1
|
Rubtsova NI, Hart MC, Arroyo AD, Osharovich SA, Liebov BK, Miller J, Yuan M, Cochran JM, Chong S, Yodh AG, Busch TM, Delikatny EJ, Anikeeva N, Popov AV. NIR Fluorescent Imaging and Photodynamic Therapy with a Novel Theranostic Phospholipid Probe for Triple-Negative Breast Cancer Cells. Bioconjug Chem 2021; 32:1852-1863. [PMID: 34139845 DOI: 10.1021/acs.bioconjchem.1c00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide a-phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body. The probe targets abnormal choline metabolism in cancer cells; specifically, the overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) in breast, prostate, and ovarian cancers. Pyro-PtdEtn-QSY consists of a NIR fluorophore and a quencher, attached to a PtdEtn moiety. It is selectively activated by PC-PLC resulting in enhanced fluorescence in cancer cells compared to normal cells. In our in vitro investigation, four breast cancer cell lines showed higher probe activation levels than noncancerous control cells, immortalized human mammary gland cells, and normal human T cells. Moreover, the ability of this nanocomposite to function as a sensitizer in PDT experiments on MDA-MB-231 cells suggests that the probe is promising as a theranostic agent.
Collapse
Affiliation(s)
- Natalia I Rubtsova
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Michael C Hart
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Alejandro D Arroyo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Sofya A Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin K Liebov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Sanghoon Chong
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - E James Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Anatoliy V Popov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Taghian T, Metelev VG, Zhang S, Bogdanov AA. Imaging NF-κB activity in a murine model of early stage diabetes. FASEB J 2019; 34:1198-1210. [PMID: 31914655 DOI: 10.1096/fj.201801147r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 11/11/2022]
Abstract
Early pro-inflammatory signaling in the endocrine pancreas involves activation of NF-κB, which is believed to be important for determining the ultimate fate of β-cells and hence progression of type 1 diabetes (T1D). Thus, early non-invasive detection of NF-κB in pancreatic islets may serve as a potential strategy for monitoring early changes in pancreatic endocrine cells eventually leading to T1D. We investigated the feasibility of optical imaging of NF-κB transcription factor activation induced by low-dose streptozocin (LD-STZ) treatment in the immunocompetent SKH1 mouse model of early stage diabetes. In this model, we showed that the levels of NF-κB may be visualized and measured by fluorescence intensity of specific near-infrared (NIR) fluorophore-labeled oligodeoxyribonucleotide duplex (ODND) probes. In addition, NF-κB activation following LD-STZ treatment was validated using immunofluorescence and transgenic animals expressing NF-κB inducible imaging reporter. We showed that LD-STZ-treated SKH1 mice had significantly higher (2-3 times, P < .01) specific NIR FI in the nuclei and cytoplasm of islets cells than in non-treated control mice and this finding was corroborated by immunoblotting and electrophoretic mobility shift assays. Finally, using semi-quantitative confocal analysis of non-fixed pancreatic islet microscopy we demonstrated that ODND probes may be used to distinguish between the islets with high levels of NF-κB transcription factor and control islet cells.
Collapse
Affiliation(s)
- Toloo Taghian
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Valeriy G Metelev
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Chemistry, Moscow State University, Moscow, Russian Federation
| | - Surong Zhang
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexei A Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Liebov B, Arroyo AD, Rubtsova NI, Osharovich SA, Delikatny EJ, Popov AV. Nonprotecting Group Synthesis of a Phospholipase C Activatable Probe with an Azo-Free Quencher. ACS OMEGA 2018; 3:6867-6873. [PMID: 29978148 PMCID: PMC6026834 DOI: 10.1021/acsomega.8b00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The near-infrared fluorescent activatable smart probe Pyro-phosphatidylethanolamine (PtdEtn)-QSY was synthesized and observed to selectively fluoresce in the presence of phosphatidylcholine-specific phospholipase C (PC-PLC). PC-PLC is an important biological target as it is known to be upregulated in a variety of cancers, including triple negative breast cancer. Pyro-PtdEtn-QSY features a QSY21 quenching moiety instead of the Black Hole Quencher-3 (BHQ-3) used previously because the latter contains an azo bond, which could lead to biological instability.
Collapse
|
4
|
Yanachkov I, Zavizion B, Metelev V, Stevens LJ, Tabatadze Y, Yanachkova M, Wright G, Krichevsky AM, Tabatadze DR. Self-neutralizing oligonucleotides with enhanced cellular uptake. Org Biomol Chem 2018; 15:1363-1380. [PMID: 28074950 DOI: 10.1039/c6ob02576e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) are attached to the internucleoside phosphates of ON by phosphotriester bonds. The BCNSs are terminated with positively charged amino groups, and are optimized to form ion pairs with the neighboring phosphate groups. The new modified ONs can be prepared by standard automated phosphoramidite chemistry in good yield and purity. They possess good solubility and hybridization properties, are not involved in non-standard intramolecular aggregation, have low cytotoxicity, adequate chemical stability, improved serum stability, and above all, display significantly enhanced cellular uptake. Thus, the new ON derivatives exhibit properties that make them promising candidates for the development of novel therapeutics or research tools for modulation of the expression of target genes.
Collapse
Affiliation(s)
- Ivan Yanachkov
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA. and GLSynthesis, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - Boris Zavizion
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA.
| | - Valeri Metelev
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA. and Department of Chemistry, Moscow State University, Leninskye gory1/40, Moscow 119991, Russian Federation
| | - Laura J Stevens
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA.
| | | | - Milka Yanachkova
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA. and GLSynthesis, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - George Wright
- GLSynthesis, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA
| | - David R Tabatadze
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Metelev V, Zhang S, Zheng S, Kumar AT, Bogdanov A. Fluorocarbons Enhance Intracellular Delivery of Short STAT3-sensors and Enable Specific Imaging. Am J Cancer Res 2017; 7:3354-3368. [PMID: 28900515 PMCID: PMC5595137 DOI: 10.7150/thno.19704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Short oligonucleotide sequences are now being widely investigated for their potential therapeutic properties. The modification of oligonucleotide termini with short fluorinated residues is capable of drastically altering their behavior in complex in vitro and in vivo systems, and thus may serve to greatly enhance their therapeutic potential. The main goals of our work were to explore: 1) how modification of STAT3 transcription factor-binding oligodeoxynucleotide (ODN) duplexes (ODND) with one or two short fluorocarbon (FC)-based residues would change their properties in vitro and in vivo, and if so, how this would affect their intracellular uptake by cancer cells, and 2) the ability of such modified ODND to form non-covalent complexes with FC-modified carrier macromolecule. The latter has an inherent advantage of producing a 19F-specific magnetic resonance (MR) imaging signature. Thus, we also tested the ability of such copolymers to generate 19F-MR signals. Materials and Methods. Fluorinated nucleic acid residues were incorporated into ODN by using automated synthesis or via activated esters on ODN 5'-ends. To quantify ODND uptake by the cells and to track their stability, we covalently labeled ODN with fluorophores using internucleoside linker technology; the FC-modified carrier was synthesized by acylation of pegylated polylysine graft copolymer with perfluoroundecanoic acid (M5-gPLL-PFUDA). Results. ODN with a single FC group exhibited a tendency to form duplexes with higher melting points and with increased stability against degradation when compared to control non-modified ODNs. ODND carrying fluorinated residues showed complex formation with M5-gPLL-PFUDA as predicted by molecular dynamics simulations. Moreover, FC groups modulated the specificity of ODND binding to the STAT3 target. Finally, FC modification resulted in greater cell uptake (2 to 4 fold higher) when compared to the uptake of non-modified ODND as determined by quantitative confocal fluorescence imaging of A431 and INS-1 cells. Conclusion. ODND modification with FC residues enables fine-tuning of protein binding specificity to double-strand binding motifs and results in an increased internalization by A431 and INS-1 cells in culture. Our results show that modification of ODN termini with FC residues is both a feasible and powerful strategy for developing more efficient nucleic acid-based therapies with the added benefit of allowing for non-invasive MR imaging of ODND therapeutic targeting and response.
Collapse
|
6
|
On-nylon membrane detection of nucleic acid molecules by rolling circle amplification. Anal Biochem 2017; 533:26-33. [PMID: 28610874 DOI: 10.1016/j.ab.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 12/28/2022]
Abstract
Positively-charged nylon membrane (NM) is a general solid-phase support for nucleic acid detection due to its convenient immobilization of nucleic acid materials by direct electrostatic adherence and simple UV crosslinking. Rolling circle amplification (RCA) is a widely used isothermal DNA amplification technique for nucleic acid detection. Near-infrared fluorescence (NIRF) is a new fluorescence technique with high sensitivity due to low background. This study developed a simple method for detecting nucleic acid molecules by combining the advantages of NM, RCA and NIRF, named NIRF-based solid phase RCA on nylon membrane (NM-NIRF-sRCA). The detection system of this method only need two kinds of nucleic acid molecules: target-specific probes with a RCA primer (P) at their 3' end and a rolling circle (RC). The detection procedure consists of four steps: (1) immobilizing detected nucleic acids on NM by UV crosslinking; (2) hybridizing NM with specific probes and RC; (3) amplifying by a RCA reaction containing biotin-dUTP; (4) incubating NM with NIRF-labeled streptavidin and imaging with a NIRF imager. The method was fully testified by detecting oligonucleotides, L1 fragments of various HPV subtypes cloned in plasmid, and E.coli genomic DNA. This study thus provides a new facile method for detecting nucleic acid molecules.
Collapse
|
7
|
Yin J, Gan P, Zhou F, Wang J. Sensitive detection of transcription factors using near-infrared fluorescent solid-phase rolling circle amplification. Anal Chem 2014; 86:2572-9. [PMID: 24475783 DOI: 10.1021/ac403758p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study describes a method for analyzing transcription factor (TF) activity, near-infrared fluorescent solid-phase rolling circle amplification (NIRF-sRCA). This method analyzes TF activity in four steps: (i) incubate DNA with protein sample and isolate TF-bound DNA, (ii) hybridize the TF-bound DNA and rolling circle to DNA microarray, (iii) amplify the TF-bound DNA with sRCA that contains biotin-labeled dUTP, and (iv) detect sRCA products by binding of NIRF-labeled streptavidin and NIRF imaging. This method was validated by proof-of-concept detection of purified TF protein and cell nuclear extract. Detection of purified TF protein demonstrated that NIRF-sRCA could quantitatively detect NF-κB p50 protein, and as little as 6.94 ng (∼140 fmol) of this protein was detected. Detection of nuclear extract revealed that NIRF-sRCA could specifically and quantitatively detect NF-κB p50 activity in HeLa cell nuclear extracts, and the activity of this TF in as little as 0.625 μg of nuclear extracts could be detected. Detection of nuclear extract also revealed that NIRF-sRCA could detect the relative activities of multiple TFs in HeLa cell nuclear extracts and the fold induction of multiple TFs in the TNFα-induced HeLa cell nuclear extracts. Therefore, this study provides a new tool for studying TFs.
Collapse
Affiliation(s)
- Junhuan Yin
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, China
| | | | | | | |
Collapse
|
8
|
Zhou F, Ling X, Yin J, Wang J. Analyzing transcription factor activity using near infrared fluorescent bridge polymerase chain reaction. Anal Biochem 2013; 448:105-12. [PMID: 24333250 DOI: 10.1016/j.ab.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 02/05/2023]
Abstract
This study has developed a new method, near infrared fluorescent bridge polymerase chain reaction (NIRF-bPCR), for analyzing transcription factor (TF) activity. This method was first used to detect the activity of purified nuclear factor kappa B (NF-κB) p50. The results demonstrated that this method could quantitatively detect the activity of p50 protein at less than 115ng (∼ 2320fmol), and the detection limit reached as little as 6.94ng (∼ 140fmol) of p50 protein. This method was then used to detect TF activity in cell extracts. The results revealed that this method could specifically detect NF-κB activity in HeLa cell nuclear extracts. Finally, this method was used to detect the activities of multiple TFs in a protein sample. The results showed that this method could detect the activities of six TFs-NF-κB, AP-1, TFIID, CREB, NF-E2, and p53-in the TNFα-induced and -uninduced HeLa cell nuclear extracts. Calculation of the fold induction of six TFs revealed that NF-κB, CREB, and AP1 were activated by TNFα induction in HeLa cells, in agreement with the detection results of other methods. Therefore, this study provides a new tool for analyzing TF activity. This study also revealed that NIRF-bPCR may be used as a new method for detecting DNA molecules.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiaoqian Ling
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Junhuan Yin
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Metelev V, Zhang S, Tabatadze D, Kumar ATN, Bogdanov A. The three-dimensional context of a double helix determines the fluorescence of the internucleoside-tethered pair of fluorophores. MOLECULAR BIOSYSTEMS 2013; 9:2447-53. [PMID: 23925269 PMCID: PMC3929952 DOI: 10.1039/c3mb70108e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a general phenomenon of the formation of either a fluorescent or an entirely quenched oligodeoxynucleotide (ODN) duplex system by hybridizing pairs of complementary ODNs with identical chemical composition. The ODNs carried internucleoside tether-linked cyanines, where the cyanines were chosen to form a Förster's resonance energy transfer (FRET) donor-acceptor pair. The fluorescent and quenched ODN duplex systems differed only in that the cyanines linked to the respective ODNs were linked either closer to the 5'- or 3'-ends of the molecule. In either case, however, the dyes were separated by an identical number (7 or 8) of base pairs. Characterization by molecular modeling and energy minimization using a conformational search algorithm in a molecular operating environment (MOE) revealed that linking of the dyes closer to the 5'-ends resulted in their reciprocal orientation across the major groove which allowed a closely interacting dye pair to be formed. This overlap between the donor and acceptor dye molecules resulted in changes in absorbance spectra consistent with the formation of H-aggregates. Conversely, dyes linked closer to 3'-ends exhibited emissive FRET and formed a pair of dyes that interacted with the DNA helix only weakly. Induced CD spectra analysis suggested that interaction with the double helix was weaker than in the case of the closely interacting cyanine dye pair. Linking the dyes such that the base pair separation was 10 or 0 favored energy transfer with subsequent acceptor emission. Our results suggest that when interpreting FRET measurements from nucleic acids, the use of a "spectroscopic ruler" principle which takes into account the 3D helical context of the double helix will allow more accurate interpretation of fluorescence emission.
Collapse
Affiliation(s)
- Valeri Metelev
- The Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
10
|
Bogdanov AA, Metelev V, Zhang S, Kumar ATN. Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes. MOLECULAR BIOSYSTEMS 2012; 8:2166-73. [PMID: 22710322 DOI: 10.1039/c2mb25057h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We designed and synthesized sensors for imaging transcription factor-DNA interactions using a complementary pair of 21-base pair long oligonucleotides (ODNs) carrying two internucleoside phosphate-linked cyanine fluorophores that can either engage in Förster's resonance energy transfer (FRET) with fluorescence emission or assemble into a ground state quenched dimer with short fluorescence lifetimes (FL). Cyanine fluorophores were linked to ODNs within the NF-κB binding site. These sensors were tested in the presence of recombinant p50 and p65 NF-κB proteins or constitutively NF-κB activating HeLa cell lysates. By using a coherent light excitation source we followed changes in fluorescence lifetime of the donor (Cy5.5) at the donor's excitation and emission light wavelengths, as well as the acceptor (800CW or Cy7 cyanine fluorophores) in FRET mode. We observed increases in the donor lifetime in both emitting (0.08-0.15 ns) and non-emitting quenched (0.21 ns) sensors in response to protein binding. The measurements of lifetimes in FRET mode in quenched pair-carrying ODN duplex sensors showed significant differences in FL of the acceptor cyanine fluorophore between NF-κB-containing and NF-κB-free samples but not in control sensors with ODN sequences that have decreased binding affinity to NF-κB. We anticipate that the observed effects will be instrumental for developing sensors enabling non-invasive imaging in cells that undergo activation of NF-κB.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- The Laboratory of Molecular Imaging Probes S6-434, Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
11
|
Metelev V, Zhang S, Tabatadze D, Bogdanov A. Hairpin-like fluorescent probe for imaging of NF-κB transcription factor activity. Bioconjug Chem 2011; 22:759-65. [PMID: 21417216 DOI: 10.1021/bc100553e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three oligodeoxyribonucleotides (ODN) covalently labeled with near-infrared (NIR) fluorochromes were synthesized and characterized with a goal of comparing in vitro a hairpin-based and a duplex-based FRET probe designed for the detection of human recombinant NF-κB p50/p65 heterodimer binding to DNA. Using deoxyguanosine phosphoramidite with a phosphorus-linked aminoethylene (diethylene glycol) hydrophilic linker, we synthesized ODNs with internucleoside reactive sites. The hairpin loop amino linker was modified with IRDye 800CW (FRET acceptor), and the 3'-end was modified with Cy5.5 (FRET donor) using a dithio-linker. To obtain a duplex probe, we conjugated Cy5.5 and 800CW to complementary strands at the distance of ten base pairs in the resultant duplex. No quenching of dyes was observed in either probe. The FRET efficiency was higher in the duplex (71%) than in the hairpin (56%) due to a more favorable distance between the donor and the acceptor. However, the hairpin design allowed more precise ratiometric measurement of fluorescence intensity changes as a result of NF-κB p50/p65 binding to the probe. We determined that as a result of binding there was a statistically significant increase of fluorescence intensity of Cy5.5 (donor) due to a decrease of FRET if normalized by 800CW intensity measured independently of FRET. We conclude that the hairpin based probe design allows for the synthesis of a dual fluorescence imaging probe that renders signal changes that are simple to interpret and stoichiometrically correct for detecting transcription factor-DNA interactions.
Collapse
Affiliation(s)
- Valeri Metelev
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave North,Worcester MA 01655, USA
| | | | | | | |
Collapse
|
12
|
Zhang S, Bogdanov A. Plate capture assay of fluorescent oligonucleotide duplex reporter-transcription factor complexes. Bioconjug Chem 2009; 20:1444-8. [PMID: 19572630 DOI: 10.1021/bc900137y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously developed prototype oligodeoxyribonucleotide (ODN) duplex fluorescence energy transfer (FRET) reporters for optical sensing of NF-κB transcription factor. We report here a plate-binding assay designed for optimizing the above reporters. Nitrilotriacetate-bearing plates were prepared by using sequential (1) aminosilylation; (2) carboxylation; (3) coupling of Nα,Nα-bis(carboxymethyl)-L-lysine or, alternatively, by replacing steps 1 and 2 by treating the glass with 3-(triethoxysilyl)propylsuccinic anhydride. FRET reporters were obtained by covalent linking of Cy5.5 (fluorescence donor) and IRdye800CW (fluorescence acceptor) to complementary ODN strands encoding a high-affinity p50 binding site. Recombinant 6 × His tagged NF-κB p50 was used for immobilizing the protein on glass plates via linked NTA-Ni(II) groups. Imaging and quantification of the fluorescence intensity in the wells was performed in two channels (700 and 800 nm) using a near-infrared scanning device with microscopic resolution. The fluorescence intensity of the ODN duplex reporter was detectible in the plates at the concentration of 5 pM. NF-κB p50-ODN reporter interaction was studied by measuring the ratio of 700 nm (donor) to 800 nm (acceptor) fluorescence intensities. Using the plate assay, we were able to measure p50-mediated interference with FRET at low density of plate binding.
Collapse
Affiliation(s)
- Surong Zhang
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
13
|
In vivo investigation of breast cancer progression by use of an internal control. Neoplasia 2009; 11:220-7. [PMID: 19242603 DOI: 10.1593/neo.08648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 12/03/2008] [Accepted: 12/08/2008] [Indexed: 01/12/2023] Open
Abstract
Optical imaging of breast cancer has been considered for detecting functional and molecular characteristics of diseases in clinical and preclinical settings. Applied to laboratory research, photonic investigations offer a highly versatile tool for preclinical imaging and drug discovery. A particular advantage of the optical method is the availability of multiple spectral bands for performing imaging. Herein, we capitalize on this feature to demonstrate how it is possible to use different wavelengths to offer internal controls and significantly improve the observation accuracy in molecular imaging applications. In particular, we show the independent in vivo detection of cysteine proteases along with tumor permeability and interstitial volume measurements using a dual-wavelength approach. To generate results with a view toward clinically geared studies, a transgenic Her2/neu mouse model that spontaneously developed mammary tumors was used. In vivo findings were validated against conventional ex vivo tests such as histology and Western blot analyses. By correcting for biodistribution parameters, the dual-wavelength method increases the accuracy of molecular observations by separating true molecular target from probe biodistribution. As such, the method is highly appropriate for molecular imaging studies where often probe delivery and target presence are not independently assessed. On the basis of these findings, we propose the dual-wavelength/normalization approach as an essential method for drug discovery and preclinical imaging studies.
Collapse
|