1
|
Yamasaki K, Akutsu Y, Yamasaki T, Miyagishi M, Kubota T. Enhanced affinity of racemic phosphorothioate DNA with transcription factor SATB1 arising from diastereomer-specific hydrogen bonds and hydrophobic contacts. Nucleic Acids Res 2020; 48:4551-4561. [PMID: 32187371 PMCID: PMC7192603 DOI: 10.1093/nar/gkaa170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphorothioate modification is commonly introduced into therapeutic oligonucleotides, typically as a racemic mixture in which either of the two non-bridging phosphate oxygens is replaced by sulfur, which frequently increases affinities with proteins. Here, we used isothermal titration calorimetry and X-ray crystallography to investigate the thermodynamic and structural properties of the interaction between the primary DNA-binding domain (CUTr1) of transcription factor SATB1 and dodecamer DNAs with racemic phosphorothioate modifications at the six sites known to contact CUTr1 directly. For both the modified and unmodified DNAs, the binding reactions were enthalpy-driven at a moderate salt concentration (50 mM NaCl), while being entropy-driven at higher salt concentrations with reduced affinities. The phosphorothioate modifications lowered this susceptibility to salt, resulting in a significantly enhanced affinity at a higher salt concentration (200 mM NaCl), although only some DNA molecular species remained interacting with CUTr1. This was explained by unequal populations of the two diastereomers in the crystal structure of the complex of CUTr1 and the phosphorothioate-modified DNA. The preferred diastereomer formed more hydrogen bonds with the oxygen atoms and/or more hydrophobic contacts with the sulfur atoms than the other, revealing the origins of the enhanced affinity.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Yukie Akutsu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Makoto Miyagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Tomomi Kubota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
2
|
Decoy oligodeoxynucleotide technology: an emerging paradigm for breast cancer treatment. Drug Discov Today 2020; 25:195-200. [DOI: 10.1016/j.drudis.2019.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
|
3
|
Ding M, Pan J, Guo Z, Liu Q, Yang C, Mao L. SATB1 is a Novel Molecular Target for Cancer Therapy. Cancer Invest 2018; 36:28-36. [PMID: 29381393 DOI: 10.1080/07357907.2018.1423688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meng Ding
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Jun Pan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Zhicheng Guo
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Quhe Liu
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Chunhua Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
| | - Lijun Mao
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| |
Collapse
|
4
|
The Role of Actin Dynamics and Actin-Binding Proteins Expression in Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and Evaluation of Possible Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4578373. [PMID: 29581975 PMCID: PMC5822767 DOI: 10.1155/2018/4578373] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Metastasis causes death of 90% of cancer patients, so it is the most significant issue associated with cancer disease. Thus, it is no surprise that many researchers are trying to develop drugs targeting or preventing them. The secondary tumour site formation is closely related to phenomena like epithelial-to-mesenchymal and its reverse, mesenchymal-to-epithelial transition. The change of the cells' phenotype to mesenchymal involves the acquisition of migratory potential. Cancer cells movement is possible due to the development of invasive structures like invadopodia, lamellipodia, and filopodia. These changes are dependent on the reorganization of the actin cytoskeleton. In turn, the polymerization and depolymerization of actin are controlled by actin-binding proteins. In many tumour cells, the actin and actin-associated proteins are accumulated in the cell nucleus, suggesting that it may also affect the progression of cancer by regulating gene expression. Once the cancer cell reaches a new habitat it again acquires epithelial features and thus proliferative activity. Targeting of epithelial-to-mesenchymal or/and mesenchymal-to-epithelial transitions through regulation of their main components expression may be a potential solution to the problem of metastasis. This work focuses on the role of these processes in tumour progression and the assessment of therapeutic potential of agents targeting them.
Collapse
|
5
|
Laurinavicius A, Green AR, Laurinaviciene A, Smailyte G, Ostapenko V, Meskauskas R, Ellis IO. Ki67/SATB1 ratio is an independent prognostic factor of overall survival in patients with early hormone receptor-positive invasive ductal breast carcinoma. Oncotarget 2016; 6:41134-45. [PMID: 26512778 PMCID: PMC4747395 DOI: 10.18632/oncotarget.5838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023] Open
Abstract
Biological diversity of breast cancer presents challenges for personalized therapy and necessitates multiparametric approaches to understand and manage the disease. Multiple protein biomarkers tested by immunohistochemistry (IHC), followed by digital image analysis and multivariate statistics of the data, have been shown to be effective in exploring latent profiles of tumor tissue immunophenotype. In this study, based on tissue microarrays of 107 patients with hormone receptor (HR) positive invasive ductal breast carcinoma, we investigated the prognostic value of the integrated immunophenotype to predict overall survival (OS) of the patients. A set of 10 IHC markers (ER, PR, HER2, Ki67, AR, BCL2, HIF-1α, SATB1, p53, and p16) was used. The main factor of the variance was characterized by opposite loadings of ER/PR/AR/BCL2 and Ki67/HIF-1α; it was associated with histological grade but did not predict OS. The second factor was driven by SATB1 expression along with moderate positive HIF-1α and weak negative Ki67 loadings. Importantly, this factor did not correlate with any clinicopathologic parameters, but was an independent predictor of better OS. Ki67 and SATB1 did not reach statistical significance as single predictors; however, high Ki67/SATB1 ratio was an independent predictor of worse OS. In addition, our data indicate potential double prognostic meaning of HIF-1α expression in breast cancer and necessitate focused studies, taking into account the immunophenotype interactions and tissue heterogeneity aspects.
Collapse
Affiliation(s)
- Arvydas Laurinavicius
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Center of Pathology, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine and Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom
| | - Aida Laurinaviciene
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Center of Pathology, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Giedre Smailyte
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| | | | - Raimundas Meskauskas
- National Center of Pathology, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine and Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Cong QX, Zhang H, Sun SX, Li HF, Wang Y, Jian S. Pilot study special AT-rich sequence-binding protein 1 investigating as a potential biomarker for esophageal squamous cell carcinoma. Dis Esophagus 2016; 29:621-6. [PMID: 25951709 DOI: 10.1111/dote.12365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the present study, we aimed to evaluate the expression of special AT-rich sequence-binding protein 1 (SATB1) in esophageal squamous cell carcinoma (ESCC) and assess the correlation between its expression and the clinicopathological features and prognosis of the disease. SATB1 expression in ESCC tissue was determined by using immunohistochemical analysis, quantitative real-time polymerase chain reaction, and western blot analysis. The relationship between SATB1 expression and clinicopathological features was examined by using the chi-squared test, and the survival rate was calculated by using the Kaplan-Meier survival curve. The correlation between the indicators and patient survival was estimated by using a Cox regression analysis. High SATB1 expression in was detected in 48.3% and 7.8% of ESCC and normal esophagus tissues (P < 0.05), respectively. SATB1 expression did not significantly correlate with clinicopathological features. The Kaplan-Meier curve indicated that patients with high SATB1 expression had significantly shorter survival than those with low SATB1 expression. In a multivariate Cox regression model, high SATB1 expression was identified as an independent prognostic factor for patients with ESCC. In conclusion, these results suggest that high SATB1 expression is predictive of poor prognosis in ESCC and may be a promising new candidate for targeted therapies for ESCC.
Collapse
Affiliation(s)
- Q-X Cong
- Department of Radiology, Daqing Longnan Hospital of the 5th Affiliated Hospital of Qiqihaer Medical College, Daqing, China
| | - H Zhang
- Department of Radiology, Daqing Longnan Hospital of the 5th Affiliated Hospital of Qiqihaer Medical College, Daqing, China
| | - S-X Sun
- Department of Radiology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - H-F Li
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, China
| | - Y Wang
- Department of Radiology, Daqing Longnan Hospital of the 5th Affiliated Hospital of Qiqihaer Medical College, Daqing, China
| | - S Jian
- Department of Oncology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
7
|
SATB1 is an independent prognostic factor in radically resected upper gastrointestinal tract adenocarcinoma. Virchows Arch 2014; 465:649-59. [PMID: 25326863 PMCID: PMC4245492 DOI: 10.1007/s00428-014-1667-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/12/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022]
Abstract
Gastric cancer is the second most common cause of cancer-related death worldwide, and the incidence of esophageal adenocarcinoma is rising. While some progress has been made in treatment strategies, overall survival remains very poor for patients with adenocarcinoma in the upper gastrointestinal tract. Special AT-rich sequence binding protein 1 (SATB1) is a global genome organizer that has been demonstrated to promote aggressive tumor behavior in several different types of cancer, including gastric cancer. The prognostic value of SATB1 expression in esophageal cancer has, however, not yet been described. In this study, expression of SATB1 was examined by immunohistochemistry on tissue microarrays prepared from tissue samples from 175 patients with adenocarcinoma of the esophagus, cardia, or stomach and containing normal tissue, intestinal metaplasia, primary tumors, and metastases. A well-validated antibody was used. We found SATB1 to be an independent prognostic factor in patients with a radically resected tumor, correlating with shorter overall survival as well as with shorter recurrence-free survival. SATB1 expression was also found to be significantly lower in primary tumors associated with intestinal metaplasia than those without intestinal metaplasia. This observation is of potential biological interest as it has been proposed that intestinal metaplasia-associated tumors constitute a less aggressive phenotype.
Collapse
|
8
|
Heubner M, Kimmig R, Aktas B, Siffert W, Frey UH. The haplotype of three polymorphisms in the SATB1 promoter region impacts survival in breast cancer patients. Oncol Lett 2014; 7:2007-2012. [PMID: 24932280 PMCID: PMC4049675 DOI: 10.3892/ol.2014.1983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/04/2014] [Indexed: 11/05/2022] Open
Abstract
Special AT-rich sequence binding protein 1 (SATB1) has regulatory effects on gene expression and appears to play an important role in tumor progression. The present study screened the promoter region of the SATB1 gene for polymorphisms, evaluated the corresponding haplotypes regarding alterations in promoter activity in vitro and analyzed the impact of these haplotypes on the clinical course of breast cancer patients. A cohort of 241 female Caucasian breast cancer patients who had been treated was enrolled in this retrospective analysis. The median follow-up time was 93 months (range, 4–155 months). PCR products from DNA of 10 healthy, unrelated volunteers were analyzed to identify new polymorphisms within the promoter region. Genotyping was conducted using restriction fragment length polymorphism and pyrosequencing. PCR constructs with the respective alleles from the four most frequent haplotypes were cloned into the vector pGEM®-T Easy and then transferred into the luc2-containing reporter vector pGl 4.10® for transfection of HEK293 cells. The pGl 4.73® vector, containing hRluc, was used for normalizing the transfection rates. Sequencing the region -3807 to -2828 bp upstream of ATG from ten healthy blood donors, three single nucleotide polymorphisms consisting of base exchanges were identified: -3600T>C, -3363A>G and -2984C>T. The SATB1 -3600T/-3363A/-2984C haplotype had lower promoter activity than all other constructs in vitro and exhibited a significant association with nodal status (P<0.05). Kaplan-Meier survival analysis revealed significantly improved overall survival for homozygous SATB1 -3600T/-3363A/-2984C haplotype carriers compared with heterozygous carriers or the other haplotypes (P=0.033). The SATB1 -3600T/-3363A/-2984C haplotype is associated with lower promoter activity and appears to impact upon survival in breast cancer patients.
Collapse
Affiliation(s)
- Martin Heubner
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen D-45122, Germany ; Department of Obstetrics and Gynaecology, University of Duisburg-Essen, Essen D-45122, Germany
| | - Rainer Kimmig
- Department of Obstetrics and Gynaecology, University of Duisburg-Essen, Essen D-45122, Germany
| | - Bahriye Aktas
- Department of Obstetrics and Gynaecology, University of Duisburg-Essen, Essen D-45122, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen D-45122, Germany
| | - Ulrich H Frey
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen D-45122, Germany ; Department of Anesthesiology and Intensive Care Medicine, University of Duisburg-Essen, Essen D-45122, Germany
| |
Collapse
|
9
|
Zhang L, Cheng F, He R, Chen H, Liu Y, Sun J. Inhibition of SATB1 by shRNA suppresses the proliferation of cutaneous malignant melanoma. Cancer Biother Radiopharm 2014; 29:77-82. [PMID: 24392879 PMCID: PMC3929234 DOI: 10.1089/cbr.2013.1502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexpression of special AT-rich sequence binding protein 1 (SATB1), a global genome organizer, as a predictor of poor prognosis in cutaneous malignant melanoma (CMM) attracted great interest in previous research. In this article, upregulated SATB1 was observed in three melanoma cell lines and in eight CMM tissues. After downregulating SATB1 by RNAi, proliferation of A375 was suppressed in vitro and in vivo. In summary, the proliferation of CMM could be related closely to the SATB1 gene. Interference of this gene may be a promising method for CMM therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Dermatology Hospital of Jiangxi Province, Nanchang, China
| | - Fang Cheng
- Department of Dermatology, Xingtai People's Hospital, Hebei Province, China
| | - Runzhi He
- Department of Neurosurgery, Xingtai People's Hospital, Hebei Province, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
10
|
Phosphorylated SATB1 is associated with the progression and prognosis of glioma. Cell Death Dis 2013; 4:e901. [PMID: 24176859 PMCID: PMC3920943 DOI: 10.1038/cddis.2013.433] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/17/2013] [Accepted: 10/02/2013] [Indexed: 02/07/2023]
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) is a global chromatin organizer and gene regulator, and high expression of SATB1 is associated with progression and poor prognosis in several malignancies. Here, we examine the expression pattern of SATB1 in glioma. Microarray analysis of 127 clinical samples showed that SATB1 mRNA was expressed at lower levels in highly malignant glioblastoma multiforme (GBM) than in low-grade glioma and normal brain tissue. This result was further confirmed by real-time RT-PCR in the clinical samples, three GBM cell lines, primary SU3 glioma cells and tumor cells harvested by laser-capture microdissection. Consistent with the mRNA levels, SATB1 protein expression was downregulated in high-grade glioma, as shown by western blotting. However, phospho-SATB1 levels showed an opposite pattern, with a significant increase in these tumors. Immunohistochemical analysis of phospho-SATB1 expression in tissue microarrays with tumors from 122 glioma cases showed that phospho-SATB1 expression was significantly associated with high histological grade and poor survival by Kaplan–Meier analysis. In vitro transfection analysis showed that phospho-SATB1 DNA binding has a key role in regulating the proliferation and invasion of glioma cells. The effect of SATB1 in glioma cell is mainly histone deacetylase (HDAC1)-dependent. We conclude that phospho-SATB1, but not SATB1 mRNA expression, is associated with the progression and prognosis of glioma. By interaction with HDAC1, phospho-SATB1 contributes to the invasive and proliferative phenotype of GBM cells.
Collapse
|
11
|
Shen Z, Zeng Y, Guo J, Wu Y, Jiang X, Ding R, Wu C, Li R, Luo B, Zeng C, Jiang H, Jie W. Over-expression of the special AT rich sequence binding protein 1 (SATB1) promotes the progression of nasopharyngeal carcinoma: association with EBV LMP-1 expression. J Transl Med 2013; 11:217. [PMID: 24047082 PMCID: PMC3850651 DOI: 10.1186/1479-5876-11-217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/17/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Special AT rich sequence binding protein 1 (SATB1) plays a crucial role in the biology of various types of human cancer. However, the role of SATB1 in human nasopharyngeal carcinoma (NPC) remains unknown. In the present study, we sought to investigate the contribution of aberrant SATB1 expression in the progression of NPC and its association with the Epstein Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1). METHODS Immunohistochemical analysis was performed to detect SATB1 and LMP-1 protein in clinical samples, and the association of SATB1 protein expression with patient clinicopathological characteristics and LMP-1 expression were analyzed. SATB1 expression profiles were evaluated in well-differentiated NPC cell line CNE1, poorly-differentiated CNE2Z, undifferentiated C666-1 and immortalized nasopharyngeal epithelia NP-69 cells using quantitative RT-PCR, western blotting and fluorescent staining. After inhibition the SATB1 expression by using SATB1 specific small interfering RNA in these cell lines, the change of cell proliferation was investigated by western blotting analysis of PCNA (proliferating cell nuclear antigen) expression and CCK-8 assay, and the cell migration was assessed by Transwell migration assay. Finally, the expressions of SATB1 and PCNA were examined in CNE1 cells that forced LMP-1 expression by fluorescent staining and RT-PCR. RESULTS Immunohistochemical analysis revealed that SATB1 protein expression was elevated in NPC tissues compared to benign nasopharyngeal tissues (P = 0.005). Moreover, high levels of SATB1 protein expression were positively correlated with clinical stage (P = 0.025), the status of lymph node metastasis (N classification) (P = 0.018), distant metastasis (M classification) (P = 0.041) and LMP-1 expression status (r = 2.35, P < 0.01) in NPC patients. In vitro experiments demonstrated that an inverse relationship between SATB1 expression and NPC differentiation status, with SATB1 weakly expressed in NP-69 cells and CNE1 cells, and significant increasingly expressed in CNE-2Z and C666-1 cells. Targeted knockdown of SATB1 expression obviously attenuated the proliferation and migration of highly SATB1-expressing CNE2Z and C666-1 cells, but not NP-69 and CNE1 cells. Interestingly, forced LMP-1 expression in CNE1 cells led to a surprisingly increasing SATB1 expression and nuclear location, companying with an up-regulated PCNA expression. CONCLUSIONS Our results reveal that EBV LMP-1-mediated over-expression of SATB1 is associated with NPC progression, suggesting SATB1 may represent a promising biomarker and therapeutic target for NPC.
Collapse
Affiliation(s)
- Zhihua Shen
- Department of Pathology & Pathophysiology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Agrelo R, Kishimoto H, Novatchkova M, Peraza V, Paolino M, Souabni A, Wutz A. SATB1 collaborates with loss of p16 in cellular transformation. Oncogene 2013; 32:5492-500. [PMID: 23686316 PMCID: PMC3898308 DOI: 10.1038/onc.2013.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 02/07/2023]
Abstract
Tumor progression is associated with invasiveness and metastatic potential. The special AT-rich binding protein 1 (SATB1) has been identified as a key factor in the progression of breast cancer cells to a malignant phenotype and is associated with progression of human tumors. In normal development, SATB1 coordinates gene expression of progenitor cells by functioning as a genome organizer. In contrast to progenitor and tumor cells, SATB1 expression in nontransformed cells is not compatible with proliferation. Here we show that SATB1 expression in mouse embryonic fibroblasts induces cell cycle arrest and senescence that is associated with elevated p16 protein levels. Deletion of p16 overcomes the SATB1-induced senescence. We further provide evidence for an interaction of SATB1 with the retinoblastoma (RB)/E2F pathway downstream of p16. A combined deletion of the RB proteins, RB, p107 and p130 (triple-mutant; TM), prevents SATB1-induced G1 arrest, which is restored upon the reintroduction of RB into SATB1-expressing TM fibroblasts. SATB1 interacts with the E2F/RB complex and regulates the cyclin E promoter in an E2F-dependent manner. These findings demonstrate that p16 and the RB/E2F pathway are critical for SATB1-induced cell cycle arrest. In the absence of p16, SATB1 causes anchorage-independent growth and invasive phenotype in fibroblasts. Our data illustrate that p16 mutations collaborate with the oncogenic activity of SATB1. Consistent with our finding, a literature survey shows that deletion of p16 is generally associated with SATB1 expressing human cell lines and tumors.
Collapse
Affiliation(s)
- R Agrelo
- 1] Institut Pasteur de Montevideo, Epigenetics of Cancer and Aging Laboratory, Montevideo, Uruguay [2] Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang M, Yin B, Matsueda S, Deng L, Li Y, Zhao W, Zou J, Li Q, Loo C, Wang RF, Wang HY. Identification of special AT-rich sequence binding protein 1 as a novel tumor antigen recognized by CD8+ T cells: implication for cancer immunotherapy. PLoS One 2013; 8:e56730. [PMID: 23437226 PMCID: PMC3578933 DOI: 10.1371/journal.pone.0056730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A large number of human tumor-associated antigens that are recognized by CD8(+) T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines. METHODOLOGY/PRINCIPAL FINDINGS Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02(+) healthy donors and/or HLA-A*02(+) cancer patients. The recognition of HLA-A*02(+) SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1(565-574) frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1(565-574)-specific T cells recognized and killed HLA-A*02(+) SATB1(+) cancer cells in an HLA-I-restricted manner. CONCLUSIONS/SIGNIFICANCE We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8(+) T cells, which, in turn, recognizes and kills HLA-A*02(+) SATB1(+) tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.
Collapse
Affiliation(s)
- Mingjun Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bingnan Yin
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Satoko Matsueda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lijuan Deng
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Ying Li
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Zhao
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jia Zou
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Qingtian Li
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Christopher Loo
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ordinario E, Han HJ, Furuta S, Heiser LM, Jakkula LR, Rodier F, Spellman PT, Campisi J, Gray JW, Bissell MJ, Kohwi Y, Kohwi-Shigematsu T. ATM suppresses SATB1-induced malignant progression in breast epithelial cells. PLoS One 2012; 7:e51786. [PMID: 23251624 PMCID: PMC3519734 DOI: 10.1371/journal.pone.0051786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
SATB1 drives metastasis when expressed in breast tumor cells by radically reprogramming gene expression. Here, we show that SATB1 also has an oncogenic activity to transform certain non-malignant breast epithelial cell lines. We studied the non-malignant MCF10A cell line, which is used widely in the literature. We obtained aliquots from two different sources (here we refer to them as MCF10A-1 and MCF10A-2), but found them to be surprisingly dissimilar in their responses to oncogenic activity of SATB1. Ectopic expression of SATB1 in MCF10A-1 induced tumor-like morphology in three-dimensional cultures, led to tumor formation in immunocompromised mice, and when injected into tail veins, led to lung metastasis. The number of metastases correlated positively with the level of SATB1 expression. In contrast, SATB1 expression in MCF10A-2 did not lead to any of these outcomes. Yet DNA copy-number analysis revealed that MCF10A-1 is indistinguishable genetically from MCF10A-2. However, gene expression profiling analysis revealed that these cell lines have significantly divergent signatures for the expression of genes involved in oncogenesis, including cell cycle regulation and signal transduction. Above all, the early DNA damage-response kinase, ATM, was greatly reduced in MCF10A-1 cells compared to MCF10A-2 cells. We found the reason for reduction to be phenotypic drift due to long-term cultivation of MCF10A. ATM knockdown in MCF10A-2 and two other non-malignant breast epithelial cell lines, 184A1 and 184B4, enabled SATB1 to induce malignant phenotypes similar to that observed for MCF10A-1. These data indicate a novel role for ATM as a suppressor of SATB1-induced malignancy in breast epithelial cells, but also raise a cautionary note that phenotypic drift could lead to dramatically different functional outcomes.
Collapse
Affiliation(s)
- Ellen Ordinario
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Hye-Jung Han
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Saori Furuta
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Laura M. Heiser
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Lakshmi R. Jakkula
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Francis Rodier
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Paul T. Spellman
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Judith Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Joe W. Gray
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Yoshinori Kohwi
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
| | - Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, Jiang PC. Upregulation of SATB1 is associated with the development and progression of glioma. J Transl Med 2012; 10:149. [PMID: 22839214 PMCID: PMC3492129 DOI: 10.1186/1479-5876-10-149] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 02/08/2023] Open
Abstract
Background Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9%) were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where shRNA against SATB1 were expressed. Conclusions SATB1 may have an important role as a positive regulator of glioma development and progression, and that SATB1 might be a useful molecular marker for predicting the prognosis of glioma.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, NO 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 280 Mo He Road, Bao Shan District, Shanghai 201900, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol 2012; 23:72-9. [PMID: 22771615 DOI: 10.1016/j.semcancer.2012.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 06/26/2012] [Indexed: 02/07/2023]
Abstract
When cells change functions or activities (such as during differentiation, response to extracellular stimuli, or migration), gene expression undergoes large-scale reprogramming, in cell type- and function-specific manners. Large changes in gene regulation require changes in chromatin architecture, which involve recruitment of chromatin remodeling enzymes and epigenomic modification enzymes to specific genomic loci. Transcription factors must also be accurately assembled at these loci. SATB1 is a genome organizer protein that facilitates these processes, providing a nuclear architectural platform that anchors hundreds of genes, through its interaction with specific genomic sequences; this activity allows expression of all these genes to be regulated in parallel, and enables cells to thereby alter their function. We review and describe future perspectives on SATB1 function in higher-order chromatin structure and gene regulation, and its role in metastasis of breast cancer and other tumor types.
Collapse
Affiliation(s)
- Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite S, Lazutka J. Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol 2012; 7:27. [PMID: 22424533 PMCID: PMC3319425 DOI: 10.1186/1746-1596-7-27] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/16/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Molecular studies of breast cancer revealed biological heterogeneity of the disease and opened new perspectives for personalized therapy. While multiple gene expression-based systems have been developed, current clinical practice is largely based upon conventional clinical and pathologic criteria. This gap may be filled by development of combined multi-IHC indices to characterize biological and clinical behaviour of the tumours. Digital image analysis (DA) with multivariate statistics of the data opens new opportunities in this field. METHODS Tissue microarrays of 109 patients with breast ductal carcinoma were stained for a set of 10 IHC markers (ER, PR, HER2, Ki67, AR, BCL2, HIF-1α, SATB1, p53, and p16). Aperio imaging platform with the Genie, Nuclear and Membrane algorithms were used for the DA. Factor analysis of the DA data was performed in the whole group and hormone receptor (HR) positive subgroup of the patients (n = 85). RESULTS Major factor potentially reflecting aggressive disease behaviour (i-Grade) was extracted, characterized by opposite loadings of ER/PR/AR/BCL2 and Ki67/HIF-1α. The i-Grade factor scores revealed bimodal distribution and were strongly associated with higher Nottingham histological grade (G) and more aggressive intrinsic subtypes. In HR-positive tumours, the aggressiveness of the tumour was best defined by positive Ki67 and negative ER loadings. High Ki67/ER factor scores were strongly associated with the higher G and Luminal B types, but also were detected in a set of G1 and Luminal A cases, potentially indicating high risk patients in these categories. Inverse relation between HER2 and PR expression was found in the HR-positive tumours pointing at differential information conveyed by the ER and PR expression. SATB1 along with HIF-1α reflected the second major factor of variation in our patients; in the HR-positive group they were inversely associated with the HR and BCL2 expression and represented the major factor of variation. Finally, we confirmed high expression levels of p16 in Triple-negative tumours. CONCLUSION Factor analysis of multiple IHC biomarkers measured by automated DA is an efficient exploratory tool clarifying complex interdependencies in the breast ductal carcinoma IHC profiles and informative value of single IHC markers. Integrated IHC indices may provide additional risk stratifications for the currently used grading systems and prove to be useful in clinical outcome studies. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1512077125668949.
Collapse
Affiliation(s)
- Arvydas Laurinavicius
- National Center of Pathology, affiliate of Vilnius University Hospital Santariskiu Clinics, P,Baublio 5, LT-08406 Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|