1
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
Debela DT, Muzazu SGY, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 2021; 9:20503121211034366. [PMID: 34408877 PMCID: PMC8366192 DOI: 10.1177/20503121211034366] [Citation(s) in RCA: 509] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Cancer is a global health problem responsible for one in six deaths worldwide. Treating cancer has been a highly complex process. Conventional treatment approaches, such as surgery, chemotherapy, and radiotherapy, have been in use, while significant advances are being made in recent times, including stem cell therapy, targeted therapy, ablation therapy, nanoparticles, natural antioxidants, radionics, chemodynamic therapy, sonodynamic therapy, and ferroptosis-based therapy. Current methods in oncology focus on the development of safe and efficient cancer nanomedicines. Stem cell therapy has brought promising efficacy in regenerating and repairing diseased or damaged tissues by targeting both primary and metastatic cancer foci, and nanoparticles brought new diagnostic and therapeutic options. Targeted therapy possessed breakthrough potential inhibiting the growth and spread of specific cancer cells, causing less damage to healthy cells. Ablation therapy has emerged as a minimally invasive procedure that burns or freezes cancers without the need for open surgery. Natural antioxidants demonstrated potential tracking down free radicals and neutralizing their harmful effects thereby treating or preventing cancer. Several new technologies are currently under research in clinical trials, and some of them have already been approved. This review presented an update on recent advances and breakthroughs in cancer therapies.
Collapse
Affiliation(s)
- Dejene Tolossa Debela
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Seke GY Muzazu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Enteric Diseases and Vaccines Research Unit, Centre for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia
| | - Kidist Digamo Heraro
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Wachemo University, Hossana, Ethiopia
| | - Maureen Tayamika Ndalama
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Betelhiem Woldemedhin Mesele
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Dagimawi Chilot Haile
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- University of Gondar, Gondar, Ethiopia
| | - Sophia Khalayi Kitui
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Mishra K, Jain AK. Liposomes: An Emerging Approach for the Treatment of Cancer. Curr Pharm Des 2021; 27:2398-2414. [PMID: 33823772 DOI: 10.2174/1381612827666210406141449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional drug delivery agents for a life-threatening disease, i.e., cancer, lack specificity towards cancer cells, producing a greater degree of side effects in the normal cells with a poor therapeutic index. These toxic side effects often limit dose escalation of anti-cancer drugs, leading to incomplete tumor suppression/ cancer eradication, early disease relapse, and ultimately, the development of drug resistance. Accordingly, targeting the tumor vasculatures is essential for the treatment of cancer. OBJECTIVE To search and describe a safer drug delivery carrier for the treatment of cancer with reduced systemic toxicities. METHOD Data were collected from Medline, PubMed, Google Scholar, Science Direct using the following keywords: 'liposomes', 'nanocarriers', 'targeted drug delivery', 'ligands', 'liposome for anti-cancerous drugs', 'treatment for cancer' and 'receptor targeting.' RESULTS Liposomes have provided a safe platform for the targeted delivery of encapsulated anti-cancer drugs for the treatment of cancer, which results in the reduction of the cytotoxic side effects of anti-cancer drugs on normal cells. CONCLUSION Liposomal targeting is a better emerging approach as an advanced drug delivery carrier with targeting ligands for anti-cancer agents.
Collapse
Affiliation(s)
- Keerti Mishra
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Akhlesh K Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| |
Collapse
|
4
|
Habib S, Ariatti M, Singh M. Anti- c-myc RNAi-Based Onconanotherapeutics. Biomedicines 2020; 8:E612. [PMID: 33333729 PMCID: PMC7765184 DOI: 10.3390/biomedicines8120612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of the c-myc proto-oncogene features prominently in most human cancers. Early studies established that inhibiting the expression of oncogenic c-myc, produced potent anti-cancer effects. This gave rise to the notion that an appropriate c-myc silencing agent might provide a broadly applicable and more effective form of cancer treatment than is currently available. The endogenous mechanism of RNA interference (RNAi), through which small RNA molecules induce gene silencing by binding to complementary mRNA transcripts, represents an attractive avenue for c-myc inhibition. However, the development of a clinically viable, anti-c-myc RNAi-based platform is largely dependent upon the design of an appropriate carrier of the effector nucleic acids. To date, organic and inorganic nanoparticles were assessed both in vitro and in vivo, as carriers of small interfering RNA (siRNA), DICER-substrate siRNA (DsiRNA), and short hairpin RNA (shRNA) expression plasmids, directed against the c-myc oncogene. We review here the various anti-c-myc RNAi-based nanosystems that have come to the fore, especially between 2005 and 2020.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag, Durban X54001, South Africa; (S.H.); (M.A.)
| |
Collapse
|
5
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
6
|
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019; 13:961. [PMID: 31537986 PMCID: PMC6753017 DOI: 10.3332/ecancer.2019.961] [Citation(s) in RCA: 388] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year, cancer is responsible for millions of deaths worldwide and, even though much progress has been achieved in medicine, there are still many issues that must be addressed in order to improve cancer therapy. For this reason, oncological research is putting a lot of effort towards finding new and efficient therapies which can alleviate critical side effects caused by conventional treatments. Different technologies are currently under evaluation in clinical trials or have been already introduced into clinical practice. While nanomedicine is contributing to the development of biocompatible materials both for diagnostic and therapeutic purposes, bioengineering of extracellular vesicles and cells derived from patients has allowed designing ad hoc systems and univocal targeting strategies. In this review, we will provide an in-depth analysis of the most innovative advances in basic and applied cancer research.
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Chiara Martinelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
7
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Jo JI, Tabata Y. How controlled release technology can aid gene delivery. Expert Opin Drug Deliv 2015; 12:1689-701. [DOI: 10.1517/17425247.2015.1048221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Spugnini EP, Biroccio A, De Mori R, Scarsella M, D'Angelo C, Baldi A, Leonetti C. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft. J Transl Med 2011; 9:125. [PMID: 21798045 PMCID: PMC3163203 DOI: 10.1186/1479-5876-9-125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139) as well as the efficacy of combination chemotherapy in human melanoma xenografts. METHODS Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP) followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. RESULTS The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50%) accompanied by a marked tumor re-growth delay (TRD, about 20 days). The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. CONCLUSIONS These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Enrico P Spugnini
- S.A.F.U. Department, Regina Elena Cancer Institute, (Via delle Messi d'Oro 156), Rome (00158), Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Nano and microtechnologies for the delivery of oligonucleotides with gene silencing properties. Molecules 2009; 14:2801-23. [PMID: 19701125 PMCID: PMC6255434 DOI: 10.3390/molecules14082801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 01/13/2023] Open
Abstract
Oligonucleotides (ONs) are synthetic fragments of nucleic acid designed to modulate the expression of target proteins. DNA-based ONs (antisense, antigene, aptamer or decoy) and more recently a new class of RNA-based ONs, the small interfering RNAs (siRNAs), have gained great attention for the treatment of different disease states, such as viral infections, inflammation, diabetes, and cancer. However, the development of therapeutic strategies based on ONs is hampered by their low bioavailability, poor intracellular uptake and rapid degradation in biological fluids. The use of a non-viral carrier can be a powerful tool to overcome these drawbacks. Lipid or polymer-based nanotechnologies can improve biological stability and cellular uptake of ONs, with possibility of tissue and/or cellular targeting. The use of polymeric devices can also produce a prolonged release of the ON, thus reducing the need of frequent administrations. This review summarizes advantages and issues related to the main non-viral vectors used for ON delivery.
Collapse
|
11
|
Fattal E, Barratt G. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 2009; 157:179-94. [PMID: 19366348 DOI: 10.1111/j.1476-5381.2009.00148.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antisense oligonucleotides and small interfering RNA have enormous potential for the treatment of a number of diseases, including cancer. However, several impediments to their widespread use as drugs still have to be overcome: in particular their lack of stability in physiological fluids and their poor penetration into cells. Association with or encapsulation within nano- and microsized drug delivery systems could help to solve these problems. In this review, we describe the progress that has been made using delivery systems composed of natural or synthetic polymers in the form of complexes, nanoparticles or microparticles.
Collapse
Affiliation(s)
- Elias Fattal
- Univ Paris Sud 11, UMR 8612, Châtenay-Malabry, F-92290, France
| | | |
Collapse
|
12
|
Dinauer N, Lochmann D, Demirhan I, Bouazzaoui A, Zimmer A, Chandra A, Kreuter J, von Briesen H. Intracellular tracking of protamine/antisense oligonucleotide nanoparticles and their inhibitory effect on HIV-1 transactivation. J Control Release 2004; 96:497-507. [PMID: 15120905 DOI: 10.1016/j.jconrel.2004.02.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 02/12/2004] [Indexed: 11/17/2022]
Abstract
Membrane transport of antisense oligonucleotides (ODN) is an inefficient process which requires special carriers for their intracellular delivery. We have developed a delivery system for AS-ODN and their phosphorothioate analogues (AS-PTO) directed against human immunodeficiency virus type 1 (HIV-1) tat mRNA for efficient transfection of HIV-1 target cells. Protamine was used to complex AS-ODN and AS-PTO to form nanoparticles with diameters of about 180 nm and surface charges in the range of -18 to +30 mV. Cellular uptake of these nanoparticles was significantly enhanced compared to naked oligonucleotides. A double labeling technique with fluorescently tagged protamine and AS-ODN was used to follow the intracellular fate of the nanoparticles. Protamine/AS-ODN nanoparticles showed release of the antisense compound leading to specific inhibition of tat mediated HIV-1 transactivation. In contrast, protamine/AS-PTO complexes were stable over 72 h, and failed to release AS-PTO. These results demonstrate that protamine/AS-ODN nanoparticles are useful for future therapeutical application to inhibit viral gene expression.
Collapse
MESH Headings
- Cell Survival/drug effects
- Gene Products, tat/chemistry
- Gene Products, tat/metabolism
- HIV-1/drug effects
- HIV-1/genetics
- Humans
- Jurkat Cells
- Light
- Microspheres
- Monocytes/drug effects
- Monocytes/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/pharmacokinetics
- Oligonucleotides, Antisense/pharmacology
- Particle Size
- Protamines/administration & dosage
- Protamines/pharmacokinetics
- Protamines/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Scattering, Radiation
- Spectrometry, Fluorescence
- Surface Properties
- Transcriptional Activation/drug effects
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Norbert Dinauer
- Department of Virology and Cell Biology, Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Melanoma is the most aggressive form of skin cancer and is notoriously resistant to all current modalities of cancer therapy. A large set of genetic, functional and biochemical studies suggest that melanoma cells become 'bullet proof' against a variety of chemotherapeutic drugs by exploiting their intrinsic resistance to apoptosis and by reprogramming their proliferation and survival pathways during melanoma progression. In recent years, the identification of molecules involved in the regulation and execution of apoptosis, and their alteration in melanoma, have provided new insights into the molecular basis for melanoma chemoresistance. With this knowledge in hand, the challenge is now to devise strategies potent enough to compensate or bypass these cell death defects and improve the actual poor prognosis of patients at late stages of the disease.
Collapse
Affiliation(s)
- María S Soengas
- Department of Dermatology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 28109, USA.
| | | |
Collapse
|
14
|
Ungaro F, De Rosa G, Miro A, Quaglia F. Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J Pharm Biomed Anal 2003; 31:143-9. [PMID: 12560058 DOI: 10.1016/s0731-7085(02)00571-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyethylenimine (PEI) is a cationic polymer that can be associated to oligonuclotides to promote their transfection both in vitro and in vivo. The controlled release of oligonucleotide/polyethylenimine complexes from biodegradable systems can result in an increased cellular internalisation of the oligonucleotide and a reduced cytotoxicity of the complex. This effect strongly depends on the amount of PEI loaded in and released from the delivery system. In this work we describe a rapid, sensitive and reproducible spectrophotometric method for the quantitative analysis of PEI by itself or in the presence of an associated oligonucleotide. PEI does not possess chromophores, hence the determination by ordinary spectrophotometry is not possible. However, upon addition of copper (II) ions, PEI forms a dark blue cuprammonium complex that can be detected by UV-vis spectrophotometry. The optimum conditions in terms of optical parameters, copper (II) concentration required for a quantitative PEI complexation, and the most suitable medium for the reaction were ascertained. A linear relationship (r(2)=0.9997) between absorbance and amounts of PEI was found at lambda(max) of 285 nm over the concentration range 5.0-50.0 microg ml(-1). The detection limit (QOD) was 4.0 microg ml(-1). The method was validated for the quantitation of PEI in the presence of an oligonucleotide, which absorbs at 285 nm as well.
Collapse
Affiliation(s)
- Francesca Ungaro
- Dipartimento di Chimica Farmaceutica e Tossicologica, Facoltà di Farmacia, Università degli Studi di Napoli Federico II-Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
15
|
Dass CR, Burton MA. Modified microplex vector enhances transfection of cells in culture while maintaining tumour-selective gene delivery in-vivo. J Pharm Pharmacol 2003; 55:19-25. [PMID: 12625863 DOI: 10.1111/j.2042-7158.2003.tb02429.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A non-commercial liposome (dimethyl dioctadecyl ammonium bromide:dioleoyl phosphatidylethanolamine) was compared with a commercial variety (Lipofectamine) for transfection of cultured rat adenocarcinoma cells and in an in-vivo kidney tumour model. Transfection of the cells in culture and in tumours in-vivo was variable with both types of liposomes. A high-dose microplex (lipoplex-microsphere) vector enhanced liposome-mediated transfection of cells in culture. When these high-dose microplexes were tested in-vivo, they were better than both microspherical and liposomal delivery modes in terms of transgene expression levels and the tumour-to-normal tissue ratio of gene delivery. Microplexes have been demonstrated to be capable of not only selective delivery of plasmids to solid tumours, but also of increasing transfection in cell culture, a finding that may be used in ex-vivo transfection studies. It is hypothesized that microspheres anchored the combination vector closer to the cultured cells, allowing attached liposomes to gain easier access into cells. In-vivo, microspheres permitted the microplexes to selectively deliver their genetic payload within the tumour tissue, from where the action of cationic liposomes on cellular membranes facilitated increased access of plasmids into the cytosol of target cells.
Collapse
Affiliation(s)
- Crispin R Dass
- Charles Sturt University, Box 588, Wagga Wagga, NSW 2678, Australia.
| | | |
Collapse
|
16
|
Jackson JK, Liang LS, Hunter WL, Reynolds M, Sandberg JA, Springate C, Burt HM. The encapsulation of ribozymes in biodegradable polymeric matrices. Int J Pharm 2002; 243:43-55. [PMID: 12176294 DOI: 10.1016/s0378-5173(02)00228-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ribozymes are catalytic RNA that bind and cleave specific regions of target RNA. Therefore, protein synthesis by the target RNA may be specifically inhibited by ribozymes. However, ribozymes are rapidly cleared from plasma so effective treatment of proliferative diseases may rely on the repeated administration of these agents to maintain therapeutic ribozyme concentrations. Therefore, the objective of this study was to encapsulate ribozymes in injectable polymeric paste and microsphere formulations to allow for the controlled release of these agents over extended periods of time. Ribozymes were effectively encapsulated in poly(L-lactic acid) (PLLA) and poly(lactic-co-glycolic) (PLGA) microspheres in various size ranges using a modified water-in-oil-in-water emulsion system and in poly(epsilon-caprolactone) (PCL) pastes by physical blending. These formulations released non-degraded ribozymes, in vitro, in a controlled manner. PLLA microspheres released the ribozymes rapidly whereas PLGA released drugs more slowly. The release rate of ribozymes from PCL pastes could be effectively controlled by altering the loading concentration of ribozymes in the paste. These polymeric injectable formulations of ribozymes may allow for the extended treatment of localized disease sites, such as cancer and arthritis, without the need for repeated dosing.
Collapse
Affiliation(s)
- John K Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, 2146 East Mall, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
17
|
Stewart DA, Xu X, Thomas SD, Miller DM, Xu X. Acridine-modified, clamp-forming antisense oligonucleotides synergize with cisplatin to inhibit c-Myc expression and B16-F0 tumor progression. Nucleic Acids Res 2002; 30:2565-74. [PMID: 12034846 PMCID: PMC117175 DOI: 10.1093/nar/30.11.2565] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Revised: 03/12/2002] [Accepted: 03/20/2002] [Indexed: 11/13/2022] Open
Abstract
The c-myc protooncogene plays a key role in the abnormal growth regulation of melanoma cells. We have targeted three polypurine sequences within the mouse myc mRNA with acridine-modified, clamp-forming antisense oligonucleotides (AS ODNs) in an effort to inhibit growth of murine melanoma cells. These ODNs are unique in that they hybridize to the target mRNA by both Watson-Crick and Hoogsteen hydrogen bond interactions, forming a triple-stranded structure. At a concentration of 3 microM E1C, E2C and E3C inhibit B16-F0 proliferation by 76, 66 and 78%, respectively. Both immunofluorescent staining and western blot analysis corroborate a proportional reduction in c-Myc expression by all three ODNs. There were clear distinctions in the ability of these ODNs to inhibit tumor progression in C57BL/6 mice as a function of Myc expression. There was no synergy demonstrated between ODN E1C with cisplatin (DDP), which inhibited tumor growth by 77% alone and 82% in combination. Although E2C inhibited growth by 54%, its effect was decreased to 32% with DDP, when compared with controls. E3C, on the other hand, demonstrated a synergistic effect with DDP, inhibiting growth by 72% in combination, but only by 1% as a single agent. Immunofluorescence analysis of tumors for each group revealed a concomitant reduction in c-Myc expression in tumors from mice treated with the most active clamp ODN alone (E1C) or clamp ODN + DDP (E1C/E3C + DDP). Western blot analysis confirmed this decrease in target protein expression. Our results document the growth-inhibitory activity of two myc-targeting antisense clamp ODNs; E1C, which has activity as a single agent, and E3C, which has in vivo synergy with DDP pretreatment. These data confirm the antiproliferative effects of these novel ODNs and document an interesting synergy with the chemotherapeutic agent DDP.
Collapse
Affiliation(s)
- Delisha A Stewart
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
18
|
Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002; 54:135-47. [PMID: 11755709 DOI: 10.1016/s0169-409x(01)00245-9] [Citation(s) in RCA: 491] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new family of nanoscale materials on the basis of dispersed networks of cross-linked ionic and nonionic hydrophilic polymers is being developed. One example is the nanosized cationic network of cross-linked poly(ethylene oxide) (PEO) and polyethyleneimine (PEI), PEO-cl-PEI nanogel. Interaction of anionic amphiphilic molecules or oligonucleotides with PEO-cl-PEI results in formation of nanocomposite materials in which the hydrophobic regions from polyion-complexes are joined by the hydrophilic PEO chains. Formation of polyion-complexes leads to the collapse of the dispersed gel particles. However, the complexes form stable aqueous dispersions due to the stabilizing effect of the PEO chain. These systems allow for immobilization of negatively charged biologically active compounds such as retinoic acid, indomethacin and oligonucleotides (bound to polycation chains) or hydrophobic molecules (incorporated into nonpolar regions of polyion-surfactant complexes). The nanogel particles carrying biological active compounds have been modified with polypeptide ligands to enhance receptor-mediated delivery. Efficient cellular uptake and intracellular release of oligonucleotides immobilized in PEO-cl-PEI nanogel have been demonstrated. Antisense activity of an oligonucleotide in a cell model was elevated as a result of formulation of oligonucleotide with the nanogel. This delivery system has a potential of enhancing oral and brain bioavailability of oligonucleotides as demonstrated using polarized epithelial and brain microvessel endothelial cell monolayers.
Collapse
Affiliation(s)
- Serguei V Vinogradov
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
19
|
Abstract
The vasculature of a tumour provides the most effective route by which neoplastic cells may be reached and eradicated by drugs. The fact that a tumour's vasculature is relatively more permeable than healthy host tissue should enable selective delivery of drugs to tumour tissue. Such delivery is relevant to carrier-mediated delivery of genetic medicine to tumours. This review discusses the potential of delivering therapeutic oligonucleotides (ONs) to tumours using cationic liposomes and cyclodextrins (CyDs), and the major hindrances posed by the tumour itself on such delivery. Cationic liposomes are generally 100-200 nm in diameter, whereas CyDs typically span 1.5 nm across. Cationic liposomes have been used for the introduction of nucleic acids into mammalian cells for more than a decade. CyD molecules are routinely used as agents that engender cholesterol efflux from lipid-laden cells, thus having an efficacious potential in the management of atherosclerosis. A recent trend is to employ these oligosaccharide molecules for delivering nucleic acids in cells both in-vitro and in-vivo. Comparisons are made with other ON delivery agents, such as porphyrin derivatives (< 1 nm), branched chain dendrimers (approximately 10 nm), polyethylenimine polymers (approximately 10 nm), nanoparticles (20-1,000 nm) and microspheres (> 1 microm), in the context of delivery to solid tumours. A discourse on how the chemical and physical properties of these carriers may affect the uptake of ONs into cells, particularly in-vivo, forms a major basis of this review.
Collapse
Affiliation(s)
- Crispin R Dass
- Johnson & Johnson Research, Strawberry Hills, Australia.
| |
Collapse
|
20
|
Sotomayor MG, Yu H, Antonia S, Sotomayor EM, Pardoll DM. Advances in gene therapy for malignant melanoma. Cancer Control 2002; 9:39-48. [PMID: 11907465 DOI: 10.1177/107327480200900106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The recent developments in the field of gene transfer have advanced the use of gene therapy as a novel strategy against a variety of human malignancies. Due to its unique set of characteristics, melanoma represents a suitable target for the clinical translation of the different gene transfer approaches recently developed. The goal of gene therapy targeted to melanoma cells is to introduce "suicide" genes, to transfer tumor suppressor genes, to inactivate aberrant oncogene expression, or to introduce genes encoding immunologically relevant molecules. Gene therapy targeted to the host's immune cells has been developed as an additional strategy to redirect immune responses against melanoma. METHODS The authors reviewed the published gene transfer studies in experimental models, as well as the results of gene therapy clinical trials for patients with melanoma. RESULTS Clinical trials have shown the feasibility and safety of gene therapy against malignant melanoma. Although no major successes have been reported, the positive results observed in some patients support the potential for gene therapy in the management of this disease. CONCLUSIONS Gene therapy of melanoma using current gene transfer approaches is feasible and safe. Better vector technology as well as increased understanding of the "bystander effect" triggered by gene transfer approaches would provide the tools to validate gene therapy as an effective modality of treatment for malignant melanoma.
Collapse
Affiliation(s)
- Maria G Sotomayor
- Cutaneous Oncology Program, H. Lee Moffitt Cancer Center & Research Institute at the University of South Florida, Tampa, USA
| | | | | | | | | |
Collapse
|
21
|
Hughes MD, Hussain M, Nawaz Q, Sayyed P, Akhtar S. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 2001; 6:303-315. [PMID: 11257582 DOI: 10.1016/s1359-6446(00)00326-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The design and development of antisense oligonucleotides and ribozymes for the treatment of diseases arising from genetic abnormalities has become a real possibility over the past few years. Improvements in oligonucleotide chemistry have led to the synthesis of nucleic acids that are relatively stable in the biological milieu. However, advances in cellular targeting and intracellular delivery will probably lead to more widespread clinical applications. This review looks at recent advances in the in vitro and in vivo delivery of antisense oligodeoxynucleotides and ribozymes.
Collapse
Affiliation(s)
- M D. Hughes
- Aston Centre for Gene-based Therapeutics (ACGT), Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, B4 7ET, Birmingham, UK
| | | | | | | | | |
Collapse
|
22
|
Akhtar S, Hughes MD, Khan A, Bibby M, Hussain M, Nawaz Q, Double J, Sayyed P. The delivery of antisense therapeutics. Adv Drug Deliv Rev 2000; 44:3-21. [PMID: 11035194 DOI: 10.1016/s0169-409x(00)00080-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antisense oligonucleotides, ribozymes and DNAzymes have emerged as novel, highly selective inhibitors or modulators of gene expression. Indeed, their use in the treatment of diseases arising from genetic abnormalities has become a real possibility over the past few years. The first antisense drug molecule is now available for clinical use in Europe and USA. However, their successful application in the clinic will require improvements in cellular targeting and intracellular delivery. This review aims to look at recent advances in the in vitro and in vivo delivery of antisense oligodeoxynucleotides and ribozymes.
Collapse
Affiliation(s)
- S Akhtar
- Aston Centre for Gene-based Therapeutics (ACGT), Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, B4 7ET, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Schneeberger A, Goos M, Stingl G, Wagner SN. Management of malignant melanoma: new developments in immune and gene therapy. Clin Exp Dermatol 2000; 25:509-19. [PMID: 11044187 DOI: 10.1046/j.1365-2230.2000.00694.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thus far, the use of classical anti-cancer treatment modalities had only rarely a beneficial impact on the prognosis of patients with metastatic melanoma. We as physicians have therefore the obligation as well as the chance to develop and test new therapeutic strategies. Our growing knowledge about the genetic basis of melanoma provides one platform to fulfil this task. Another one comes from our increasing understanding of the molecular and cellular mechanisms involved in the induction/modulation of immune responses, as well as the progress made in the field of identification of melanoma antigens, and allows for the development of a new generation of vaccines. The aim of this article is to discuss several of these new concepts towards the use of immune and gene therapy of melanoma.
Collapse
Affiliation(s)
- A Schneeberger
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, University of Vienna Medical School Austria.
| | | | | | | |
Collapse
|