID: PMC9375800 DOI: 10.1186/s40635-022-00460-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Impaired cerebral autoregulation has been linked with worse outcomes, with literature suggesting that current therapy guidelines fail to significantly impact cerebrovascular reactivity. The cerebral oximetry index (COx_a) is a surrogate measure of cerebrovascular reactivity which can in theory be obtained non-invasively using regional brain tissue oxygen saturation and arterial blood pressure. The goal of this study was to assess the relationship between objectively measured depth of sedation through BIS and autoregulatory capacity measured through COx_a. Methods In a prospectively maintained observational study, we collected continuous regional brain tissue oxygen saturation, intracranial pressure, arterial blood pressure and BIS in traumatic brain injury patients. COx_a was obtained using the Pearson’s correlation between regional brain tissue oxygen saturation and arterial blood pressure and ranges from − 1 to 1 with higher values indicating impairment of cerebrovascular reactivity. Using BIS values and COx_a, a curve-fitting method was applied to determine the minimum value for the COx_a. The associated BIS value with the minimum COx_a is called BISopt. This BISopt was both visually and algorithmically determined, which were compared and assessed over the whole dataset. Results Of the 42 patients, we observed that most had a parabolic relationship between BIS and COx_a. This suggests a potential “optimal” depth of sedation where COx_a is the most intact. Furthermore, when comparing the BISopt algorithm with visual inspection of BISopt, we obtained similar results. Finally, BISopt % yield (determined algorithmically) appeared to be independent from any individual sedative or vasopressor agent, and there was agreement between BISopt found with COx_a and the pressure reactivity index (another surrogate for cerebrovascular reactivity). Conclusions This study suggests that COx_a is capable of detecting disruption in cerebrovascular reactivity which occurs with over-/under-sedation, utilizing a non-invasive measure of determination and assessment. This technique may carry implications for tailoring sedation in patients, focusing on individualized neuroprotection. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00460-9.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
10
|
Batson C, Froese L, Gomez A, Sainbhi AS, Stein KY, Alizadeh A, Zeiler FA. Impact of Age and Biological Sex on Cerebrovascular Reactivity in Adult Moderate/Severe Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Rep 2021; 2:488-501. [PMID: 34901944 PMCID: PMC8655816 DOI: 10.1089/neur.2021.0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Age and biological sex are two potential important modifiers of cerebrovascular reactivity post-traumatic brain injury (TBI) requiring close evaluation for potential subgroup responses. The goal of this study was to provide a preliminary exploratory analysis of the impact of age and biological sex on measures of cerebrovascular function in moderate/severe TBI. Forty-nine patients from the prospectively maintained TBI database at the University of Manitoba with archived high-frequency digital cerebral physiology were evaluated. Cerebrovascular reactivity indices were derived as follows: PRx (correlation between intracranial pressure [ICP] and mean arterial pressure [MAP]), PAx (correlation between pulse amplitude of ICP [AMP] and MAP), and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). Time above clinically significant thresholds for each index was calculated over different periods of the acute intensive care unit stay. The association between PRx, PAx, and RAC measures with age was assessed using linear regression, and an age trichotomization scheme (<40, 40-60, >60) using Kruskal-Wallis testing. Similarly, association with biological sex was tested using Mann-Whitney U testing. Biological sex did not demonstrate an impact on any measures of cerebrovascular reactivity. Linear regression between age and PAx and RAC demonstrated a statistically significant positive linear relationship. Median PAx and RAC measures between trichotomized age categories demonstrated statistically significant increases with advancing age. The PRx failed to demonstrate any statistically significant relationship with age in this cohort, suggesting that in elderly patients with controlled ICP, PAx and RAC may be better metrics for detecting impaired cerebrovascular reactivity. Biological sex appears to not be associated with differences in cerebrovascular reactivity in this cohort. The PRx performed the worst in detecting impaired cerebrovascular reactivity in those with advanced age, where PAx and RAC appear to have excelled. Future work is required to validate these findings and explore the utility of different cerebrovascular reactivity indices.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Svedung Wettervik T, Howells T, Hånell A, Ronne-Engström E, Lewén A, Enblad P. Low intracranial pressure variability is associated with delayed cerebral ischemia and unfavorable outcome in aneurysmal subarachnoid hemorrhage. J Clin Monit Comput 2021; 36:569-578. [PMID: 33728586 PMCID: PMC9123038 DOI: 10.1007/s10877-021-00688-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Purpose High intracranial pressure variability (ICPV) is associated with favorable outcome in traumatic brain injury, by mechanisms likely involving better cerebral blood flow regulation. However, less is known about ICPV in aneurysmal subarachnoid hemorrhage (aSAH). In this study, we investigated the explanatory variables for ICPV in aSAH and its association with delayed cerebral ischemia (DCI) and clinical outcome. Methods
In this retrospective study, 242 aSAH patients, treated at the neurointensive care, Uppsala, Sweden, 2008–2018, with ICP monitoring the first ten days post-ictus were included. ICPV was evaluated on three time scales: (1) ICPV-1 m—ICP slow wave amplitude of wavelengths between 55 and 15 s, (2) ICPV-30 m—the deviation from the mean ICP averaged over 30 min, and (3) ICPV-4 h—the deviation from the mean ICP averaged over 4 h. The ICPV measures were analyzed in the early phase (day 1–3), in the early vasospasm phase (day 4–6.5), and the late vasospasm phase (day 6.5–10). Results High ICPV was associated with younger age, reduced intracranial pressure/volume reserve (high RAP), and high blood pressure variability in multiple linear regression analyses for all ICPV measures. DCI was associated with reduced ICPV in both vasospasm phases. High ICPV-1 m in the post-ictal early phase and the early vasospasm phase predicted favorable outcome in multiple logistic regressions, whereas ICPV-30 m and ICPV-4 h in the late vasospasm phase had a similar association. Conclusions Higher ICPV may reflect more optimal cerebral vessel activity, as reduced values are associated with an increased risk of DCI and unfavorable outcome after aSAH.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Hånell
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Elisabeth Ronne-Engström
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
12
|
Zeiler FA. Advanced Bio-signal Analytics for Continuous Bedside Monitoring of Aneurysmal Subarachnoid Hemorrhage: The Future. Neurocrit Care 2021; 34:375-378. [PMID: 33403580 DOI: 10.1007/s12028-020-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. .,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada. .,Centre on Aging, University of Manitoba, Winnipeg, Canada. .,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|